IEEE P802.21d/D2, July 2013
[bookmark: _GoBack]IEEE P802.21
Media Independent Handover Services
	Draft D02 modified on 09/17/13

	Date: 2013-09-17

	Author(s):

	Name
	Affiliation
	Address
	Phone
	Email

	Toru Kambayashi
	Toshiba
	
	
	tooru.kamibayashi@ toshiba.co.jp

Abstract
This document is an update of the draft D02. Resolutions to some comments are provided and marked yellow.

P802.21d™/D2
Draft Standard for Media Independent Handover Services

Amendment 4: Multicast Group Management
Sponsor
LAN/MAN Committee
of the
IEEE Computer Society
Approved <XX MONTH 20XX>
IEEE-SA Standards Board

Copyright © 2013 by The Institute of Electrical and Electronics Engineers, Inc.
Three Park Avenue
New York, New York 10016-5997, USA
All rights reserved.
This document is an unapproved draft of a proposed IEEE Standard. As such, this document is subject to change. USE AT YOUR OWN RISK! IEEE copyright statements SHALL NOT BE REMOVED from draft or approved IEEE standards, or modified in any way. Because this is an unapproved draft, this document must not be utilized for any conformance/compliance purposes. Permission is hereby granted for officers from each IEEE Standards Working Group or Committee to reproduce the draft document developed by that Working Group for purposes of international standardization consideration. IEEE Standards Activities must be informed of the submission for consideration prior to any reproduction for international standardization consideration (stds.ipr@ieee.org). Prior to adoption of this document, in whole or in part, by another standards development organization, permission must first be obtained from the IEEE Standards Activities Department (stds.ipr@ieee.org). When requesting permission, IEEE Standards Activities will require a copy of the standard development organization’s document highlighting the use of IEEE content. Other entities seeking permission to reproduce this document, in whole or in part, must also obtain permission from the IEEE Standards Activities Department.

IEEE Standards Activities Department
445 Hoes Lane
Piscataway, NJ 08854, USA
[bookmark: _Ref51236265]
Abstract: This amendment standard specifies additional mechanisms to enable the use of multicast transport for MIH communication. The specification defines new management primitives that enable a user to join, leave or update group membership and additional security mechanisms to secure multicast communication between MIH entities.
[bookmark: _Ref51926020]Keywords: group, multicast, group management, group security

[footnoteRef:2] [2: The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA
Copyright © 20XX by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published <XX MONTH 20XX>. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics
Engineers, Incorporated.

PDF:	ISBN 978-0-XXXX-XXXX-X	STDXXXXX
Print:	ISBN 978-0-XXXX-XXXX-X	STDPDXXXXX

IEEE prohibits discrimination, harassment and bullying. For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.]

Important Notices and Disclaimers Concerning IEEE Standards Documents
[bookmark: _DV_M3]IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”
[bookmark: _DV_M4][bookmark: _DV_M5]Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents
[bookmark: _DV_C8][bookmark: _DV_M7][bookmark: _DV_M8][bookmark: _DV_M9][bookmark: _DV_M10][bookmark: _DV_M11][bookmark: _DV_C12][bookmark: _DV_M12][bookmark: _DV_M13][bookmark: _DV_M14][bookmark: _DV_C15][bookmark: _DV_M15][bookmark: _DV_M16]
IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”
[bookmark: _DV_M18][bookmark: _DV_M30]Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.
In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.
IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

[bookmark: _DV_M35]Translations
[bookmark: _DV_M36][bookmark: _DV_M37]
The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

[bookmark: _DV_M38]Official Statements
[bookmark: _DV_M39][bookmark: _DV_C35][bookmark: _DV_M40][bookmark: _DV_C36][bookmark: _DV_M41][bookmark: _DV_M42][bookmark: _DV_C37][bookmark: _DV_M43]
A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

[bookmark: _DV_M44][bookmark: _DV_M45]Comments on Standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:
	Secretary, IEEE-SA Standards Board
	445 Hoes Lane
	Piscataway, NJ 08854 USA

