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Presentation goals

• Deliver a synopsis of the progress
– Of the ranging and location mechanism
– Described in IEEE 802.22-06/0206r1
– From October 2006 to March 2010

• Propose improvements
– in the pilot carrier selection allowing improved performance

• Explain the relation of the M-RADAR© method
– to classic radio advanced detection and ranging (RADAR)
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• Confirmed and tested by
– Industry Canada Communications Research Center (CRC)
– In cooperation with AmeriSys

• Double blind tests were conducted
– First, CRC devised tests to simulate various field conditions 

without detailed knowledge of the AmeriSys analysis process
• using RF test equipment

– Complex signal generators, channel simulators, sampling receivers
– Next, AmeriSys, without knowledge of the test conditions

• Processed the sampled signals and returned results to the CRC
– Lastly, CRC studied the results

• Reported expected findings vs results comparison to AmeriSys

System validation
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• The CRC offered its help
– In improving the method
– Using its expertise in modern DSP techniques
– In cooperation with AmeriSys

• AmeriSys, in conjunction with the CRC
– Implemented the suggested process adjustments

• Double blind tests were conducted iteratively
– Using test results

• DSP method was refined
– This led to significant performance improvements

• By gradually pushing back limitations

Further work
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• Results were conclusive
– Double blind tests demonstrated the method's potential
– After improvements,

• Confirmed ranging method always works and lives up to its claims
– Operates even when

• Direct line of sight is seriously attenuated
• Large and multiple echoes are present

–  Multicarrier RADAR (M-RADAR) is
•  a significant improvement of RADAR technology

Result Overview
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OFDM System Example
Founding Premises

• OFDM systems inherently transmit
– A set of coherent pilot carriers

• The transmission channel
– Introduces a complex warping in the signal

• Caused by reflections and dispersion

• OFDM receivers sample the complex warped signal
– Introduce an additional simple warp to the signal

• Caused by sampling misalignment to allow for reception despite echoes
– Attempt to compensate all this warp

• Using reference pilot carriers at regular intervals in the frequency domain
• To observe and neutralize the overall warp via interpolation
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• Inherently obtain channel cepstrum information
• Such information is required for their operation
• Such information value is usually

– Annoying for communication systems
– Eradicated in the hope of improving communication

OFDM Systems
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M-RADAR

• A means to economically range targets
– Active
– Cooperating
– Passive

• A means to precisely sound and model
– Propagation channel characteristics including

• Echoes
• Obstructions and dispersion causing attenuation
• Passive reflectors
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• Is an economical system
– Multiple implementation possibilities

• simultaneous sounding with coherent OFDM carriers
• sequential sounding with carrier sequences such as DSSS

• Supports fixed and mobile applications
• Is a generalization of methods to range

– Special cases of M-RADAR
• Classic, Dirac pulse based RADAR
• Modern, Chirping RADAR

M-RADAR
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• OFDM can be used to generate bandwidth-limited 
repetitive classic Dirac RADAR pulses

• This can be achieved using specific PN sequences

Classic RADAR

OFDM Dirac pulse train with DC carrier removed
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• OFDM receivers are able to
– receive and process bandwidth-limited Dirac pulses
– economically and very accurately determine arrival times

Classic RADAR
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• OFDM can be used to generate 
bandwidth-limited repetitive RADAR chirps

• This can be achieved using 
well documented PN sequences

Chirping RADAR
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• OFDM receivers are able to
– receive and process bandwidth-limited chirps
– economically and very accurately determine arrival times

Chirping RADAR
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• OFDM transceivers are able to
– Perform RADAR functions with above well known PN sequences
– economically and very accurately determine arrival times
– Use other PN sequences to tailor to various application needs

M-RADAR
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• For 802.22, the sampling period is 146 nsec
• This is not the resolution barrier

– At first glance, theory states
• One can't obtain information 

to a finer resolution than the sampling period
– This has proven to be a false impression
– Based on premises leading to a self-fulfilling paradigm

• Not all information below this barrier is lost
– Since the receiver analog bandwidth prevents aliasing

Sampling Rate Barrier Paradigm
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• The complex input to the IDFT
– Is a set of real and imaginary spectrum values
– In polar representation each ranging tone

• Has an amplitude and a phase term

• The complex output of the IDFT
– Is a set of real and imaginary time values
– In polar representation, each time sample

• Has and amplitude and a phase term

Sampling Rate Barrier Paradigm
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• Classic IDFT theory only preserves
– The real values of time output components

i.e the channel impulse response
• Discarding the imaginary component

– Causes the apparent sampling rate timing barrier

Sampling Rate Barrier Paradigm
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• The imaginary component
– Embeds precious timing information

