## Link Budget Analysis for Broadband Services in IEEE 802.22b

#### **IEEE P802.22 Wireless RANs Date:** 2012-07-17

#### Authors:

| Name             | Company            | Address                                                         | Phone          | email                                  |
|------------------|--------------------|-----------------------------------------------------------------|----------------|----------------------------------------|
| Bingxuan Zhao    | Niigata University | 8050 Igarashi 2-no-<br>cho, Nishi-ku, Niigata<br>950-2181 Japan | 81-25-262-6743 | bxzhao@ieee.org                        |
| Shigenobu Sasaki | Niigata University |                                                                 |                | shinsasaki@ieee.org                    |
| Hiromu Niwano    | Niigata University |                                                                 |                | n_hiro@telecom0.eng.niig<br>ta-u.ac.jp |

**Notice:** This document has been prepared to assist IEEE 802.22. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

**Release:** The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.22.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <a href="http://standards.ieee.org/guides/bylaws/sb-bylaws.pdf">http://standards.ieee.org/guides/bylaws/sb-bylaws.pdf</a> including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair Apurva Mody <a href="mailto:apurva.mody@ieee.org">apurva.mody@ieee.org</a> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.22 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at patcom@iee.org.

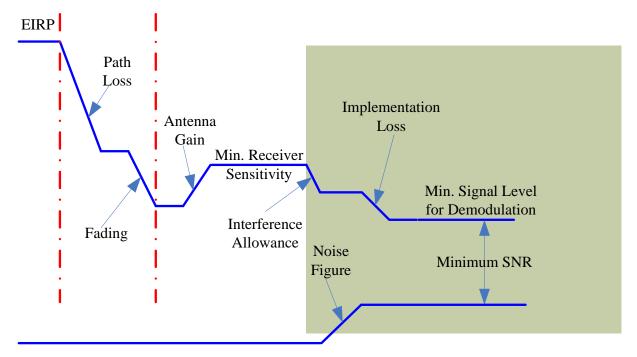
## Abstract

- This contribution presents some information of link budget analysis for 802.22b task group based on the use cases and CPE definitions.
- This presentation focuses on the link budget analysis in the case of using higher order modulation such as 256QAM which would be considered for use of broadband service extension in 802.22b.

## **Use Cases Considering in 802.22b**

Table 1 Use Cases Considering in 802.22b (source: doc. IEEE 802.22-12/0025r4)

| Category                | Usage Cases                                                                          | Properties                                                                                                                         |
|-------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                         | A1) Regional Area Smart Grid/Metering                                                | -Low capacity/complexity CPEs                                                                                                      |
|                         | A2) Agriculture/Farm House Monitoring                                                | -Very large number of monitoring CPEs                                                                                              |
| A) Smart Grid           | A3) Critical Infrastructure/Hazard Monitoring                                        | -Fixed and Potable CPEs                                                                                                            |
| & Monitoring            | A4) Environment Monitoring                                                           | -Real time monitoring<br>-Low duty cycle                                                                                           |
|                         | A5) Homeland Security/Monitoring                                                     | -High reliability and security                                                                                                     |
|                         | A6) Smart Traffic Management and Communication                                       | -Large coverage area<br>-Infrastructure connection                                                                                 |
|                         | B1) Temporary Broadband Infrastructure<br>(e.g., emergency broadband infrastructure) | -Fixed and Portable CPEs<br>-Higher capacity CPEs than Category                                                                    |
| B) Broadband<br>Service | B2) Remote Medical Service                                                           | A)<br>-High QoS, reliability and security                                                                                          |
| Extension               | B3) Archipelago/Marine Broadband Service                                             | <ul> <li>-Higher data rate than Category A)</li> <li>-Easy network setup</li> <li>-Infrastructure and Ad hoc connection</li> </ul> |
| C) Combined<br>Service  | C1) Combined Smart Grid, Monitoring and<br>Broadband Service                         | • Category A) and B)                                                                                                               |


