
ITS	Sensor	Transfer	Spec	

Michael	Co3on	
Kenneth	Baker	

	

July	2016	 www.its.bldrdoc.gov	 1	

Transfer	Spec	Mandate	
•  There	is	a	broad	set	of	missions	for	sensing	
networks	

•  There	is	a	broad	set	of	requirements	for	sensors	
•  MulGple	sensor	types	will	be	needed	at	different	
locaGons	and	for	different	missions	

•  Ergo:	
The	transfer	spec	must	be	general	enough	to	
accommodate	the	most	basic	of	sensors	as	well	as	
the	most	sophisGcated.	

Classes	of	Sensors	
•  Network	of	staGonary,	single	funcGon	sensors	
•  Network	of	mobile,	single	funcGon	sensors	
–  Live	stream	
–  Store	and	forward	

•  Network	of	staGonary,	programmable	sensors	
– AdapGve	Antenna	Control	
–  Signal	IdenGficaGon	FuncGons	
–  Timing	and	Emi3er	LocaGon	FuncGons	
–  etc.	

•  Network	of	mobile,	programmable	sensors	
–  Live	stream	
–  Store	and	forward	

Possible	Sensor	Network	FuncGons	
•  Signal	DetecGon	
•  Signal	IdenGficaGon	
•  Emi3er	locaGon	
– Timing	constraints	
– Antenna	control	

•  Emi3er	tracking	
– Timing	constraints	
– Antenna	control	

•  PropagaGon	data	and	control	
•  Environmental	Data		

Transfer	Spec	FuncGonality	
•  Permit	Sensor	Control	
–  Two	way	communicaGon	

•  Permit	Precision	Timing	of	events	
•  Permit	real	Gme	streaming	of	data	
•  Enable	store	and	forward	connecGvity	
•  Permit	transfer	of	locaGon	informaGon	
•  Permit	various	types	of	data	
–  PSD	
–  I/Q	
–  CalibraGon	Data	
–  Environmental,	etc.	

ExisGng	Standards	

•  VITA49	
– No	two	way	communicaGon	and	control	

•  IEEE	1900.6	
– Currently	under	review	
– Will	likely	need	modificaGon	for	our	requirements	

•  802.22.3	
	

Current	ITS	Transfer	Spec	

•  JSON	based	
	

ITS	Message	Format	
•  Messages	in	JavaScript	Object	NotaGon	(JSON)	
•  Example	LOC	message:	
{	
				"version":	"1.0.16",	
				"messageType":	"Loc",	
				"sensorId":	"101010101",	
				"sensorKey":	846859034,	
				"Gme":	987654321,	
				"mobility":	"StaGonary",	
				"environment":	"Outdoor",	
				"laGtude":	40.0,	
				"longitude":	-105.26,	
				"alGtude":	1655,	
				"GmeZone":	"America_Denver"	
}	

Required	Data	Fields	
•  version	=	Schema/data	transfer	version	with	the	
major.minor.revision	syntax	[string]	

•  messageType	=	Type	of	JSON	message	(“Sys”|	
”Loc”|	“Data”|"Capture-Event")	[string	of	URL	
unreserved	characters]	

•  sensorId	=	Unique	idenGfier	of	sensor	[string	
•  sensorKey	=	AuthenGcaGon	key	given	out	by	
MSOD	[integer]	

•  Gme	=	Time	[seconds	since	Jan	1,	1970	UTC]	long	
[integer]	

Current	Message	Types	

•  Sys	Messages	
•  Loc	Messages	
•  Data	Messages	
•  Capture-Event	Messages	

Sys	Messages	
•  Sys	(System)	message	lists	the	criGcal	hardware	components	of	the	sensor	along	with	relevant	RF	

specificaGons	
1.  version	=	Schema/data	transfer	version	with	the	major.minor.revision	syntax	[string]	
2.  type	=	Type	of	JSON	message	(”Sys”)	[string]	
3.  sensorId	=	Unique	idenGfier	of	sensor	[string	of	URL	unreserved	characters]	
4.  sensorKey	=	AuthenGcaGon	key	given	out	by	MSOD	[integer]	
5.  Gme	=	Time	[seconds	since	Jan	1,	1970	UTC]	long	[integer]	
6.  antenna	=	data	that	describes	the	antenna	(see	Antenna	object	below)	
7.  preselector	=	data	that	describes	RF	hardware	components	in	preselector	(see	Preselector	object	below)	
8.  cotsSensor	=	data	that	describes	the	COTS	sensor	(see	COTSsensor	object	below)	
9.  calibraGon	=	data	structure	that	describes	the	calibraGon	measurement	(opGonal,	see	Cal	object	below)	
•  If	processed	=	“False”,	then	the	data	streams	are:	
10a.	noiseSourceOnPowers(n)	=	Raw	measured	data	vector	[dBm	ref	to	input	of	COTS	sensor]	when	known	
source	is	on.	
11a.	noiseSourceOffPowers(n)	=	Raw	measured	data	vector	[dBm	ref	to	input	of	COTS	sensor]	when	known	
source	is	off.	
•  If	processed	=	“True”,	then	the	data	streams	are:	
10b.	noiseFigure(n)	=	Noise	figure	[dB]	referenced	to	input	of	preselector.	
11b.	gain(n)	=	System	gain	[dB]	referenced	to	input	of	preselector	

Loc	Messages	
•  The	Loc	message	specifies	the	geolocaGon	of	the	sensor.	
1.  Ver	=	Schema/data	transfer	version	with	the	major.minor.revision	syntax	

[string]	
2.  Type	=	Type	of	JSON	message	(“Loc”)	[string]	
3.  SensorID	=	Unique	idenGfier	of	sensor	[string	of	URL	unreserved	

characters]	
4.  SensorKey	=	AuthenGcaGon	key	given	out	by	MSOD	[integer]	
5.  t	=	Time	[seconds	since	Jan	1,	1970	UTC]	[long	integer]	
6.  Mobility	=	Mobility	of	sensor	(“StaGonary”|	“Mobile”)	[string]	
7.  Lat	=	angle	[degrees	N]	from	equatorial	plane	(0	–	360)	[float]	
8.  Lon	=	angle	[degrees	E]	from	Greenwich	median	(-180	–	180)	([float]	
9.  Alt	=	height	above	sea	level	[float]	
10.  TimeZone	=	Local	Gme	zone	idenGfier	(“America/New_York”,	“America/

Chicago”,	“America/Denver”,	“America/Phoenix”,	or	“America/
Los_Angeles”)	[string]	

Data	Messages	
•  The	Data	message	contains	acquired	data	from	measurements	of	the	environment	using	an	antenna.	

1.  version	=	Schema/data	transfer	version	with	the	major.minor.revision	syntax	[string]	
2.  messageType	=	Type	of	JSON	message	“Data”	[string]	
3.  sensorId	=	Unique	idenGfier	of	sensor	[string	of	URL	unreserved	characters]	
4.  sensorKey	=	AuthenGcaGon	key	for	the	sensor	[string]	
5.  Gme	=	Time	[seconds	since	Jan	1,	1970	UTC]	[long	integer]	in	the	UTC	Gme	zone.	
6.  sysToDetect	=	System	that	measurement	is	designed	to	detect	(“Radar–SPN43”|	“LTE”|	“None”)	[string	of	URL	unreserved	characters]	
7.  sensiGvity	=	SensiGvity	of	the	data	(“Low”	|	“Medium”	|	“High”)	[string]	
8.  measurementType	=	Type	of	measurement	(“Swept-frequency”|	“FFT-power”)	[string]	
9.  GmeOfAcquisiGon	=	Time	of	1st	acquisiGon	in	a	sequence	[seconds	since	Jan	1,	1970	UTC]	[long	integer]	in	the	UTC	Gme	zone.	
10.  acquisiGonIndex	=	Index	of	current	acquisiGon	in	a	sequence	[integer]	
11.  numOfMeasurements	=	Number	of	measurements	per	acquisiGon	[integer].	Not	relevant	for	streaming	transfers	(set	to	-1).	
12.  GmeBetweenAcquisiGons	=	Imposed	Gme	between	acquisiGon	starts	[float].	This	is	the	Gme	between	successive	Data	messages	(not	relevant	for	

streaming	transfers).	
13.  GmeBetweenStreams	=	Time	between	spectrums	when	data	is	sent	as	a	stream	via	a	tcp	socket	(relevant	for	streaming	transfers).	
14.  overloadFlag	=	Overload	flag(s)	(0	|	1)	[integer]	
15.  detectedSysNosiePowers	=	Detected	system	noise	power	[dBm	ref	to	output	of	isotropic	antenna]	[float]	
16.  comment	[string]	
17.  processed	=	Indicator	on	processing	of	data	("True"|"False")	[string]	
18.  dataType	=	Data	type	("Binary–float32",	"Binary–int16",	"Binary–int8",	"ASCII")	[string]	
19.  byteOrder	=	Order	of	bytes	for	binary	data	("Network"	|	"Big	Endian"	|	"Li3le	Endian"	|	"N/A")	[string]	
20.  compression	=	Indicator	on	compression	of	data	("Zip"	|	"None")	[string]	
21.  measurementParameters	=	Measurement	parameters	(elements	listed	in	Objects	secGon	below)	
If	processed	=	“False”,	then	the	data	stream	is	
21a.	rawMeasuredPowers(n,	nM)	=	Raw	measured	data	vector	[dBm	ref	to	input	of	COTS	sensor]	
If	processed	=	“True”,	then	the	data	stream	is	
21b.	measuredPowers(n,	nM)	=	Measured	power	vector	[dBm	ref	to	output	of	isotropic	antenna]	

Capture-Event	Messages	
•  The	Capture-Event	Message	is	used	to	POST	an	asynchronous	event	from	the	

sensor	to	the	server.		
1.  Ver	=	Schema/data	transfer	version	with	the	major.minor.revision	syntax	[string]	
2.  Type	=	Type	of	JSON	message	“Capture-Event”	[string]	
3.  SensorID	=	Unique	idenGfier	of	sensor	[string	of	URL	unreserved	characters]	
4.  SensorKey	=	AuthenGcaGon	key	for	the	sensor	[string]	
5.  t	=	Time	[seconds	since	Jan	1,	1970	UTC]	[long	integer]	in	the	UTC	Gme	zone.		
6.  Sys2Detect	=	System	that	measurement	is	designed	to	detect	(“Radar–SPN43”|	

“LTE”|	“None”)	[string	of	URL	unreserved	characters]	
7.  SensiGvity	=	SensiGvity	of	the	data	(“Low”	|	“Medium”	|	“High”)	[string]	
8.  mType	=	Type	of	measurement	(“I_Q”)	[string]	
9.  DataType	=	Data	type	("Binary–float32",	"Binary–int16",	"Binary–int8")	[string]	
10.  mPar	=	Measurement	parameters	(elements	listed	in	Objects	secGon	below)	
11.  Decode	=	DetecGon	results	(elements	listed	in	Objects	secGon	below)	
12.  sampleCount:	Number	of	captured	samples.	

JSON	Object	DefiniGons:	Antenna	
1.  Antenna	=	antennas	parameters	with	elements	
2.  Model	=	Make/model	(“AAC	SPBODA-1080_NFi”|	“Alpha	AW3232”)	

[string]	
3.  fLow	=	Low	frequency	[Hz]	of	operaGonal	range	[float]	
4.  fHigh	=	High	frequency	[Hz]	of	operaGonal	range	[float]	
5.  g	=	Antenna	gain	[dBi]	[float]	
6.  bwH	=	Horizontal	3-dB	beamwidth	[degrees]	[float]	
7.  bwV	=	VerGcal	3-dB	beamwidth	[degrees]	[float]	
8.  AZ	=	direcGon	of	main	beam	in	azimuthal	plane	[degrees	from	N]	[float]	
9.  EL	=	direcGon	of	main	beam	in	elevaGon	plane	[degrees	from	horizontal]	

[float]	
10.  Pol	=	PolarizaGon	(“VL”|	“HL”|	“LHC”|	“RHC”,	“Slant”)	[string]	
11.  XSD	=	Cross-polarizaGon	discriminaGon	[dB]	[float]	
12.  VSWR	=	Voltage	standing	wave	raGo	[float]	
13.  lCable	=	Cable	loss	(dB)	for	cable	connecGng	antenna	and	preselector	

[float]	

JSON	Object	DefiniGons:	Preselector	
1.  fLowPassBPF	=	Low	frequency	[Hz]	of	filter	1-dB	passband	

[float]	
2.  fHighPassBPF=	High	frequency	[Hz]	of	filter	1-dB	passband	

[float]	
3.  fLowStopBPF	=	Low	frequency	[Hz]	of	filter	60-dB	

stopband	[float]	
4.  fHighStopBPF	=	High	frequency	[Hz]	of	filter	60-dB	

stopband	[float]	
5.  fnLNA	=	Noise	figure	[dB]	of	LNA	[float]	
6.  gLNA	=	Gain	[dB]	of	LNA	[float]	
7.  pMaxLNA	=	Max	power	[dBm]	at	output	of	LNA,	e.g.,	1-dB	

compression	point	[float]	
8.  enrND	=	Excess	noise	raGo	of	noise	[dB]	diode	for	y-factor	

calibraGon	

JSON	Object	DefiniGons:	COTSsensor	
1.  Model	=	Make	and	model	("Agilent	N6841A"|	

