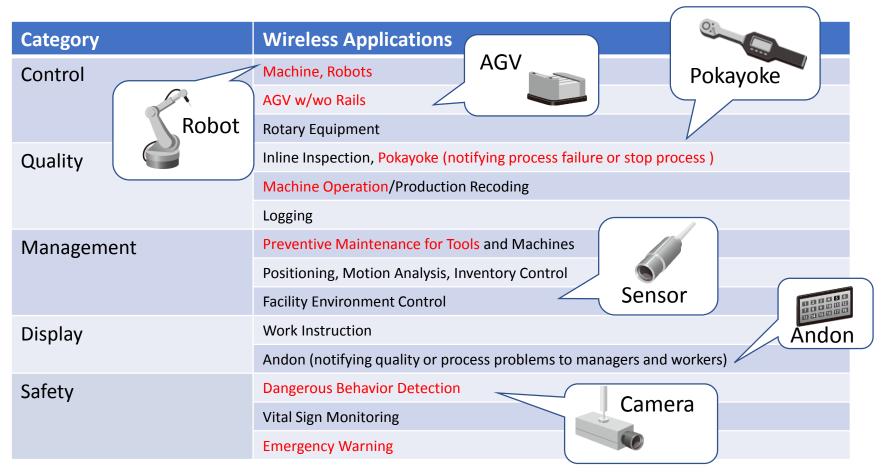
Wired/Wireless Convergence for Factory IoT

Date: 2017-11-06

Author(s):

Name	Company email		
Hasegawa, Akio	Advanced Telecommunications Research Institute International (ATR)	ahase@atr.jp	
Sugiyama, Keizo	Advanced Telecommunications Research Institute International (ATR)	ke-sugiyama@atr.jp	
Ohsawa, Tomoki	BRID Inc.	tohsawa@brid.co.jp	
Hasegawa, Jun	Fujitsu Kansai-Chubu Net-Tech Limited	hasegawa.jun@jp.fujitsu.com	
Naito, Shoji	Fujitsu Kansai-Chubu Net-Tech Limited	naito.shoji@jp.fujitsu.com	
Yamazaki, Hiroaki	Fujitsu Kansai-Chubu Net-Tech Limited	yamazaki.h@jp.fujitsu.com	
Nishikawa, Takurou	Fujitsu Limited	nisikawa.taku@jp.fujitsu.com	
Sato, Shinichi	Fujitsu Limited	sato_shinichi@jp.fujitsu.com	
Kato, Toshio	Mobile Techno Corp.	kato.toshio@jp.fujitsu.com	
Tomita, Hisanori	Murata Machinery, Ltd.	hisanori.tomita@koa.muratec.co.jp	
Itaya, Satoko	National Institute of Information and Communications Technology (NICT)	itaya@nict.go.jp	
Kojima, Fumihide	National Institute of Information and Communications Technology (NICT)	f-kojima@nict.go.jp	
Koto, Hajime	National Institute of Information and Communications Technology (NICT)	h-koto@nict.go.jp	

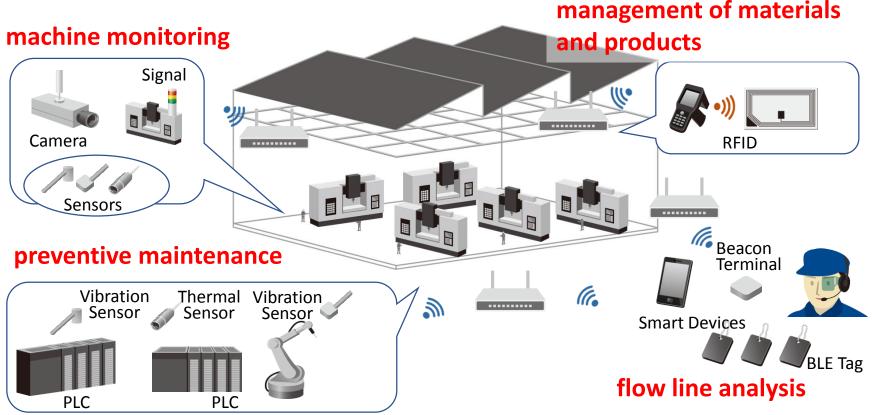
Author(s):