[bookmark: _DV_M59]Laws & Regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.
[bookmark: _DV_M60][bookmark: _DV_C54]
Copyright
[bookmark: _DV_M67][bookmark: _DV_M68][bookmark: _DV_C56][bookmark: _DV_M69][bookmark: _DV_M70][bookmark: _DV_M71]
IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

[bookmark: _DV_M72]Photocopies

[bookmark: _DV_C58][bookmark: _DV_M73][bookmark: _DV_C59][bookmark: _DV_M74][bookmark: _DV_C63][bookmark: _DV_M75][bookmark: _DV_C65][bookmark: _DV_M77][bookmark: _DV_M78][bookmark: _DV_M79]Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Updating of IEEE Standards Documents
[bookmark: _DV_M80][bookmark: _DV_M81][bookmark: _DV_M82]
Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.
[bookmark: _DV_X26][bookmark: _DV_C68][bookmark: _DV_X27][bookmark: _DV_C69][bookmark: _DV_X28][bookmark: _DV_C70]Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.
[bookmark: _DV_M83][bookmark: _DV_C72][bookmark: _DV_M84][bookmark: _DV_M85][bookmark: _DV_M86][bookmark: _DV_C74][bookmark: _DV_C75][bookmark: _DV_M87][bookmark: _DV_M88][bookmark: _DV_C77][bookmark: _DV_M89][bookmark: _DV_C79][bookmark: _DV_M90]In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA website at http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more information about the IEEE SA or IEEE’s standards development process, visit the IEEE-SA website at http://standards.ieee.org.
[bookmark: _DV_M91]
Errata
[bookmark: _DV_M92][bookmark: _DV_M93][bookmark: _DV_C81][bookmark: _DV_M94][bookmark: _DV_M96]
Errata, if any, for all IEEE standards can be accessed on the IEEE-SA website at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.
[bookmark: _DV_M97]
Patents
[bookmark: _DV_M98][bookmark: _DV_C83][bookmark: _DV_M99][bookmark: _DV_C86][bookmark: _DV_M100]
IEEE standards are developed in compliance with the IEEE Standards patent policy which is available at the following URL: http://standards.ieee.org/about/sasb/patcom/patents.html.
.
IEEE P802.21d/D2, July 2013
DCN 21-13-0177-03-MuGM

i
Copyright © <year> IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Copyright © 2013 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.
Participants
At the time this draft standard was submitted to the IEEE-SA Standards Board for approval, the 802.21d Working Group had the following membership:
Subir Das, Chair
Anthony Chan, Vice Chair

iv
Copyright © 2013 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.
Participant1
Participant2
Participant3
Participant4
Participant5
Participant6
Participant7
Participant8
Participant9

The following members of the <individual/entity> balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

(to be supplied by IEEE)

vi
Copyright © <current year> IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.
Balloter1
Balloter2
Balloter3
Balloter4
Balloter5
Balloter6
Balloter7
Balloter8
Balloter9

When the IEEE-SA Standards Board approved this standard on <XX MONTH 20XX>, it had the following membership:
(to be supplied by IEEE)
<Name>, Chair
<Name>, Vice Chair
	<Name>, Past Chair	
<Name>, Secretary

10
Copyright © 2013 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.
SBMember1
SBMember2
SBMember3
SBMember4
SBMember5
SBMember6
SBMember7
SBMember8
SBMember9

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:
<Name>, DOE Representative
<Name>, NRC Representative

<Name>
IEEE Standards Program Manager, Document Development

<Name>
IEEE Standards Program Manager, Technical Program Development

Introduction
This introduction is not part of IEEE P802.21d/D2, Draft Standard for Media Independent Handover Services—Amendment 4: Multicast Group Management.
This standard extends the communication mechanisms, defined in IEEE Std 802.21-2008, to support addressing group of nodes through multicast transport mechanisms. The need for this specification appears in scenarios where groups of nodes need to move simultaneously, such as sensor or actuator networks. This specification, hence, extends the communication mechanisms provided in IEEE Std 802.21-2008, by defining MIHF group identifiers, new primitives to manage group membership, support of multicast transport mechanisms and security extensions for group communication.