Sampling Rate Barrier Paradigm
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• Combining both allows for very fine correlation 
and interpolation

Sampling Rate Barrier Paradigm
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Proof of Concept I

145.8 ns

Stimulus

Shift= -0.5 sampling period
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Proof of Concept II
Shift= -0.4 sampling period

145.8 ns

Stimulus
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Proof of Concept III
Shift= -0.3 sampling period

145.8 ns

Stimulus
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Proof of Concept IV
Shift= -0.2 sampling period

145.8 ns

Stimulus
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Proof of Concept V
Shift= -0.1 sampling period

145.8 ns

Stimulus
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Proof of Concept VI
Shift= +0.0 sampling period

145.8 ns

Stimulus
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Proof of Concept VII
Shift= +0.1 sampling period

145.8 ns

Stimulus
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Proof of Concept VIII
Shift= +0.2 sampling period

145.8 ns

Stimulus
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Proof of Concept IX
Shift= +0.3 sampling period

145.8 ns

Stimulus
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Proof of Concept X
Shift= +0.4 sampling period

145.8 ns

Stimulus
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Proof of Concept XI
Shift= +0.5 sampling period

145.8 ns

Stimulus
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• Sampling rate is not the precision and resolution limit
– Discrete echoes are very precisely located
– Only limited by the A/D and DFT/IDFT resolution (bits/sample)

• Sampling rate only limits dispersion resolution
– i.e. echoes within the 146ns sampling window

• appear to be clumped together
– Timing of each echo clump is not limited to the sampling rate

• Dynamic range limit
– 802.22 downstream 840 tones results in ~40dB dynamic range
– 802.22 upstream 56 tone range

• Already found to exceed 19dB

The Barrier is Broken !
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• OFDM generates bandwidth limited repetitive 
classic Dirac RADAR pulses when PN = 1 + j0

Operating Principles - I

OFDM Dirac pulse train with DC carrier removed
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• OFDM generates all possible bandwidth 
limited repetitive signals with other 
known complex PN sequences

Operating Principles - II
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• The channel generally alters the signal waveform 
due to echoes, reflections and dispersion

• Range (distance) delays 
and attenuates the signal

Operating Principles - III
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• The OFDM receiver amplifies and samples the 
received waveform

Operating Principles - IV
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• The OFDM receiver performs a DFT on 
the received samples

• Up to this point, nothing really new

Operating Principles - V
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• The known complex PN 
sequence is removed

• The result is
– A mathematical representation 

of the complex channel impulse 
response in the frequency domain

Operating Principles - VI
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• Non ranging carriers are removed
• Only ranging carriers are kept
• The result is now

– Practically identical to that
of a classic Dirac Pulse RADAR
in the frequency domain
after propagation through the channel

Operating Principles - VII
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• An IDFT is performed
• Result is a complex time domain impulse response

Operating Principles - VIII
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• A cross correlation to a high resolution 
complex prototype function corresponding to 
an ideal channel is performed

• Result is
– A very precise channel echo profile

identical to that obtained from
a classic Dirac impulse RADAR
with the same bandwidth
but with a significantly finer precision
due to the available processing gain
resulting from the IDFT

Operating Principles - IX
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• Transmission using a PN sequence
• Convolution through the channel
• Reception and acquisition
• Nothing new

– This is done by all OFDM systems
• Practically no hardware costs !

– No wiring
– No additional antenna
– No additional installation
– Guaranteed co-location
– Tamper resistant

Sounding & Acquisition
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• PN sequence selection
• PN sequence removal
• Deconvolution
• All this can be done

– By a NOC processor
• Practically no hardware costs !

– For BS or CPE

Channel Modeling
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Multicarrier RADAR

• Classic RADAR requires
– High power, large bandwidth
– In digital circuits, very high frequency sampling clocks

• M-RADAR reduces these requirements
– By 2 orders of magnitude in sampling clock frequency
– Allows for an additional 40 dB processing gain
– Yields higher precision

• In a 6 MHz BW
• With sampling frequency as low as 8/7 * 6Mhz
• With 3 bit quantization → better than 1 meter precision
• With 8 bit quantization → ~ 1 inch precision
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• M-RADAR can accurately range
– active and passive targets

• Adding a third device allows
– Crude 2D RADAR imagery

• Adding more devices
– Refines image quality and can allow 3D imagery
– Provides for redundancy/correlation of results

• May circumvent hidden node problems
• Allowing for

– terrain effects
– 3D channel modeling/imagery provision

• Opens a path for channel response deconvolution

Summary
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