Name	Company	email	
Mochinaga, Mika	National Institute of Information and Communications Technology (NICT)	m-mochinaga@nict.go.jp	
Ezure, Yuichiro	NEC Communication Systems, Ltd.	ezure.yc@ncos.nec.co.jp	
Ito, Chikashi	NEC Communication Systems, Ltd.	ito.chk@ncos.nec.co.jp	
Kobayashi, Tsukasa	NEC Corporation	t-kobayashi@fa.jp.nec.com	
Maruhashi, Kenichi	NEC Corporation	k-maruhashi@bl.jp.nec.com	
Nakajima, Taketoshi	NEC Corporation	nakajima@cp.jp.nec.com	
Okayama, Yoshimitsu	NEC Corporation	y-okayama@bl.jp.nec.com	
Tsuji, Akira	NEC Corporation	a-tsuji@bq.jp.nec.com	
Zein, Nader	NEC Europe Ltd.	Nader.Zein@EMEA.NEC.COM	
Saito, Keisuke	OMRON Corporation	keisuke@ari.ncl.omron.co.jp	
Fujimoto, Takuya	OMRON Corporation	takuya_fujimoto@omron.co.jp	
Yamada, Ryota	OMRON Corporation	ryamada@ari.ncl.omron.co.jp	
Ohue, Hiroshi	Panasonic Corporation	ohue.hiroshi@jp.panasonic.com	
Amagai, Akihiro	Sanritz Automation Co., Ltd.	amagai@sanritz.co.jp	

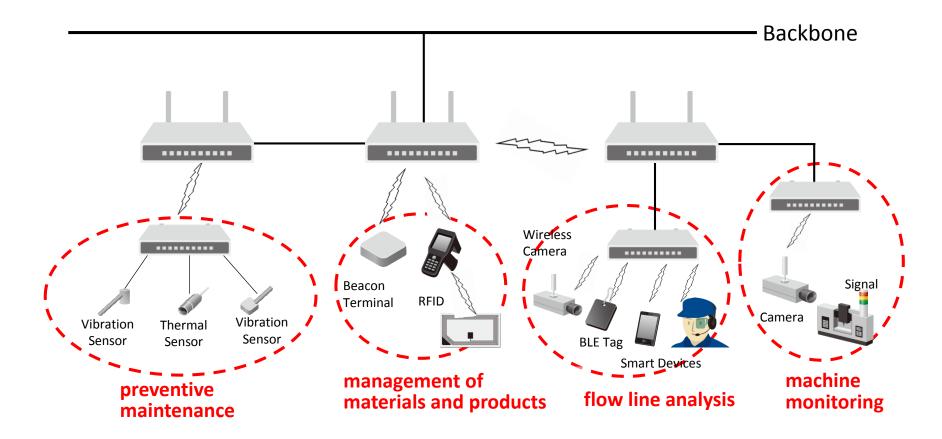
Scope of Presentation

- IEEE 802 Network Enhancements for the Next Decade Industry Connections Activity (ICA) will enable industry consensus building on the market/application requirements and identify gaps and trends not currently addressed by IEEE 802 standardization of new solutions.
- Factory IoT (or Automation) is one of promising spaces for ICA.

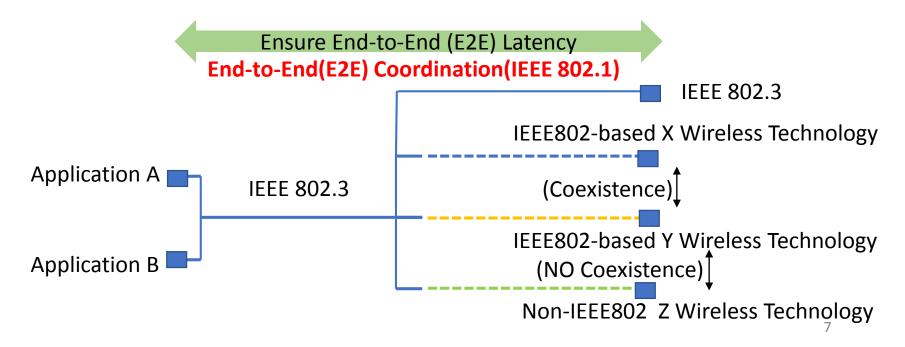
Usage	Network Density	System Complexity	Dominant Data Flow
Mobile, Home, Small office	Low	Independent system	Downstream
Large office, Conference room	High	Homogeneous system	Downstream
Factory, Warehouse, Shopping mall, Station, Airport, Stadium	High	Multiple independent systems, Heterogeneous systems	Fragmented, Upstream


Wireless Applications in Factories

Source: Flexible Factory Project


Example: Wireless Applications for Factory IoT

• A variety of applications are networked for management of production quality and resources, e.g. inspections, monitoring, and instructions with on-the-spot feedback.