Contents
No table of contents entries found.

Draft Standard for Media Independent Handover Services

Amendment 5: Multicast Group Management
[bookmark: _DV_M103][bookmark: _DV_M104][bookmark: _DV_M105]IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

NOTE—The editing instructions contained in this <amendment/corrigendum> define how to merge the material contained therein into the existing base standard and its amendments to form the comprehensive standard.
The editing instructions are shown in bold italic. Four editing instructions are used: change, delete, insert, and replace. Change is used to make corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using strikethrough (to remove old material) and underscore (to add new material). Delete removes existing material. Insert adds new material without disturbing the existing material. Insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. Replace is used to make changes in figures or equations by removing the existing figure or equation and replacing it with a new one. Editing instructions, change markings, and this NOTE will not be carried over into future editions because the changes will be incorporated into the base standard.

Definitions
For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary Online should be consulted for terms not defined in this clause. [footnoteRef:3] [3: IEEE Standards Dictionary Online subscription is available at:
http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html.
]

Insert the following definitions in alphabetically order:
Group command: A command issued to members which belong to a group via a multicast channel. Group manipulation commands are explicitly excluded from this definition.
Group manipulation command: A command, sent to a group of nodes or to an individual node, that instructs the receivers to perform certain operations such as, joining and leaving a group, updating group membership and so on. By group manipulation command, we refer to the following commands:
MIH_MN_Group_Manipulate
MIH_Net_Group_Manipulate
Command center (CC): An MIH User which issues a group manipulation command and a group command.
Device key: A data element representing a key, assigned to an entity in order to de-capsulate a GKB.
Group key block (GKB): A data entity which enables only those who have the corresponding device keys to decapsulate it and obtain a group key. It stores a Group key. See also: Annex P.	Comment by asd: Add reference
Group manager (GM): An entity that generates GKB.
Media independent handover function Group identifier (MIHF Group ID): An identifier for identifying a group of MIHF peers.	Comment by asd: Chck across document
Media Independent handover function Broadcast Identifier (MIHF Broadcast ID): An MIHF Group ID of zero length.
1. [bookmark: _Toc230358960]Abbreviations and acronyms
Insert the following abbreviations and acronyms in alphabetically order:
CC	Command center
GM	Group manager
GKB	Group Key Block
MGK	Master Group Key
MIGEK	Media Independent Group Encryption Key
MIGIK	Media Independent Group Integrity Key
MIGMEK	Media Independent Group Manipulation Encryption Key
MIGSK	Media Independent Group Session Key
PRF	Pseudorandom Function
[bookmark: _Toc230358969]General Architecture
[bookmark: _Toc230358962]Introduction
0. Multicast group communication
There are handover scenarios where a group of nodes are meant to move like a group. Examples of these scenarios are networks of sensors/actuators that move between production and management networks or nodes that move together due to some physical reason, such as all nodes traveling together in a transportation medium. MIHF supports the use of multicast means to convey a subset of all possible MIHF commands to group of users in a secure way. Hence, this specification provides primitives for managing the membership of nodes to multicast groups (join, leave and update group membership) and multicast group key mechanisms.
1. MIHF services
1. [bookmark: _Toc230358971]Service management
General
Change list after first paragraph as follows:
Prior to providing the MIH services from one MIHF to another, the MIH entities need to be configured properly. This is done through the following service management functions:
MIH capability discovery
MIH registration
MIH service access authentication
MIH event subscription
MIH group configuration, manipulation and security
Service management primitives
Insert new rows after last row in Table 3 as follows:	Comment by Michelle Turner: The editorial instructions say Table 3 is being modified, but the table below say Table 4, so I change the numbering to say Table 4, please make sure this is correct.
[bookmark: _Ref363033069]—Services management primitives
	MIH command
	(L) ocal / (R) emote
	Defined in
	Comments

	MIH_Configuration_Update
	R
	7.4.30
	This command is sent by a PoS to a group of MNs or other PoSes to update their configuration.

	MIH_MN_Group_Manipulate
	R
	7.4.31

	This command is sent by an MN to a PoS to create, delete or update a group.

	MIH_Net_Group_Manipulate
	R
	7.4.32

	This command is sent by a PoS to a group of MNs or other PoSes to create, delete or update a group.

	MIH_Pull_Credential
	R
	7.4.33
	This primitive is generated by an MN and it is used to request the sending of a certificate from the PoS to a destination PoS or MN.

	MIH_Push_Credential
	R
	7.4.34
	This command is sent by a PoS to a destination PoS or PoA

	MIH_Revoke_Credential
	R
	7.4.35
	This command is sent by a PoS to a group of PoSes and/or PoA to revoke a certificate previously issued by the PoS.

1.0.1 [bookmark: _Toc230358973]
1.0.2
1.0.3
1.0.4
MIH group configuration, manipulation and security
The MIH group configuration, manipulation and security provide mechanisms for a PoS to manage groups of MNs, which are accessible through a multicast address in a secure way. The primitives used to manage the membership to the groups and their security properties are called group manipulation commands through this specification, and include the required functionality to manage the group membership (join, leave, update operations) and install appropriate credentials on the MNs belonging to the group. Details on which MIHF commands can be used for multicast communication can be found on subclause 8.3.1.
1. Media independent command service
Command service flow model
Insert the following paragraph after the 1st paragraph:
When a command request frame is sent to a group of MIHF peers, it is transmitted using multicast transport and one or more remote MIHF(s) may receive the request frame. The local MIHF may receive one or more command response frame(s) from the remote MIHF(s). In this case, a CC who is an MIH User on an MIH PoS is the issuer of the group command and the MIH PoS is the sender of the group command request/indication frame, and MN(s) or other MIH PoS(es) are the recipient of the group command request/indication frame. MIH commands addressed to a group of MNs can be exchanged using request or indication messages. In case a request message is used, then each receiver must answer with a response message. In case the indication message is used, then the receivers generate no response message.
[bookmark: _Toc230358975]Service access points (SAPs) and primitives
1. [bookmark: _Ref353814679][bookmark: _Toc230358979]MIH_SAP primitives
2. MIH_Register
MIH_Register.request

Semantics of service primitive
Change text as follows:
MIH_Register.request	(
DestinationIdentifier,
LinkIdentifierList,
GroupLinkIdentifier,
RequestCode
)
Insert and modify the following parameters:
Parameters:
	Name
	Data type
	Description

	LinkIdentifierList
	LIST(LINK_ID)
	(Optional) List of local link identifiers of the remote MIHF. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkIdentifier
	NET_TYPE_INC
	(Optional) Identifier of a group of links. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

MIH_Register.indication

Semantics of service primitive
Change text as follows:
MIH_Register.indication	(
SourceIdentifier,
LinkIdentifierList,
GroupLinkIdentifier,
RequestCode
)
Insert and modify the following parameters:
Parameters:
	Name
	Data type
	Description

	LinkIdentifierList
	LIST(LINK_ID)
	(Optional) List of local link identifiers of the remote MIHF. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkIdentifier
	NET_TYPE_INC
	(Optional) Identifier of a group of links. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

MIH_Register.response

Semantics of service primitives
Change text as follows:
MIH_Register.response	(
DestinationIdentifier,
Status,
ValidTimeInterval,
MulticastCipherSuite,
Credential
)
Add the following parameters:

	Name
	Data type
	Description

	MulticastCipherSuite
	MULTICAST_CAP
	(Optional) Specifies the multicast ciphersuite to be used for securing multicast MIH messages. Only one ciphersuite shall be included.

	Credential
	CREDENTIAL
	(Optional) X.509 certificate

MIH_Register.confirm

Semantics of service primitives
Change the text as follows:
MIH_Register.confirm	(
SourceIdentifier,
Status,
ValidTimeInterval,
MulticastCipherSuite,
Credential
)
Add the following parameters:
	Name
	Data type
	Description

	MulticastCipherSuite
	MULTICAST_CAP
	(Optional) Specifies the multicast ciphersuite to be used for securing multicast MIH messages. Only one ciphersuite shall be included.

	Credential
	CREDENTIAL
	(Optional) X.509 certificate

2. MIH_Event_Subscribe
MIH_Event_Subscribe.request

Semantics of service primitive
Change the text as follows:
MIH_Event_Subscribe.request	(
DestinationIdentifier,
LinkIdentifier,
GroupLinkIdentifier,
RequestedMihEventList,
EventConfigurationInfoList
)
Insert and modify the following parameters:
Parameters:
	Name
	Data type
	Description

	LinkIdentifier
	LINK_TUPLE_ID
	(Optional) Identifier of the link for event subscription. For local event subscription, PoA link address need not be present if the link type lacks such a value.
This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkIdentifier
	NET_TYPE_INC
	(Optional) Identifier of a group of links for event subscription. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

MIH_Event_Unsubscribe
MIH_Event_Unsubscribe.request

Semantics of service primitive
Change the text as follows:
MIH_Event_Unsubscribe.request	(
DestinationIdentifier,
LinkIdentifier,
GroupLinkIdentifier,
RequestedMihEventList
)
Insert and modify the following parameters:
Parameters:
	Name
	Data type
	Description

	LinkIdentifier
	LINK_TUPLE_ID
	(Optional) Identifier of the link for event unsubscription. For local event unsubscription, PoA address in the Link Identifier need not be present if the link type lacks such a value. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkIdentifier
	NET_TYPE_INC
	(Optional) Identifier of a group of links for event unsubscription. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

2. MIH_Link_Get_Parameters
MIH_Link_Get_Parameters.request

Semantics of service primitive
Change the text as follows:
MIH_Link_Get_Parameters.request	(
DestinationIdentifier,
DeviceStatesRequest,
LinkIdentifierList,
GroupLinkIdentifier,
GetStatusRequestSet
)
Insert and modify the following parameters:
Parameters:
	Name
	Data type
	Description

	LinkIdentifierList
	LIST(LINK_ID)
	(Optional) List of link identifiers for which status is requested. If the list is empty, return the status of all available links. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkIdentifier
	NET_TYPE_INC
	(Optional) Identifier of a group of links for which status is requested. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

MIH_Link_Configure_Thresholds
[bookmark: _Ref363119540]MIH_Link_Configure_Thresholds.request

Semantics of service primitive
Change the text as follows:
MIH_Link_Configure_Thresholds.request	(
DestinationIdentifier,
ResponseFlag,
LinkIdentifier,
GroupLinkIdentifier,
ConfigureRequestList
)
Insert and modify the following parameters:
Parameters:
	Name
	Data type
	Description

	ResponseFlaga
	RESPONSE_FLAG
	(Optional) Flag which represents whether or not a response is needed.

	LinkIdentifier
	LINK_TUPLE_ID
	(Optional) Identifier of the link to be configured. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkIdentifier
	NET_TYPE_INC
	(Optional) Identifier of a group of links to be configured. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

a In case the ResponseFlag parameter is not present, the MIHF should always generate a request message, otherwise the MIHF generates either a request or an indication message, based on the ResponseFlag parameter.
0. Effect of receipt
If the destination of the request is the local MIHF itself, the local MIHF issues a Link_Configure_Thresholds.request to the lower layer link to set the thresholds for the link according to the specified configuration parameters.

If the destination of the request is a remote MIHF, based on the ResponseFlag parameter, the local MIHF generates and sends an MIH_Link_Configure_Thresholds request or an MIH_Link_Configure_Thresholds indication message to the remote MIHF. Upon the receipt of the message, the remote MIHF then issues a Link_Configure_Thresholds request to the lower layer link to set the thresholds for the link according to the specified configuration parameters.
MIH_Link_Actions
[bookmark: _Ref363119680]MIH_Link_Actions.request

Semantics of service primitive
Change the text as follows:
MIH_Link_Actions.request 	(
DestinationIdentifier,
ResponseFlag,
LinkActionsList,
GroupLinkActionsList
)
Insert and modify the following parameters:
Parameters:
	Name
	Data type
	Description

	ResponseFlaga
	RESPONSE_FLAG
	(Optional) Flag which represents whether or not a response is needed.

