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1. Eigenvalue based sensing algorithms
Let 
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 be the continuous time received signal. Assume that we are interested in the frequency band with central frequency 
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be the sampling period. The received discrete signal is then
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. There are two hypothesises:
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: signal not exists; and 
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: signal exists. The received signal samples under the two hypothesises are therefore respectively as follows:
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where
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 is the transmitted signal passed through a wireless channel (including fading and  multipath effect), and
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 is the white noise samples. Note that
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can be the superposition of multiple signals. The received signal is generally passed through a bandpass filter. Let 
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 EMBED Equation.3  [image: image17.wmf]be the bandpass filter. After filtering, the received signal is turned to
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Let
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Then
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Choose a smoothing factor 
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 and define


[image: image24.wmf]1

,...,

1

,

0

,

]

)

1

(

~

...

)

1

(

~

)

(

~

[

)

(

-

=

+

-

-

=

s

T

N

n

L

n

x

n

x

n

x

n

x


Define a 
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Let
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. Decompose the matrix into
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Hermitian matrix.

Maximum-minimum eigenvalue (MME) detection 

Step 1. Sample and filter the received signal as described above.

Step 2. Choose a smoothing factor 
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 and compute the threshold 
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 to meet the requirement for the probability of false alarm. (can be done by Table lookup) 

Step 3. Compute the sample covariance matrix
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Step 4. Transform the sample covariance matrix to obtain


[image: image34.wmf]H

s

s

N

N

-

-

=

Q

R

Q

R

)

(

)

(

~

1


Step 5. Compute the maximum eigenvalue and minimum eigenvalue of the matrix 
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 and denote them as 
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Step 6. Determine the presence of the signal based on the eigenvalues and the threshold: if 
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>

,  signal exists; otherwise, signal not exists

The flow-chart of the algorithm is given in Figure 1.
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Figure 1. Flow-chart of the MME detection

Energy with minimum eigenvalue (EME) detection 

Step 1. Sample and filter the received signal as described above.

Step 2. Choose a smoothing factor 
[image: image39.wmf]L

 and compute the threshold 
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 to meet the requirement for the probability of false alarm. (can be done by Table lookup)

Step 3. Compute the sample covariance matrix
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Step 4. Transform the sample covariance matrix to obtain
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Step 5. Compute the average energy of the received signal 
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, and the minimum eigenvalue of the matrix 
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Step 6. Determine the presence of the signal: if 
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, signal exists; otherwise, signal not exists.

The flow-chart of the algorithm is given in Figure 2.



Figure 2. Flow-chart of the EME detection

2. Simulations for wireless microphone signals

The FM modulated wireless microphone signal is


[image: image47.wmf]÷

ø

ö

ç

è

æ

+

=

ò

D

t

m

c

d

w

f

f

t

w

0

))

(

(

2

cos

)

(

t

t

p


where 
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 is the central frequency, 
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 is the frequency deviation, and 
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 is the source signal. 

We choose the frequency deviation to be 100 KHZ. We assume that the signal has been down converted to the IF with central frequency 
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=5.381119 MHz (the same as the captured DTV signal). The sampling rate is 21.524476 MHz (the same as the captured DTV signal). The passband filter with bandwidth 6 MHz is the raised cosine filter with 89 tapes. 
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 is generated as evenly distributed real number in (-1,1). The signal and white noise are passed through the same filter. Sensing time is 9.30 mili seconds (ms). The smoothing factor is chosen as L=10. The threshold is set based on the required Pfa=0.1 (using random matrix theory) and fixed for signals. The threshold is not related to noise power.
Table 1 gives the probability of false alarm. Figure 3 shows the probability of detection.

Notations used in the following: EG: energy detection, EG-xdB: energy detection with xdB noise uncertainty.

	EG-2dB
	EG-1.5dB
	EG-1dB
	EG-0.5dB
	EG-0dB

(no uncertainty)
	EME
	MME

	0.497
	0.497
	0.496
	0.483
	0.108
	0.081
	0.086


Table 1. Probability of false alarm (filtered noise, sensing time 9.30 ms)
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Figure 3. Probability of detection of wireless microphone signal (sensing time 9.30 ms)

3. Simulations for captured DTV signals

The simulations are based on the “Spectrum sensing simulation model”.
The captured DTV signal is passed through a raised cosine filter (bandwidth 6 MHz, rolling factor ½, 89 tapes). White noises are added to obtain the various SNR levels. The number of samples used is 400000 (corresponding to 18.60 ms). The smoothing factor is chosen as L=10. The threshold is set based on the required Pfa=0.1 (using random matrix theory) and fixed for signals. The threshold is not related to noise power.
Table 2 gives the probability of false alarm. Figure 4-9 give the probability of detections for different DTV signals.

	EG-2dB
	EG-1.5dB
	EG-1dB
	EG-0.5dB
	EG-0dB

(no uncertainty)
	EME
	MME

	0.496
	0.496
	0.491
	0.481
	0.095
	0.029
	0.077


Table 2. Probability of false alarm (white noise, sensing time 18.60 ms)
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Figure 4. Probability of detection (WAS-311/48/01)

[image: image55.jpg]Probability of detection

—o- EG-2dB
-7 EG-1.5dB
—%— EG-1dB
0.9 -&— EG-0.5dB
— EG-0dB
- EME
. MME
0.8
07f
0.6}/
05
0.4
03} ; ,
[ L i L L L L Il L L L
22 20 -18 -6 -14 12 -10 8 ) -4 2

SNR (dB)





Figure 5. Probability of detection (WAS-311/36/01)
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Figure 6. Probability of detection (WAS-006/34/01)
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Figure 7. Probability of detection (WAS-051/35/01)
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Figure 8. Probability of detection (WAS-032/48/01)
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Figure 9. Probability of detection (WAS-049/34/01)

4. Conclusions
· The eigenvalue based detections do not need any information on signal, the channel, the noise level and SNR.

· Same detection method for all signals (DTV, wireless microphone, …);

· Same threshold for all signals (the thresholds is independent on the signal and noise power).

· Performance is comparable to ideal energy detection (can be better than if over-sampled)
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This document presents the eigenvalue based sensing algorithms and their performances for the IEEE 802.22 WRANs. Simulation results based on the captured DTV signals and randomly generated wireless microphone signals are given. 
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