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 1. Spectrum Sensing of the DTV in the Vicinity of the Pilot Using Higher Order Statistics
We present an algorithm to detect the DTV Signals in Gaussian noise using Higher Order Statistics (HOS). The algorithm performs non-Gaussianity check in the frequency domain in the vicinity of the pilot of the DTV. The average results for all the 12 provided DTV Signals are summarized as: At Pfalse alarm  = 0.04, 

· For a capture of 5mS (continuous or staggered), Pdetection= 0.9 at SNR = -16.6 dB. 

· For a capture of 10 mS (continuous or staggered), Pdetection = 0.9 at SNR =  -18.6 dB 

· For a capture of 20 mS (continuous or staggered), Pdetection = 0.9 at SNR =  -21.6 dB 

· For a capture of 40 mS (continuous or staggered), Pdetection = 0.9 at SNR =  -23.7 dB

We use a 2048 point FFT to implement the algorithm which may be used for spectrum sensing as well as OFDMA demodulation. Because of the Constant False Alarm Rate (CFAR) [1, 2] nature of the detector, the threshold is built into the technique and NO presetting is required. Fine adjustment is possible if needed. 
Our technique relies on the non-Gaussianity of a signal to separate it from the Gaussian noise. In the time domain, DTV signals show a Gaussian characteristic. However, in the frequency domain they are non-Gaussian. We will exploit this characteristic to detect the signals in AWGN. This algorithm meets the DTV fine sensing requirements as an average over the 12 provided DTV signals for sensing times 
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 20 mS. 
2. Signal or Noise Identification Using Higher Order Statistics – Basic Concept
Use of Higher Order Statistics (HOS) is an efficient metric for detecting non-Gaussian signals at low SNRs [3]. In particular, if we assume the noise to be a Gaussian random process, then all the cumulants of order greater than 2 are supposed to be zero. Given a set of N samples x = {x0, x1, …, xN-1}, of a random variable x, the  rth order moment of the collection of samples contained in the vector (x) may be approximated as 
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Let cr = rth order cumulant of x. Then the relationship between cumulants and the moments may be used to compute the higher order cumulants in a simple fashion as 
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where 
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This relationship may also be written for each of the cumulants by expanding (3) as shown below. 
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Since our data record for the determination of the HOS may not be sufficiently long, the cumulants of order greater than 2 may not be exactly zero. Hence, a threshold needs to be set in order to make a decision as to whether the samples belong to signal or noise. In this method, we compare the higher order cumulants with the power of second order moment. This is also known as bi-coherency tri-coherency etc. tests to determine if the received waveform belongs to DTV signal or the noise. 

3. Signal Detection for DTV Signals in the Vicinity of the Pilot Using Higher Order Statistics
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Figure 1. Signal processing chain for DTV spectrum sensing in the vicinity of pilot using higher order statistics (HOS). 
Following is the description of the DTV spectrum sensing algorithm in the vicinity of pilot using HOS. 
Step 1. Downshift (Downconvert) the received samples collected in the TV channel from the Radio Frequency (RF) or the Intermediate Frequency (IF) to the base band,

Step 2. Pass the down-converted signal through an image rejection Low Pass (LP) of total bandwidth (BW1 = 8 MHz) to suppress the image. 