	LinkActionsList
	LIST(LINK_ACTION_REQ)
	(Optional) Specifies the suggested actions. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkActionsList
	LIST(MULTICAST_ACTION_REQ)
	(Optional) Specifies the suggested actions for a group of links. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

a In case the ResponseFlag parameter is not present, the MIHF should always generate a request message, otherwise the MIHF generates either a request or an indication message, based on the ResponseFlag parameter.
2. MIH_Net_HO_Commit
MIH_Net_HO_Commit.request

Semantics of service primitive
Change the text as follows:
MIH_Net_HO_Commit.request 	(
DestinationIdentifier,
ResponseFlag,
LinkType,
TargetNetworkInfoList,
AssignedResourceSet,	
LinkActionExecutionDelay,
LinkActionsList,
MulticastLinkActionList
)
Insert and modify the following parameters:
	Name
	Data type
	Description

	ResponseFlaga
	RESPONSE_FLAG
	(Optional) Flag which represents whether or not a response is needed.

	LinkActionExecutionDelay
	UNSIGNED_INT(2)
	(Optional) Time (in ms) to elapse before an action needs to be taken. A value of 0 indicates that the action is taken immediately. Time elapsed is calculated from the instance the command arrives until the time when the execution of the action is carried out. This parameter shall be used for non-group operation.

	LinkActionsList
	LIST(LINK_ACTION_REQ)
	(Optional) Specifies the suggested actions. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkActionsList
	LIST(MULTICAST_ACTION_REQ)
	(Optional) Specifies the suggested actions for a group of links. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

a In case the ResponseFlag parameter is not present, the MIHF should always generate a request message, otherwise the MIHF generates either a request or an indication message, based on the ResponseFlag parameter.

0. Effect on receipt
Upon receipt of this primitive an MIHF shall send an MIH_Net_HO_Commit request or indication message to the destination, based on the ResponseFlag parameter.
MIH_Net_HO_Commit.indication

Semantics of service primitive
Change the text as follows:
MIH_Net_HO_Commit.indication 	(
SourceIdentifier,
ResponseFlag,
LinkType,
TargetNetworkInfoList,
AssignedResourceSet,	
LinkActionExecutionDelay,
LinkActionsList,
MulticastLinkActionList
)
Insert and modify the following parameters:
	Name
	Data type
	Description

	ResponseFlag a
	RESPONSE_FLAG
	(Optional) Flag which represents whether or not a response is needed.

	LinkActionExecutionDelay
	UNSIGNED_INT(2)
	(Optional) Time (in ms) to elapse before an action needs to be taken. A value of 0 indicates that the action is taken immediately. Time elapsed is calculated from the instance the command arrives until the time when the execution of the action is carried out. This parameter shall be used for non-group operation.

	LinkActionsList
	LIST(LINK_ACTION_REQ)
	(Optional) Specifies the suggested actions. This parameter shall be used if and only if DestinationIdentifier is an MIHF ID.

	GroupLinkActionsList
	LIST(MULTICAST_ACTION_REQ)
	(Optional) Specifies the suggested actions for a group of links. This parameter shall be used if and only if DestinationIdentifier is an MIHF Group ID.

a In case the ResponseFlag parameter is not present, the MIHF should always generate a request message, otherwise the MIHF generates either a request or an indication message, based on the ResponseFlag parameter.

