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1.  Encoding of FEC on Sync Burst
The Sync Frame is transmitted in I channel and its structure is as following:

[image: image1]
Figure 1.  Sync frame structure.
1) The 15bits of PN Sequence b(0) ~ b(14) are defined in Table 15 (Please refer to [1]); 
2) The 7bits of Index b(15) ~ b(21) indicates how many slots left before the next Beacon Super frame starts. To improve the receive performance of the Index, a (15, 7) Linear Block Code is used. The coding of Index is as in the following step;
3) The 8 parity bits b(22) ~ b(29) are used for both error‑correction and error‑detection for the index. These 8 parity bits are generated by the generator polynomial: g(D) = D8 + D7 + D6 + D4 + 1 from the 7 index bits b(15) ~ b(21) in a systematic form, which means that, in GF(2), the polynomial:

-
b(15)D14 + b(16)D13 +...+b(21)D8 + b(22)D7 + b(23)D6 +...+ b(28)D1 + b(29);

-
b(22) ‑ b(29): the parity bits;

-
b(15) ‑ b(21): the index bits;

When divided by g(D), this step yields a remainder equal to 0.

4) The two reserved bits b(30) ~ b(31) should be set to 0.
2.  Decoding of FEC on Sync Burst
Suppose the received Index and Parity bits are r(0) ~ r(14). Then the decoding is done as in the following steps:
1) Calculate the syndrome sequence: 
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where the parity check matrix 
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 is obtained by following way: 
The first row vector of 
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is 
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, the (i+1)th row vector 
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is obtained by cyclic right shifting the ith row vector 
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 by one element. Then the parity check matrix 
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will be: 
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2) Calculate the error vector, 
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, we first establish the row index set 
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is a row index of H and the ith element of this row is “1”. For example, from
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, we can easily find that 
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3) Calculate 
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4) To detect errors, if 
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as the Index. Otherwise, the decoding failed and we should continue to process the next Sync Frame to obtain Index information.
3.  Encoding of FEC on Beacon Header
Define Set S={ 1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73 78
82
86
90
94
98
102
106
110
114
118
122
126
130
134
138
142
146
150 155
159
163
167
171
175
179
183
187
191
195
199
203
207
211
215
219
223
227 232
236
240
244
248
252
256
260
264
268
272
276
280
284
288
292
296
300
304}
Suppose the input data block length is N (here N = 18*8 = 144), and these bits are represented by b(0) ~ b(N-1).
1) CRC appending:

4 CRC bits are appended to the input data for error‑detection. These 4 CRC bits b(N) ~ b(N + 3) are generated by the generator polynomial: g(D) = D4 + D + 1. 

The encoding is performed in a systematic form, which means that, in GF(2), the polynomial:

-
b(0)DN+3 + b(1)DN+2 +...,+b(N-1)D4 + b(N)D3 + b(N+1)D2 + b(N+2)D1 + b(N+3);
-
b(N) ‑ b(N+3): the parity bits;

-
b(0) ‑ b(N-1):  the input data bits.
When divided by g(D), this step yields a remainder equal to 0.
2) Adding tail bits

Then six tail bits are appended. All these six tail bits are set to 0. After adding tail bits, the data block is
b(0) b(1) ,… b(N-1) b(N) … b(N+3) b(N+4) … b(N+9) 

where b(N+4) = b(N+5) = …b(N+9) = 0

3) Convolutional coding

Then the data b(0) ~ b(N+9) is encoded using a rate ½ binary convolutional encoder. (Please see section 8.5.2.1.1 of [3].) The constraint length of this coder is equal to 7 and its generator polynomials are 171o and 133o. 2 shows the pictorial depiction of the generator polynomials. Outputs A and B represent the first and second output bits respectively of this encoder.

The convolutional coder shall be initialized to all 0 state at the beginning of each block of data. 
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Figure 2.  Rate ½ convolutional coder with generator polynomials, 171o and 133o.
The delay element represents a delay of 1 bit.

After applying convolutional coding, the length of the data block is 2*(N+4+6)=2N+20. These bits are represented by v(0) v(1) … v(2N+19).
4) Repeating
To meet the performance requirements and at the same time to make the data length after FEC coding as short as possible, we need to repeat or puncture some output bits from the convolutional coder. Repeating and puncturing can be done as in the following:
v(0) v(1) … v(2N+19) was fed into the repeating module. Suppose the data block length after repeating is Y (here Y = 384bits corresponding to 40ms) and these bits are represented by t(0) t(1) … t(Y-1). Then the repeating is done as follows:
For all input data v[i], i = 0 ~ 2N+19
{

If (i is one element of set S)

repeating is performed, i.e, output bit v[i] twice. 

Else



output bit v[i] once.

}
4.  Decoding of FEC on Beacon Header
Suppose the received data block length is Y (here Y = 384 bits corresponding to 40ms), and these data are represented by r(0) ~ r(Y-1).
1) De-repeating 

For all input data r[i], i = 0 ~ (Y-1)
{

If (i is one element of set S)



{

the output value equals to the average value of r[i] and r[i+1], and then jump to process r[i+2]. 

}

Else

{


the output value equals to r[i], and then continue to process next input data r[i+1].

}

}

The data block length after de-repeating is 2*(N+4+6)=2N+20 (here N = 144), and these data are represented by v’(0) ~ v’(2N+19).
2) De-convolutional coding

The v’(0) ~ v’(2N+19) were fed into the decoding module of the convolutional code, which usually adopts a Viterbi decoding. (Please refer to [2].) The data block length after the de-convolutional coding module is N+10 (here N = 144) and these bits are represented by b’(0) ~ b’(N+9).
3) Removal of tail bits
The six tail bits were removed. After that, the data block Llength will be N+4 (here N = 144). These bits are represented by b’(0) ~ b’(N+3).
4) CRCcCheck module

In GF(2), this block can be represented by b’(0)DN+3 + b’(1)DN+2 +...+b’(N-1)D4 + b’(N)D3 + b’(N+1)D2 + b’(N+2)D1 + b’(N+3). When it is divided by g(D), this step yields a remainder equal to 0. We recover the Beacon Header successfully. Otherwise, we failed to recover the Beacon header.
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Abstract


FEC on Sync Burst and FEC on PSDU were approved in Orlando meeting by the TG1 group to be included in the TG1 draft. As requested, this file provides the text on FEC on Sync Burst and FEC on PSDU to be incorporated into the Draft.
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