# **Key Technical Issues**

- Regulatory constraints
  - Stringent out-of-band emission mask
  - Power spectral density (PSD) limit

| Type of TV<br>bands device | Average<br>Transmission<br>Power (6 MHz) | EIRP Power<br>Limit<br>(6 MHz) | PSD Limit<br>(100 kHz) | Adjacent<br>Channel Limit<br>(100 kHz) |
|----------------------------|------------------------------------------|--------------------------------|------------------------|----------------------------------------|
| Fixed                      | 30 dBm (1 Watt)                          | 36 dBm (4 Watt)                | 12.6 dBm               | -42.8 dBm                              |
| Personal/Portable          | 20 dBm (100 mW)                          | 20 dBm (100 mW)                | 2.6 dBm                | -52.8 dBm                              |
| Type of TV bands<br>device | Average<br>Transmission<br>Power (6 MHz) | EIRP Power Limit<br>(6 MHz)    | PSD Limit<br>(100 kHz) | Adjacent Channel<br>Limit (100 kHz)    |

#### Table 2 Key spectrum mask elements in TVWS (FCC 3<sup>rd</sup> MO&O)

# Link Budget



Thermal Noise Floor = -174dBm/Hz +  $10\log(BW) = -106.2$  dBm for 6 MHz TV band

- Interference allowance, receiver implementation margin, and noise figure has been considered when calculating the minimum receiver sensitivity according to Ref. 1
  - ✓ BS: 5.9 dB
     ✓ CPE: 9.1 dB

## **Receiver Minimum Sensitivity: 1/2-rate coded QPSK**

 $R_{SS}$  (dBm) = Reference Thermal Noise Density Level

- + Noise Figure + Effective Channel Bandwidth
- + Required Signal-to-Noise Ratio
- + Receiver Implementation Margin + Interference Allowance

| Table 228 — | <ul> <li>Normalized</li> </ul> | CNR per | <sup>•</sup> modulation | for BE | $R = 2 \times 10^{-4}$ |
|-------------|--------------------------------|---------|-------------------------|--------|------------------------|
|-------------|--------------------------------|---------|-------------------------|--------|------------------------|

|                |                     | Normalized CNR (dB) |                                 |
|----------------|---------------------|---------------------|---------------------------------|
| Source: Ref 1. | Modulation—FEC rate | AWGN<br>(default)   | Multipath channel <sup>20</sup> |
|                | CDMA code           | 1.2                 | 5                               |
|                | QPSK, rate: 1/2     | 4.3                 | 8.1                             |

Table 231 — Minimum receiver sensitivity requirement for QPSK rate: 1/2 at BER= 2×10<sup>-4</sup>

| TV channel bandwidth (MHz)              | 6     | 7     | 8     |
|-----------------------------------------|-------|-------|-------|
| Base station receiver sensitivity (dBm) | -94.5 | -93.8 | -93.2 |
| CPE receiver sensitivity (dBm)          | -91.3 | -90.6 | -90.0 |

 $R_{ss}$  for QPSK, rate=1/2 at BER= 2×10<sup>-4</sup>, decoder implementation margin 1.1 dB

| TV channel BW (MHz) (decoder<br>implementation margin) | 6     | 7     | 8     |
|--------------------------------------------------------|-------|-------|-------|
| R <sub>SS</sub> of BS (dBm)                            | -96   | -95.3 | -94.7 |
| R <sub>SS</sub> of CPE (dBm)                           | -92.8 | -92.1 | -91.5 |

## **Receiver Minimum Sensitivity: 256-QAM**

# Cyclic prefix: $\frac{1}{16}$ FFT period

| Code rate           | 1/2   | 2/3  | 3/4   | 5/6   | 7/8   |
|---------------------|-------|------|-------|-------|-------|
| Data rate<br>(Mb/s) | 18.15 | 24.2 | 27.22 | 30.25 | 31.77 |
| Spectral efficiency | 3.03  | 4.03 | 4.53  | 5.04  | 5.29  |