Add the following primitives at the end of subclause 7.4:	Comment by Michelle Turner: If this is new material, the editorial instruction should be Insert 7.4.30 through 7.4.35 (primitives) “something along those lines”at the end of 7.4 as follows:
2. [bookmark: _Ref353982606]MIH_Configuration_Update
[bookmark: _Ref353985167]MIH_Configuration_Update.request
Function
This primitive is generated by a PoS to update the configuration of one or more MN(s) or other PoS(es).
Semantics of service primitive
MIH_Configuration_Update.request 	(
DestinationIdentifier,
ConfigurationData
)
Parameters:
	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies MIHF ID of the remote MIHF(s) to be configured.

	ConfigurationData
	OCTET_STRING
	Configuration data. Examples of this parameter include firmware and management parameters.

When generated
The MIH user generates this primitive to update the configuration of one or more MN(s) and/or other PoS(es).
Effect on receipt
Upon receipt of this primitive, MIHF on the PoS sends the corresponding MIH_Configuration_Update indication message to the MN(s) or other PoS(es).
[bookmark: _Ref353985156]MIH_Configuration_Update.indication
Function
This primitive is generated by an MIHF to update the configuration of one or more MN(s) or other PoS(es).
Semantics of service primitive
MIH_Configuration_Update.indication 	(
SourceIdentifier,
TargetIdentifier,
ConfigurationData
)
Parameters:
	Name
	Data type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies MIHF ID of the remote MIHF that sent the MIH_Configuration_Update indication message.

	TargetIdentifier
	MIHF_ID
	The target MIHF group identifier for the group operation.

	ConfigurationData
	OCTET_STRING
	Configuration data. Examples of this parameter include firmware and management parameters.

When generated
This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Configuration_Update indication message from a remote MIHF.
Effect on receipt
Upon receipt of this primitive, an MIH user on a MN or a PoS may modify its configuration using the ConfigurationData parameter.
[bookmark: _Ref353982624]MIH_MN_Group_Manipulate
[bookmark: _Ref353985197]MIH_MN_Group_Manipulate.request
Function
This primitive is generated by an MN to manipulate its own group membership.
Semantics of service primitive
MIH_MN_Group_Manipulate.request 	(
DestinationIdentifier,
TargetIdentifier,
GroupAction
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies group MIHF-ID of the remote MIHF peers. DestinationIdentifier may be different from TargetIdentifier.

	TargetIdentifier
	MIHF_ID

	The target MIHF group identifier for the group operation.

	GroupAction
	GROUP_MGT_ACTION
	The action to be taken: Join/Leave the group.

When generated
The MIH user generates this primitive to request joining or leaving a group.
Effect on receipt
Upon receipt of this primitive, MIHF on the MN sends the corresponding MIH_MN_Group_Manipulate request message to the PoS.
MIH_MN_Group_Manipulate.indication
Function
This primitive is used by an MIHF to notify an MIH User that a MIH_MN_Group_Manipulate request message has been received.
Semantics of service primitive
MIH_MN_Group_Manipulate.indication	(
SourceIdentifier,
TargetIdentifier,
GroupAction
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies MIHF-ID of the remote MIHF that issued MIH_MN_Group_Manipulate.request.

	TargetIdentifier
	MIHF_ID

	The target MIHF group identifier for the group operation.

	GroupAction
	GROUP_MGT_ACTION
	The action to be taken: Join/Leave the group.

When generated
This primitive is generated by an MIHF on a PoS when receiving an MIH_MN_Group_Manipulate request message from a remote MIHF.
Effect on receipt
Upon receipt of this primitive, an MIH user on a PoS may take the required actions as the action specified in GroupAction.
[bookmark: _Ref353985254]MIH_MN_Group_Manipulate.response
Function
This primitive is generated by an MIH User to acknowledge result of an MIH_MN_Group_Manipulate request from an MN.
Semantics of service primitive
MIH_MN_Group_Manipulate.response 	(
DestinationIdentifier,
TargetIdentifier,
MulticastAddress,
SubgroupRange,
VerifyGroupKey,
UserSpecificData,
CompleteSubtree,
GroupKeyData,
GroupStatus,
SecurityAssociationID
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the MIHF ID of the destination of the primitive

	TargetIdentifier
	MIHF_ID

	The target MIHF group identifier for the group operation.

