April 2007

 doc.: IEEE 802.22-07/0xxxr0

IEEE P802.22.1
Wireless RANs

	FEC Text for IEEE Std. 802.22.1

	Date: 2007-04-03

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Wu Yu-chun
	Huawei Hisi
	Xinxi Rd., Shangdi St, Haidian Dist, Beijing 100085 China
	86-10-8282-9018
	wuyuchun@huawei.com

	Soo-Young Chang
	Huawei Technologies
	Davis, CA, U.S.
	1-916 278 6568
	sychang@ecs.csus.edu

	Jianwei Zhang
	Huawei Technologies
	Shanghai, China
	86-21-68644808
	zhangjianwei@huawei.com

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

1. Encoding of FEC on Sync Burst
The Sync Frame is transmitted in I channel and its structure is as following:

[image: image1]
Figure 1. Sync frame structure.
1) The 15bits of PN Sequence b(0) ~ b(14) are defined in Table 15 (Please refer to [1]);
2) The 7bits of Index b(15) ~ b(21) indicates how many slots left before the next Beacon Super frame starts. To improve the receive performance of the Index, a (15, 7) Linear Block Code is used. The coding of Index is as in the following step;
3) The 8 parity bits b(22) ~ b(29) are used for both error‑correction and error‑detection for the index. These 8 parity bits are generated by the generator polynomial: g(D) = D8 + D7 + D6 + D4 + 1 from the 7 index bits b(15) ~ b(21) in a systematic form, which means that, in GF(2), the polynomial:

-
b(15)D14 + b(16)D13 +...+b(21)D8 + b(22)D7 + b(23)D6 +...+ b(28)D1 + b(29);

-
b(22) ‑ b(29): the parity bits;

-
b(15) ‑ b(21): the index bits;

When divided by g(D), this step yields a remainder equal to 0.

4) The two reserved bits b(30) ~ b(31) should be set to 0.
2. Decoding of FEC on Sync Burst
Suppose the received Index and Parity bits are r(0) ~ r(14). Then the decoding is done as in the following steps:
1) Calculate the syndrome sequence:

[image: image2.wmf]T

T

h

h

h

h

h

h

h

h

h

r

r

r

H

r

s

s

s

s

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

=

=

14

,

14

1

,

14

0

,

14

14

,

1

1

,

1

0

,

1

14

,

0

1

,

0

0

,

0

14

1

0

14

1

0

)

,

(

)

,

(

L

M

L

L

L

v

L

v

where the parity check matrix
[image: image3.wmf]H

 is obtained by following way:
The first row vector of
[image: image4.wmf]H

is
[image: image5.wmf]}

1

0

0

0

0

0

0

0

1

0

0

0

1

0

1

{

0

=

h

v

, the (i+1)th row vector
[image: image6.wmf]i

h

v

is obtained by cyclic right shifting the ith row vector
[image: image7.wmf]1

-

i

h

v

 by one element. Then the parity check matrix
[image: image8.wmf]H

will be:

[image: image9.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

1

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

1

1

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

1

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

1

0

1

H

2) Calculate the error vector,
[image: image10.wmf]}

,

{

62

1

0

e

e

e

e

L

v

=

. For the ith element
[image: image11.wmf]i

e

, we first establish the row index set
[image: image12.wmf]}

,

,

{

)

(

4

2

1

j

j

j

i

A

L

=

, where each element of
[image: image13.wmf])

(

i

A

is a row index of H and the ith element of this row is “1”. For example, from
[image: image14.wmf]H

, we can easily find that
[image: image15.wmf]}

13

,

9

,

1

,

0

{

)

0

(

=

A

,
[image: image16.wmf]}

14

,

12

,

8

,

0

{

)

14

(

=

A

). If more than half of the
[image: image17.wmf]}

,

,

{

4

2

1

)

(

j

j

j

i

A

s

s

s

s

L

=

 is “1”, then
[image: image18.wmf]1

=

i

e

, otherwise
[image: image19.wmf]0

=

i

e

.
3) Calculate
[image: image20.wmf]2

)%

(

e

r

z

v

v

v

+

=

.

4) To detect errors, if
[image: image21.wmf]0

v

v

=

T

H

z

, we extract
[image: image22.wmf]6

1

0

,

z

z

z

L

as the Index. Otherwise, the decoding failed and we should continue to process the next Sync Frame to obtain Index information.
3. Encoding of FEC on Beacon Header
Define Set S={ 1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73 78
82
86
90
94
98
102
106
110
114
118
122
126
130
134
138
142
146
150 155
159
163
167
171
175
179
183
187
191
195
199
203
207
211
215
219
223
227 232
236
240
244
248
252
256
260
264
268
272
276
280
284
288
292
296
300
304}
Suppose the input data block length is N (here N = 18*8 = 144), and these bits are represented by b(0) ~ b(N-1).
1) CRC appending:

4 CRC bits are appended to the input data for error‑detection. These 4 CRC bits b(N) ~ b(N + 3) are generated by the generator polynomial: g(D) = D4 + D + 1.

