June 2006

doc.: IEEE 802.22-07/0313r0

IEEE P802.22
Wireless RANs

	LDPC Decoding for 802.22 Draft Standard

	Date: 2007-06-28

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Yufei Blankenship
	Motorola
	Schaumburg, IL, USA
	847-576-1902
	Yufei.Blankenship@ Motorola.com

	Stephen Kuffner
	Motorola
	Schaumburg, IL, USA
	847-538-4158
	Stephen.Kuffner@ Motorola.com

LDPC Decoding

LDPC codes are decoded using message passing algorithms such as belief propagation (BP) or the sum-product algorithm. These algorithms may be interpreted conveniently via the bipartite graph representation of the LDPC code, where variable nodes and check nodes are connected through edges. The variable nodes and check nodes exchange log-likelihood (LLR) messages along their edges in an iterative fashion, thereby cooperating with each other in the decoding process.

The operations in an LDPC decoder can be broadly classified into two aspects: (a) the local operations which refer to how messages are generated at the nodes (called “node processing”); (b) the global operations (called “scheduling”) which determine how messages generated by the nodes are passed between each other. These two aspects are discussed below.

Node Processing

Node processing consists of variable node update (VNU) and check node update (CNU). In the VNU, incoming messages from the check nodes are processed at each VN, and the outgoing “extrinsic” messages are generated and passed to the check nodes. Similarly, in the CNU, incoming messages from the variable nodes are processed at each CN, and the outgoing “extrinsic” messages are generated and fed back to the variable nodes. Thus the messages are passed between the variable node bank and check node bank iteratively.

In this discussion, C(n) denote the set of check nodes connected to variable node n, V(m) denote the set of variable nodes connected to check node m, where 0 (n (N‑1, and 0 (m (M‑1. C(n)\m refers to exclusion of m from set C(n), and similarly V(m)\n refers to exclusion of n from set V(m).
In the VNU, variable node n has messages Rm(n coming in from all check nodes m(connected to it and its channel LLR Lch(n). The VNU unit is analogous to a decoder for a repetition code. Hence, the outgoing message (“extrinsic”) Qnm on an edge n(m is the sum of all messages except Rmn. More specifically, at iteration i, each variable node n calculates messages Qnm[i], which is sent from variable node n to each check node m(C(n). Message Qnm[i] is the LLR of variable node n based on all check nodes in C(n)\m, and is calculated as

[image: image1.wmf][

]

(

)

[

]

(

)

å

Î

¢

¢

-

+

=

m

n

C

m

n

m

ch

nm

i

R

n

L

i

Q

\

1

 ,
(LISTNUM equat \l1
where Lch(n) is the channel LLR of variable node n. An example of the computation of (1) is shown in Figure 1 (a), assuming that the variable node has degree = 3. The a posteriori LLR for a variable node (i.e., code bit) is obtained by adding all the incoming messages at the variable node

[image: image2.wmf][

]

(

)

[

]

(

)

(

)

[

]

(

)

]

1

[

],

1

[

]

[

1

1

1

\

-

+

-

+

=

-

+

=

-

+

=

-

å

å

Î

¢

¢

Î

¢

¢

i

R

i

R

i

Q

i

R

n

L

i

R

n

L

i

APP

mn

mn

nm

m

n

C

m

n

m

ch

n

C

m

n

m

ch

n

(LISTNUM equat \l1
where m can be any check node in C(n). The above expression indicates that the variable-to-check message Qnm[i] in a current iteration can be directly calculated from the a posteriori LLR APPn[i-1] and the check-to-variable message Rmn[i-1] on the same edge from the previous iteration.

In the CNU, check node m has messages Qn’m coming in from all variable nodes n(connected to it. Each check node m calculates messages Rmn[i], which is sent from check node m to each variable node n (V(m). Message Rmn[i] is the LLR of variable node n based on all the variable nodes in V(m)\n. Since check node m essentially defines a single parity-check (SPC) code,

[image: image3.wmf](

)

0

=

Å

å

Î

¢

¢

m

V

n

n

x

,
(LISTNUM equat \l1
the variable node n that participates in check node m is related to all other variable nodes connected to check node m by

[image: image4.wmf](

)

å

Î

¢

¢

Å

=

n

m

V

n

n

n

x

x

\

(LISTNUM equat \l1
where
[image: image5.wmf]å

Å

 refers to modulo-2 addition of binary variables. Thus

[image: image6.wmf][

]

(

)

[

]

(

)

[

]

(

)

(

)

[

]

(

)

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

´

=

+

=

÷

÷

ø

ö

ç

ç

è

æ

Å

=

Õ

Õ

å

å

Î

¢

¢

-

Î

¢

¢

Î

¢

¢

Î

¢

¢

n

m

V

n

m

n

n

m

V

n

m

n

n

m

V

n

m

n

n

m

V

n

n

mn

i

Q

i

Q

i

Q

x

L

i

R

\

1

\

\

\

2

tanh

tanh

2

sgn

]

[

.
(LISTNUM equat \l1
The CNU is computationally more intensive than VNU. An example of the computation of (5) is shown in Figure 1 (b) for a check node of degree-4.

Although in (5) tanh() function is used, the calculations can also be expressed in other ways such as using the max*() operation typically used in turbo decoding. Additionally, approximations of (5) with simple operations are more attractive for implementation. For example, CNU for the min-sum kernel is simply,

[image: image7.wmf][

]

[

]

(

)

(

)

(

)

[

]

(

)

i

Q

i

Q

i

R

m

n

n

m

V

n

n

m

V

n

m

n

mn

¢

Î

¢

Î

¢

¢

´

=

Õ

\

\

min

sgn

.
(LISTNUM equat \l1
The decoding performance of the min-sum algorithm can be enhanced by applying an offset factor
[image: image8.wmf]offset

C

 to (6) as follows.

[image: image9.wmf][

]

[

]

(

)

[

]

(

)

0

,

max

sgn

offset

C

i

R

i

R

i

R

mn

mn

mn

-

´

=

¢

.
(LISTNUM equat \l1

[image: image10.emf]å

L

ch

(n)

n-th variable

node

C(n)

+10.5

-2.5

-3

(-2.5) + (+10.5) + (-3) = +5.0

 EMBED Visio.Drawing.11 [image: image11.emf]x

0

x

1

x

2

x

3

m-th

check node

V(m)

-3

-4

+10

(-3) [+] (-4)[+] (+10) = +2.69

] [



(a)
(b)

Figure 1.
Operations in a belief propagation decoder: (a) Variable Node Update for a degree-3 variable node and (b) Check Node Update for a degree-4 check node. Note that although only message update on one edge (marked with solid arrow) is illustrated, similar operations are used to update messages on all the edges.

Scheduling

Scheduling involves communicating messages from one node to another as dictated by the edge connections in the bipartite graph. Two typical schedules of belief propagation are: i) flooding schedule (also known as standard belief propagation (SBP)) and layered schedule (or the layered belief propagation (LBP)).

In SBP, the entire bipartite graph is flooded with messages that are passed back and forth along all the edges, as illustrated in Figure 2.

[image: image12.emf]CNU VNU CNU

An Iteration

Figure 2. Message passing in the flooding schedule of the belief propagation algorithm (i.e., standard belief propagation (SBP)). The shaded boxes indicate the CNU and VNU and block arrows indicate direction of message passing. Message passing occurs on a per-iteration basis.

However, this ‘flooding’ increases the complexity especially for longer block-sizes when the number of edges becomes large. In the LBP algorithm, only a small fraction of the variable nodes and check nodes are updated per sub-iteration, as illustrated in Figure 3. The messages generated in a sub-iteration of a current iteration are immediately used in subsequent sub-iterations within the same iteration. This leads to a faster flow of information and helps improve decoding speeds. For the structured LDPC codes proposed for 802.22, a sub-iteration processes one vector row, thus one iteration is composed of nb sub-iterations. During one sub-iteration, z check nodes are updated, and a variable node is updated at most once in each sub-iteration.

[image: image13.emf]x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

CNU

VNU

CNU

An Iteration of layered schedule BP or layered BP

VNU

An sub-iteration of layered BP

Figure 3.
Message passing in the layered BP. Shaded boxes indicate CNU and VNU and block arrows indicate direction of message passing. In the example, one CNU is done per sub-iteration. The edges that are updated in each sub-iteration are shown with thick solid lines.