- Data rate of 64-QAM with 5/6-rate coding is 22.7 Mbps (Max. data rate in the IEEE 802.22-2011)
- > 40% higher data rate can be achieved by using 256-QAM

The required SNR for 256-QAM and code rate 7/8 at BER =  $2 \times 10^{-4}$  is: 29.8 dB

## **Receiver Minimum Sensitivity: 256-QAM**

> Assumptions: (Ref. 1)

- ✓ Noise figure: 3 dB for BS, 6 dB for CPE
- ✓ Interference allowance: 1 dB for BS and CPE
- Receiver implementation margin
  - **1.9 dB for BS**
  - 2.1 dB for CPE

 $R_{ss}$  for 256-QAM, rate 7/8 at BER = 2×10<sup>-4</sup> decoder implementation margin 1.7 dB, AWGN channel

| Channel<br>Bandwidth             | 6 MHz | 7 MHz | 8 MHz |
|----------------------------------|-------|-------|-------|
| R <sub>SS</sub> for BS<br>(dBm)  | -68.8 | -68.1 | -67.5 |
| R <sub>SS</sub> for CPE<br>(dBm) | -65.6 | -64.9 | -64.3 |

# Link Budget Calculation

- Channel bandwidth: 6 MHz
- Calculation in Channel 51 (center frequency: 695 MHz):
  - Both fixed or portable devices can be used
- 256-QAM, rate = 7/8, BER =  $2 \times 10^{-4}$
- Receiver Sensitivity
  - BS: -68.8 dBm
  - CPE: -65.6 dBm
- LOS: Free Space
- NLOS (Modified Okumura-Hata Model, Ref. 2.)
  - Tx antenna height: 30 m (AGL)
  - Rx antenna height: 5 m (AGL)

| Para                  | neter          | LOS  | NLOS | Notes                      |
|-----------------------|----------------|------|------|----------------------------|
| Frequence             | ey (MHz)       | 69   | 95   |                            |
| Tx EIRP Po            | ower (dBm)     | 36   | 5.0  | EIRP for BS & H-CPE        |
| Tx Antenna            | Height (m)     | 30   | ).0  |                            |
| Rx Antenna            | Height (m)     | 5    | .0   |                            |
| Tx Antenna            | Gain (dBi)     | 6    | .0   | Included in the EIRP       |
| Path Loss (dB)        | Distance = 2km | 95.3 | 98.3 |                            |
| Required I            | Eb/No (dB)     | 21   | 6    | BER = $2 \times 10^{-4}$   |
| Required              | CNR (dB)       | 29   | 9.8  | 256-QAM, Code rate = $7/8$ |
| <b>Rx Sensitivity</b> | BS             | -68  | 8.8  |                            |
| <b>KX Sensitivity</b> | CPE            | -6.  | 5.6  |                            |

## Link budget example

#### Link Margin (dB) example

| Distance | L   | OS       | NL             | OS                       |
|----------|-----|----------|----------------|--------------------------|
| Distance | BS  | H-CPE    | BS             | H-CPE                    |
| 2 km     | 9.5 | 6.3      | 6.5            | 3.3                      |
| scion    |     | Slide 10 | D'a serve 71 s | o at a l. Niigata Univer |

## **Maximum Transmission Distance**

| Scenarios                                        | Maximum Transmission<br>Distance (km) |      |  |
|--------------------------------------------------|---------------------------------------|------|--|
|                                                  | LOS                                   | NLOS |  |
| $BS \rightarrow H-CPE$ $H-CPE \rightarrow H-CPE$ | 4.82                                  | 2.48 |  |
| H-CPE $\rightarrow$ BS                           | 6.97                                  | 3.08 |  |

## References

- 1. IEEE 802.22-2011, July 2011
- 2. IEEE 802.15-11-0684-09-004m: TG4m Technical Guidance Document, Mar. 2012