The encoding is performed in a systematic form, which means that, in GF(2), the polynomial:

-
b(0)DN+3 + b(1)DN+2 +...,+b(N-1)D4 + b(N)D3 + b(N+1)D2 + b(N+2)D1 + b(N+3);
-
b(N) ‑ b(N+3): the parity bits;

-
b(0) ‑ b(N-1): the input data bits.
When divided by g(D), this step yields a remainder equal to 0.
2) Adding tail bits

Then six tail bits are appended. All these six tail bits are set to 0. After adding tail bits, the data block is
b(0) b(1) ,… b(N-1) b(N) … b(N+3) b(N+4) … b(N+9)

where b(N+4) = b(N+5) = …b(N+9) = 0

3) Convolutional coding

Then the data b(0) ~ b(N+9) is encoded using a rate ½ binary convolutional encoder. (Please see section 8.5.2.1.1 of [3].) The constraint length of this coder is equal to 7 and its generator polynomials are 171o and 133o. 2 shows the pictorial depiction of the generator polynomials. Outputs A and B represent the first and second output bits respectively of this encoder.

The convolutional coder shall be initialized to all 0 state at the beginning of each block of data.

[image: image23.wmf]D

D

D

D

D

D

Output A

Output B

Data in

+

+

Figure 2. Rate ½ convolutional coder with generator polynomials, 171o and 133o.
The delay element represents a delay of 1 bit.

After applying convolutional coding, the length of the data block is 2*(N+4+6)=2N+20. These bits are represented by v(0) v(1) … v(2N+19).
4) Repeating
To meet the performance requirements and at the same time to make the data length after FEC coding as short as possible, we need to repeat or puncture some output bits from the convolutional coder. Repeating and puncturing can be done as in the following:
v(0) v(1) … v(2N+19) was fed into the repeating module. Suppose the data block length after repeating is Y (here Y = 384bits corresponding to 40ms) and these bits are represented by t(0) t(1) … t(Y-1). Then the repeating is done as follows:
For all input data v[i], i = 0 ~ 2N+19
{

If (i is one element of set S)

repeating is performed, i.e, output bit v[i] twice.

Else

output bit v[i] once.

}
4. Decoding of FEC on Beacon Header
Suppose the received data block length is Y (here Y = 384 bits corresponding to 40ms), and these data are represented by r(0) ~ r(Y-1).
1) De-repeating

For all input data r[i], i = 0 ~ (Y-1)
{

If (i is one element of set S)

{

the output value equals to the average value of r[i] and r[i+1], and then jump to process r[i+2].

}

Else

{

the output value equals to r[i], and then continue to process next input data r[i+1].

}

}

The data block length after de-repeating is 2*(N+4+6)=2N+20 (here N = 144), and these data are represented by v’(0) ~ v’(2N+19).
2) De-convolutional coding

The v’(0) ~ v’(2N+19) were fed into the decoding module of the convolutional code, which usually adopts a Viterbi decoding. (Please refer to [2].) The data block length after the de-convolutional coding module is N+10 (here N = 144) and these bits are represented by b’(0) ~ b’(N+9).
3) Removal of tail bits
The six tail bits were removed. After that, the data block Llength will be N+4 (here N = 144). These bits are represented by b’(0) ~ b’(N+3).
4) CRCcCheck module

In GF(2), this block can be represented by b’(0)DN+3 + b’(1)DN+2 +...+b’(N-1)D4 + b’(N)D3 + b’(N+1)D2 + b’(N+2)D1 + b’(N+3). When it is divided by g(D), this step yields a remainder equal to 0. We recover the Beacon Header successfully. Otherwise, we failed to recover the Beacon header.
Reference:
[1] IEEE802.22-07-0071-01-0001_TG1_Preliminary_Draft_Clause_5&6

[2] Digital Modulation and Coding by Stephen G. Wilson;
[3] IEEE P802.22/D0.2 Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Policies and procedures for operation in the TV Bands
Notice: This document has been prepared to assist IEEE 802.22. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.22.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures

<� HYPERLINK "http://standards.ieee.org/guides/bylaws/sb-bylaws.pdf" ��http://standards.ieee.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "mailto:carl.stevenson@ieee.org" ��Carl R. Stevenson�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.22 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

Abstract

FEC on Sync Burst and FEC on PSDU were approved in Orlando meeting by the TG1 group to be included in the TG1 draft. As requested, this file provides the text on FEC on Sync Burst and FEC on PSDU to be incorporated into the Draft.

Parity

(8 bits)

Index

(7 bits)

PN Sequence

(15 bits)

。。。

Sync Frame

With Index

1

Sync Frame

With Index

X-1

Sync Frame

With Index

X

Reserve(2 bits)

Submission
page 1
Yu-Chun Wu, Huawei Technologies

_1236495826.unknown

_1236496211.unknown

_1236496591.unknown

_1236496841.unknown

_1236496908.unknown

_1236497033.unknown

_1236496792.unknown

_1236496453.unknown

_1236496491.unknown

_1236496082.unknown

_1236496136.unknown

_1222617535.unknown

_1236495593.unknown

_1236495782.unknown

_1222619220.unknown

_1222690108.unknown

_1222617612.unknown

_1222617206.unknown

_1222617518.unknown

_1222617158.unknown

_1190812214.vsd
+�

D�

D�

D�

D�

D�

D�

+�

Output A�

Output B�

Data in�

