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Proposal

Add the following python code to 9.4.2.5.1.

def CreateCompleteSubtree(I, T, R):
        # Input I: List of indices of leaf nodes to be included in the group
        # Input T: The entire tree that covers all leaf nodes
        # Input R: Root node of the entire tree
        # Output S: Complete Subtree for the group.
        S=[]
        def check(n):
                # Input n: subtree root node
                # Output 0, 1
                #  0 : Some node in the subtree is a non-member of the group.
                #  1 : All nodes in the subtree are members of the group.
                if n.left==None and n.right==None:  # n is leaf
                        if n.index.val in I:
                                S.append(n)
                                return 1
                        return 0
                # n is non-leaf
                lval=check(n.left)
                rval=check(n.right)
                if lval*rval>0:
                        S.remove(n.left)
                        S.remove(n.right)
                        S.append(n)
                        return 1
                return 0
        check(R)
        return S
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