"Agilent	E4440A"|	"CRFS	RFeye"|	"NI	USRP	
N210"|	"ThinkRF	WSA5000-108"|	"Spectrum	
Hound	BB60C")	[string]	

2.  fLow	=	LowMinimum	frequency	[Hz]	of	
operaGonal	range	[float]	

3.  fHigh	=	HighMaximum	frequency	[Hz]	of	
operaGonal	range	[float]	

4.  fn	=	Noise	figure	[dB]	of	COTS	sensor	in	contrast	
to	overall	system	[float]	

5.  pMax	=	Maximum	power	[dBm	at	input]	of	COTS	
sensor	[float]	

JSON	Object	DefiniGons:	Cal		
1.  CalsPerHour	=	Number	of	cals	per	hour	[float]	
2.  Temp	=	Measured	temperature	inside	preselctor	[F]	[float]	
3.  mType:	Type	of	measurement	(“Swept-frequency”,	“FFT-power”)	

[string]	
4.  nM	=	Number	of	measurements	per	calibraGon	[integer]	
5.  Processed	=	Indicator	on	processing	of	data	("True"|	"False")	

[string]	
6.  DataType	=	Data	type	("Binary–float32"|	"Binary–int16"|	"Binary–

int8"|	"ASCII")	[string]	
7.  ByteOrder	=	Order	of	bytes	for	binary	data	("Network",	"Big	

Endian",	"Li3le	Endian",	"N/A")	[string]	
8.  Compression	=	Compression	of	data	("Zip"|	"None")	[string]	
9.  mPar	=	Measurement	parameters	(elements	listed	in	Objects	

secGon	below)	

JSON	Object	DefiniGons:	mPar		
1.  fStart	=	Start	frequency	[Hz]	of	sweep	<Required	for	swept-freq>	[float]	
2.  fStop	=	Stop	frequency	[Hz]	of	sweep	<Required	for	swept-freq>	[float]	
3.  n	=	Number	of	frequencies	in	sweep	<Required	for	swept-freq>	[float]	
4.  td	=	Dwell	Gme	[s]	at	each	frequency	in	a	sweep	<Required	for	swept-

freq>	[float]	
5.  Det	=	Detector:	("RMS"|	"PosiGve”	|	"Peak"	|	"Average")	<Required	for	

swept-freq>	[string]	
6.  RBW	=	ResoluGon	bandwidth	[Hz]	<Required	for	swept-freq>	[float]	
7.  VBW	=	Video	bandwidth	[Hz]	<Required	for	swept-freq>	[float]	
8.  A3en	=	COTS	sensor	a3enuaGon	[dB]	<Required	for	swept-freq>	[float]	
9.  SampleRate	=	Sampling	rate	[Samples/second]	<Required	for	I/Q	

capture>	
10.  fc	=	Center	frequency	[Hz]	\Required	for	I/Q	capture>	

LTE	Decode	
•  Note:	<System2Detect,fStart,fStop>	determine	the	MSOD	band	for	

which	we	are	capturing	I/Q	data.	fc	and	CaptureEvent.sampFreq	
determine	the	bandwidth	of	the	I/Q	samples.	In	the	case	of	a	swept	
frequency	sensor,	there	could	be	several	capture	events	
corresponding	to	a	single	scan.	

•  Decode	=	Decoded	LTE	informaGon	
•  algorithm	=	Algorithm	used	for	detecGon	("coherent"|"matched-

filter"|"cyclostaGonary")	
•  The	following	addiGonal	fields	are	relevant	to	the	"coherent"	

scheme	for	LTE	detecGon:	
–  CellID	=	Cell	idenGficaGon	number	[integer]	
–  SectorID	=	Sector	idenGficaGon	[integer]	
–  linktype	=	("uplink"	|	"downlink")	

Transfer	Mechanism	
Secure	socket	transport	
•  Socket	Setup	
– The	sensor	is	a	pure	client.	
– The	client	iniGates	the	connecGon	to	the	server.	

•  HTTPS	post	
– Sensors	may	also	intermi3ently	connect	and	POST	
data	by	connecGng	to	the	server	

•  Database	(MSOD)	Ingest	Process	
– Not	part	of	the	transfer	spec	