Step 3. Upshift (Upconvert) the signal by approximately (2.69 MHz – 0.8 NFFT / (2Tsensing Z)) so that if an ATSC DTV signal was present, its pilot would be shifted towards the d.c. or 0 Hertz frequency. Tsensing  = Sensing Duration, Z = 1, 2, 3, …determines the multiples of the sensing duration. For example, Tsensing = 0.005 and Z = 1 implies the total sensing duration of 5 mS. Similarly, Tsensing = 0.005 and Z = 2 implies the total sensing duration of 10 mS. Fs = sampling frequency of the original received signal at RF or IF, and NFFT  = Size of the FFT  used. Factor 0.8 NFFT / (2Tsensing Z) is used to make sure that the pilot is shifted just enough (before the next stage of downsampling) and there are no residual contributions from the neighboring channel in the samples that are being analyzed.
Step 4. Pass the resultant signals through a Low Pass (LP) filter of total bandwidth (BW2 = NFFT / ((Tsensing) Z)) followed by downsampling of the signals by a factor of floor(Fs/BW2). 
Step 5. Convert the input samples from serial to parallel and transform them to the frequency domain using a Fast Fourier Transform (FFT) of length NFFT. As an example, keeping the FFT length, NFFT = 2048 is advantageous since the same FFT implementation may be used for spectrum sensing as well as OFDMA demodulation of WRAN. 
Step 6. Collect the samples at the output of the FFT and store them in a buffer. Determine the higher order moments and cumulants of the real and imaginary portions of the stored samples using Equations (1), (2) and (3). Perform the frequency domain Gaussianity check and hence DTV detection by applying the following steps.

Step 7. Let R be the number of moments 
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 of the order greater than two available for computation of the real and the imaginary parts of each of the segments (X) of data at the output of the FFT respectively, 

· Choose a  Probability Step Parameter 0 < δ < 1; As an example let  = 0.5 / R. 

· Let 
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· for r = 3 to (R + 2); 



 if 
 
[image: image13.wmf]d

g

-

=

Þ

<

real

real

r

real

real

r

m

c

Signal

Signal

2

2

P

P

    

      



 


elseif   
[image: image14.wmf]d

g

+

=

Þ

³

real

real

r

real

real

r

m

c

Signal

Signal

2

2

P

P

    

      




 end, 



 if   
[image: image15.wmf]d

g

-

=

Þ

<

imaginary

imaginary

r

imaginary

imaginary

r

m

c

Signal

Signal

2

2

P

P

    

      

, 



 elseif   
[image: image16.wmf]d

g

+

=

Þ

³

imaginary

imaginary

r

imaginary

imaginary

r

m

c

Signal

Signal

2

2

P

P

    

      




end,

       
end

· 
[image: image17.wmf]imaginary

real

b

a

Signal

Signal

Signal

P

P

 

 

P

×

+

×

=

 where a and b weight parameters. As an example 
[image: image18.wmf]5

.

0

=

=

b

a


· Due to the constant false alarm rate (CFAR) nature of the detector, the threshold is built into the system, and NO presetting is required. However, in order to carry out fine adjustment, we have provided the fine sensing threshold parameter , which is used to make fine adjustments of Pfalse alarm if needed. As  increases Pfalse alarm decreases and vice-versa. In most cases  is kept close to unity. 
Step 8. if 
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 then the segment X belongs the DTV signal we conclude that the TV channel is occupied by the incumbent. 

if 
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 then the segment X belongs to noise and we conclude that the TV channel is NOT occupied by an incumbent. 

4. Performance Results

The spectrum sensing algorithm using HOS was tested on the 12 DTV signals that were provided [4]. The simulations were carried out for sensing times in multiples of 5 ms however any length sensing time may be used for the actual implementation. The length of the FFT was kept at NFFT = 2048 keeping in mind that the same hardware may be used for spectrum sensing as well as OFDMA demodulation of WRANs. Due to the CFAR nature of the detector, the threshold is built into the system, and NO presetting is required. However, in order to carry out fine adjustment, we have provided the fine sensing threshold parameter , which enables fine adjustment of the Pfalse alarm at little degradation in Pdetection. Figure 2 shows the average (Pdetection and Pfalse alarm) of the 12 provided DTV signals vs the fine sensing threshold parameter ,  at SNR = -20 dB and sensing duration of 20 mS. Based on this simulation, the value of the fine sensing threshold parameter  was chosen in order to obtain a specific Pfalse alarm. Similar simulations were carried out for other sensing durations as well. Based on the results from Figure 2, the parameter  was kept at 0.8 and 1.05 in order to obtain Pfalse alarm
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0.05 and Pfalse alarm
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0.01 respectively. Figures 3, 4, 5 and 6 show the Pdetection vs SNR performance of the 12 provided DTV signals for 5, 10, 20 and 40 mS sensing times respectively.
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Figure 2. Average Pdetection and Pfalse alarm of the 12 provided DTV signals vs the fine sensing threshold parameter ,  at SNR = -20 dB and total sensing duration TsensingZ = 20 mS. NFFT = 2048, a = b = 1.
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(a)                                                                                         (b)