Example: Holistic View of Network for Factory IoT

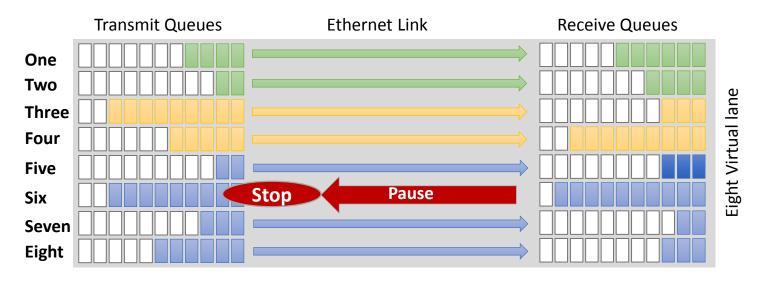
• Wired and wireless links and bridging are mixed for each application.

Goal:E2E Network Topology for Factory IoT

- End-to-End (E2E) network topology for a factory today is configured by combination of wired LAN, such as 802.3, IEEE802-based and non-IEEE802 wireless technologies.
- In order for factory IoT system to work well under such network topology, data frame is treated in a mix of different technologies by high-level E2E coordination.

Observations

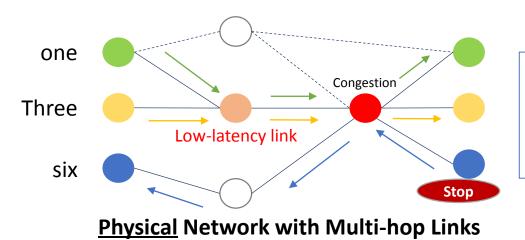
- Many functions of existing standards may be used effectively for the provision of low-latency, low-jitter, bandwidth reservation, and priority control in heterogeneous networks for factories as well.
 - ✓ Stream Reservation Protocol (SRP)/Multiple Stream Reservation Protocol (MSRP). [802.1Qat]
 - ✓ Forwarding and Queuing for Time-Sensitive Streams (FQTSS) [802.1Qav]
 - ✓ Generalized Precision Time Protocol (gPTP)[802.1AS]
 - ✓ Priority-based Flow Control (PFC) [802.1Qbb]
 - ✓ Congestion Notification (CN) [802.1Qbb]
 - ✓ Enhanced Transmission Selection (ETS) [802.1Qaz]
 - ✓ Access Categories (ACs) for Priority in EDCA [802.11e]
 - ✓ Quality-of-service Management Frame (QMF) [802.11ae]


Features of Wireless Networks in Factories

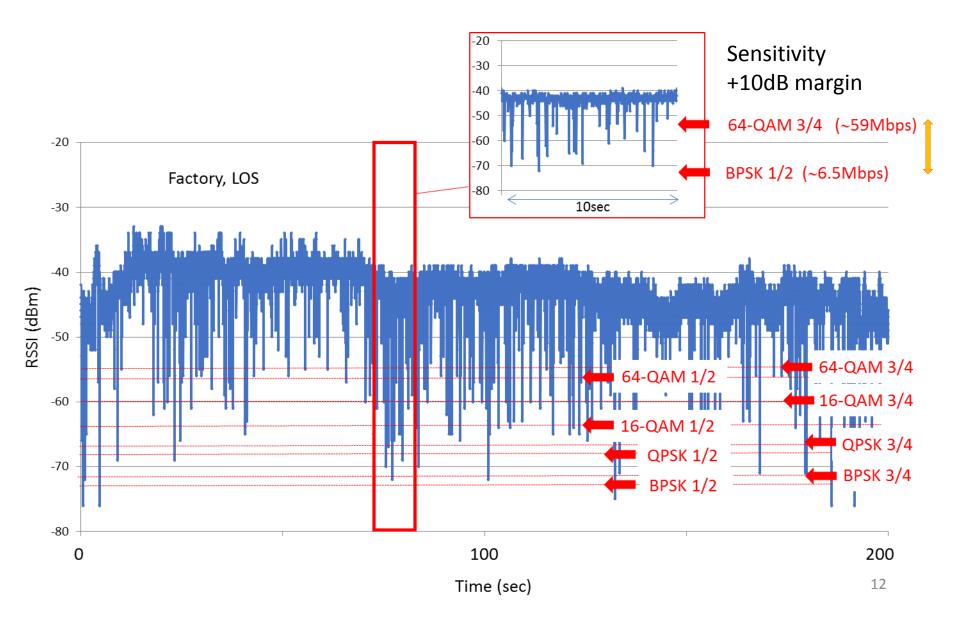
- As we presented[1][2], several unique features of wireless commutations shall be considered for factories.
 - ✓ <u>Available bandwidth is narrow and dynamically fluctuating</u> with possible outage due to interference and/or fading compared to the case of the wired communication. The fading has random or burst-loss nature affected by radio propagation in spatial environment of a factory.
 - ✓ <u>Congestion occurs caused by not only overloading of data streams</u> <u>at the nodes but also wireless link-quality deterioration.</u>
 - ✓ <u>Variety of data types with different priority-class</u> should be involved. E.g., M2M-type data are sometimes periodical and short packets with low latency, which are transmitted from many sensors at a time.