Decoding Complexity

While actual decoding complexity depends on many factors such as hardware architecture, the decoding complexity is estimated in comparison to the duo-binary turbo decoder based on operations count.
The computational complexity of the optimal and sub-optimal decoder for LDPC codes are considered. The LBP decoding with ideal kernel is chosen for optimal decoding, and the Min-Sum with Offset kernel is chosen for sub-optimal decoding. Table 1 shows the per-iteration complexity of an LDPC decoder, where K is the information block length, N is the codeword length. The complexity is calculated assuming the following degree distributions for the LDPC codes: dv= 3.3750 (R=1/3), dv= 3.7292(R=1/2), dv= 3.9375(R=3/4). Here dv is the average column weight of the LDPC code, dc is the average row weight of the LDPC code. In Table 1, the ratio of calculation costs is assumed to be as follows: Addition (A) : Comparison (C) : Scaling (S) : LUT = 1 : 1 : 2 : 6.
Similarly, the per-iteration decoding complexity of the duo-binary turbo decoder is estimated in Table 2 for both optimal and sub-optimal decoders based on the analysis in the Appendix. For turbo codes, all code rates require the same decoding complexity since all code rates are obtained from the mother code via puncturing. In contrast, for LDPC decoders the decoding complexity decreases as the code rate increases.

For the LDPC codes, the LBP decoding converges within 15 to 20 iterations, while it is well-known that eight turbo-decoding iterations are sufficient for convergence. Therefore, for a fair comparison between LDPC and turbo-decoding algorithms, the number of iterations is chosen to be 20 and 8, respectively. The operations count of LDPC and turbo decoding algorithms are listed in Table 3 and Table 4 for the optimal and sub-optimal algorithms.

As Table 3 indicates, an optimal LDPC decoder takes approximately 26% to 50% operations count compared to optimal turbo decoder. Table 4 indicates that even smaller percentages (19% to 35%) are obtained when sub-optimal LDPC decoding is compared with the sub-optimal turbo decoding. Therefore, it is concluded that LDPC codes can offer the same performance as the duo-binary TC with approximately 19%-50% computational complexity.

Table 1. Decoder Operations Count per iteration for LDPC codes.
	LDPC codes
	Optimal decoding
	Sub-optimal decoding

	Schedule + Kernel
	LBP+ideal kernel
	LBP+(Min-Sum+Offset)

	For check node processing
	A : dvN + (2dc-1)(N-K)

LUT : 2 dc (N-K)
	A : dvN + 2(N-K)

C : (2dc -3)(N-K) + 2(N-K)

	For variable node processing
	A : dvN
	A : dvN

	Cost

(/iter)
	A: Addition(1)
	2dvN + (2 dc -1)(N-K)
	2dvN + 2(N-K)

	
	C: Comparison(1)
	
	(2dc -3)(N-K) + 2(N-K)

	
	LUT(6)
	2dc (N-K)
	

	Total cost

(R=1/3)
	160*K
	38.5*K

	Total cost

(R=1/2)
	118.3*K
	28.8*K

	Total cost

(R=3/4)
	83.7*K
	20.6*K

Table 2. Decoder Operations Count per iteration for Turbo codes

	Turbo codes
	Optimal decoding
	Sub-optimal decoding

	Algorithm
	Log Map
	Max Log Map+extrinsic scaling

	For Gamma (per trellis step)
	A : 16*(4)
	A : 16*(4)

	For Beta (per trellis step)
	A : M*(4+3)
C : M*(3)
LUT : M*(3)
	A : M*(4)
C : M*(3)

	For Alpha (per trellis step)
	A : M*(4+3)
C : M*(3)
LUT : M*(3)
	A : M*(4)
C : M*(3)

	For Lambda (per trellis step)
	A : 4M*(2)+4(M-1)+3
C : 4(M-1)
LUT : 4(M-1)
	A : 4M*(2)+3
C : 4(M-1)

S: 4

	Costs

(/bit /iter)
	A: Addition(1)
	26M+63
	16M+67

	
	C: Comparison(1)
	10M-4
	10M-4

	
	S: Scaling(2)
	-
	4

	
	LUT(6)
	10M-4
	-

	Total cost (R=1/3)
	803*K
	275*K

	Total cost (R=1/2)
	803*K
	275*K

	Total cost (R=3/4)
	803*K
	275*K

Table 3. Operations count comparison of optimal LDPC (20 iterations) and TC decoders (8 iterations).

	
	LDPC
	TC
	Complexity of LDPC / Complexity of TC

	Algorithm
	LBP

ideal kernel
	Log MAP
	

	Number of Iterations
	20
	8
	

	Total cost

(R=1/3)
	160*K * 20 = 3200*K

	803*K * 8 = 6424*K

	50%

	Total cost

(R=1/2)
	118.3*K * 20 =2366*K

	803*K * 8 = 6424*K

	37%

	Total cost

(R=3/4)
	83.7*K * 20 = 1674*K

	803*K * 8 = 6424*K

	26%

Table 4. Operations count comparison of sub-optimal decoders LDPC (20 iterations) and TC decoders (8 iterations).

	
	LDPC
	TC
	Complexity of LDPC / Complexity of TC

	Algorithm
	LBP

Min-Sum+Offset
	Max Log Map

+extrinsic scaling

	

	Number of Iterations
	20
	8
	

	Total cost

(R=1/3)
	38.5*K * 20 = 770*K

	275*K * 8 = 2200*K

	35%

	Total cost

(R=1/2)
	28.8*K * 20 = 576*K

	275*K * 8 = 2200*K

	26%

	Total cost

(R=3/4)
	20.6*K * 20 = 412*K

	275*K * 8 = 2200*K

	19%

References:

[1]
IEEE 802.22-07/0312r0, “LDPC Coding Description for 802.22 Draft Standard,” Y. Blankenship, S. Kuffner, June 2007.

[2]
IEEE 802.16eTM-2005, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1,” Feb 28, 2006.

Appendix. Duo-binary Turbo Code Operations
The operations count of the optimal and sub-optimal decoder for duo-binary Turbo codes with mother code rate 1/2 (e.g., 802.16e) is estimated. Log-MAP decoder is defined as optimal decoder, and Max-Log-Map + extrinsic scaling [18] is defined as sub-optimal decoder.

Assuming Log-MAP decoding, the operator max*() is used in the (, (recursion and output LLR calculation (() for each trellis step. In specific, following are the calculations required per trellis step:

Gamma (branch metric):

Each (calculation has the format: ((A, B)= (a(A, B) + (ch(A) + (ch (B) + (ch (Y) + (ch (W);

24 (calculations needed per trellis step because there are 4 output bits (A,B,X,Y) per input pair (A,B);

Alpha (forward recursion):

Each (calculation has the format: (k+1=max*4((k+(); max*4 indicates max*() over 4 values;

M (calculations needed per trellis step;

Beta (backward recursion):

Each (calculation has the format: (k=max*4((k+1+();

M (calculations needed per trellis step;

Lamda (a posteriori LLR):

Each ((A,B) calculation has the format ((A,B) = max*M((k+(+ (k+1) - ((0,0);

4 ((A,B) calculations per trellis step;

In the above, (A, B) represents the two information bits at a trellis step, (Y, W) represents the two parity bits at each trellis step. M is the number of states in the trellis. In this document M=8 is assumed, the same as in 802.16.

If max-log-MAP is used, all max*() operators above are replaced with max() operator. Usually max*() is implemented with a max() function plus a LUT correction term.

The decoder complexity in terms of operations count per information bit per iteration is shown in Table 2. It was taken into account that two information bits are generated per trellis step, and there are two constituent decoders.

Abstract

This submission describes the LDPC decoding algorithms for the proposed LDPC code [1]. The complexity of the decoder is analyzed in comparison to the duo-binary turbo codes in [2].

Notice: This document has been prepared to assist IEEE 802.22. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.22.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures

<� HYPERLINK "http://standards.ieee.org/guides/bylaws/sb-bylaws.pdf" ��http://standards.ieee.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "mailto:carl.stevenson@ieee.org" ��Carl R. Stevenson�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.22 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

Submission
page 1
Yufei Blankenship, Motorola

_1205500551.unknown

_1244445974.unknown

_1244446225.unknown

_1244447356.unknown

_1217407679.unknown

_1205500759.vsd

_1205499702.unknown

_1205499720.unknown

_1196150357.vsd
å

Lch(n)

n-th variable node

C(n)

+10.5

-2.5

-3

(-2.5) + (+10.5) + (-3) = +5.0

_1201961256.vsd
CNU

VNU

CNU

An Iteration

_1204706800.unknown

_1199108482.vsd
x3

x0

V(m)

m-th
check node

x1

x2

-3

-4

+10

(-3) [+] (-4) [+] (+10) = +2.69

_1186838939.unknown