Figure 3. Pdetection vs SNR performance for the 12 provided DTV signals for the total sensing duration TsensingZ = 5 mS using the algorithm utilizing HOS in the vicinity of the pilot. NFFT = 2048, a = b = 1, (a)  = 0.8, PFA = 0.0427 (b)  = 1.05, PFA = 0.01
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  (a)                                                                                      (b)

Figure 4. Pdetection vs SNR performance for the 12 provided DTV signals for the total sensing duration TsensingZ = 10 mS using the algorithm utilizing HOS in the vicinity of the pilot. NFFT = 2048, a = b = 1, (a)  = 0.8, PFA = 0.0425 (b)  = 1.05, PFA = 0.01
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  (a)                                                                                     (b)

Figure 5. Pdetection vs SNR performance for the 12 provided DTV signals for the total sensing duration TsensingZ = 20 mS using the algorithm utilizing HOS in the vicinity of the pilot. NFFT = 2048, a = b = 1. (a)  = 0.8, PFA = 0.0396 (b)  = 1.05, PFA = 0.01
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  (a)                                                                                        (b)

Figure 6. Pdetection vs SNR performance for the 12 provided DTV signals for the total sensing duration TsensingZ = 40 mS using the algorithm utilizing HOS in the vicinity of the pilot. NFFT = 2048, a = b = 1. (a)  = 0.8, PFA = 0.0381 (b)  = 1.05, PFA = 0.01

The spectrum sensing algorithm using HOS in the vicinity of the pilot was tested for the 12 provided DTV signals as shown above. Table 1 summarizes the results for the average SNR required for the collection of the 12 provided DTV signals at a Pfalse alarm = 0.05 and Pfalse alarm = 0.01 while keeping Pdetection 
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 0.90 for various sensing durations. This algorithm meets the DTV fine sensing requirements as an average over the 12 provided DTV signals for sensing times 
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 20 mS.
	Sensing Duration
	5 ms
	10 ms
	20 ms
	40 ms

	Required SNR for Pdetection 
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 0.9 and Pfalse_alarm 
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 0.05)
	-16.6 dB
	-18.6 dB
	-21.6 dB
	-23.7 dB

	Required SNR for Pdetection 
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 0.9 and Pfalse_alarm 
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 0.01)
	-16 dB
	-18 dB
	-21.4 dB
	-23.4 dB


Table 1: Required SNR for DTV signal detection (Averaged over 12 signals)
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Abstract


We present an algorithm to detect the DTV signals in Gaussian noise using Higher Order Statistics (HOS). The algorithm performs non-Gaussianity check in the frequency domain in the vicinity of the pilot of the DTV. The Average results for all the 12 provided DTV signals are summarized as: At Pfalse alarm  = 0.04, 


For a capture of 5mS (continuous or staggered), Pdetection= 0.9 at SNR = -16.6 dB. 


For a capture of 10 mS (continuous or staggered), Pdetection = 0.9 at SNR =  -18.6 dB 


For a capture of 20 mS (continuous or staggered), Pdetection = 0.9 at SNR =  -21.6 dB 


For a capture of 40 mS (continuous or staggered), Pdetection = 0.9 at SNR =  -23.7 dB


We use a 2048 point FFT to implement the algorithm which may be used for spectrum sensing as well as OFDMA demodulation. Because of the Constant False Alarm Rate (CFAR) nature of the detector, the threshold is built into the technique and NO presetting is required. Fine adjustment is possible if needed. This algorithm meets the DTV fine sensing requirements as an average over the 12 provided DTV signals for sensing times � EMBED Equation.3  ��� 20 mS.
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