[1] https://mentor.ieee.org/802.1/dcn/17/1-17-0003-00-ICne-wireless-communications-in-the-manufacturing-fields.pdf
[2] https://mentor.ieee.org/omniran/dcn/17/omniran-17-0057-00-00ic-how-we-see-needs-for-coordination.pdf

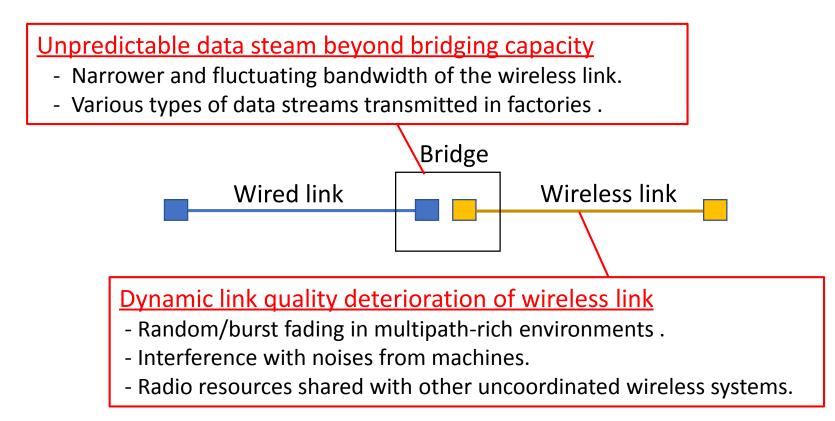
Example of PFC in IEEE 802.1Qbb


- Priority-based Flow Control (PFC) creates eight separate virtual links on the physical link. It enables pause based on user priorities or classes of service.
- What happens if wireless links are mixed in the virtual Ether link without coordination?

Pier to Pier Virtual Ether Link


Example to Come Short with Multi-hop links

- Data streams rush into the physical link with the lowest latency regardless of actual bandwidth at that time.
- Unnecessary stopping/interruption may occur in some cases without dynamic load balance among physical links.
- The dynamic load balancing is not supported so far for wireless links adapted to narrow and fluctuating bandwidth.


Data streams of "one" and "three" rush into the lowest-latency link that causes congestion. It results in stopping data stream of "six."

How Fast is the Rate of Bandwidth Fluctuation

What are Essentials?

 For the physical network of wired/wireless links, unaffordable delay (or stopping data stream) may occur at the wiredwireless bridging with the wireless link.

Our Major Concerns for Networks in Factories

- Unpredictable data steam beyond bridging capacity.
 - ✓ Wireless links, which are characterized by variable delays and bandwidth change dynamically, may become bottlenecks in the virtual LANs. Does the adaptive feature in the stream or flow control of 802.1Q still work well?
 - ✓ With increasing types of data, will QoS be relayed appropriately between the wired and the wireless bridging, e.g., with 802.1p and 802.11e?
- Dynamic link quality deterioration of wireless link.
 - ✓ In case that the same frequency band is shared, different wireless links may be affected mutually. When links are established, then the corresponding bandwidth for each link is determined without coordination in current 802.1Q and 802.11 DCF/EDCA. Can data stream be managed in the virtual LANs ?

DCF: Distributed Coordination Function EDCA: Enhanced Distributed Channel Access