	MulticastAddress
	TRANSPORT_ADDR
	(Optional) Multicast address corresponding with the target group identifier.

	SubgroupRange
	SUBGROUP_RANGE
	(Optional) Subgroup to process the command

	VerifyGroupKey
	VERIFY_GROUP_KEY
	(Optional) Verification data for group key.

	UserSpecificData
	OCTET_STRING
	(Optional) Auxiliary data.

	CompleteSubtree
	COMPLETE_SUBTREE
	(Optional) Complete Subtree data.

	GroupKeyData
	GROUP_KEY_DATA
	(Optional)Encrypted group key.

	GroupStatus
	GROUP_STATUS
	Status of the group operation

	SecurityAssociationID
	SEQUENCE(ID_TYPE, ID_VALUE)	Comment by asd: Check this, contribution only uses ID_VALUE
	(Optional) ID of the GKB generated SA.

When generated
An MIH User at the PoS generates this primitive after receipt and processing of MIH_MN_Group_Manipulate request. This primitive returns the status of the action asked in the request. Optionally, it may respond with the security mechanisms required by the group.
Effect on receipt
MIH_MN_Group_Manipulate response message is sent back to the requester.
MIH_MN_Group_Manipulate.confirm
Function
This primitive is generated by an MIHF that receives an MIH_MN_Group_Manipulate response to indicate the status of the group manipulation. The status of the group manipulation provides information regarding the result of a group join or leave operation, indicating the status after the command execution.
Semantics of service primitive
MIH_MN_Group_Manipulate.confirm 	(
SourceIdentifier,
TargetIdentifier,
GroupStatus,
SecurityAssociationID
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the MIHF ID of the remote MIHF

	TargetIdentifier
	MIHF_ID

	The target MIHF group identifier for the group operation.

	GroupStatus
	GROUP_STATUS
	Status of the group operation

	SecurityAssociationID
	SEQUENCE(ID_TYPE, ID_VALUE)
	(Optional) ID of the GKB generated SA.

When generated
This primitive is sent to the MIH User after the MIHF receives an MIH_MN_Group_Manipulate response message.
Effect on receipt
The status of the group operation is noted.
[bookmark: _Ref353982636]MIH_Net_Group_Manipulate
[bookmark: _Ref353985326]MIH_Net_Group_Manipulate.request
Function
This primitive is generated by the MIH User of a PoS to manipulate group membership of one or more MN(s) or other PoS(es).
Semantics of service primitive
MIH_Net_Group_Manipulate.request 	(
DestinationIdentifier,
ResponseFlag,
GroupKeyUpdateFlag,
TargetIdentifier,
MulticastAddress,
SubgroupRange,
VerifyGroupKey,	Comment by asd: Donde se genera esto
UserSpecificData,
CompleteSubtree,
GroupKeyData,
SecurityAssociationID	Comment by asd: Falta meter en la seccion 9.4.2 este par’ametro
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies group MIHF-ID of the remote MIHF peers. DestinationIdentifier may be different from TargetIdentifier.

	ResponseFlaga
	RESPONSE_FLAG
	(Optional) Flag which represents whether or not a response is needed.

	GroupKeyUpdateFlag
	GROUP_KEY_UPDATE_FLAG
	Flag which represents whether or not a group key in GroupKeyData is updated.

	TargetIdentifier
	MIHF_ID

	The target MIHF group identifier for the group operation.

	MulticastAddress
	TRANSPORT_ADDR
	(Optional) Multicast address corresponding with the target group identifier.

	SubgroupRange
	SUBGROUP_RANGE
	(Optional) Subgroup to process the command

	VerifyGroupKey
	VERIFY_GROUP_KEY
	(Optional) Verification data for group key.

	UserSpecificData
	OCTET_STRING
	(Optional) Auxiliary data.

	CompleteSubtree
	COMPLETE_SUBTREE
	Complete Subtree data.

	GroupKeyData
	GROUP_KEY_DATA
	(Optional) Encrypted group key.

	SecurityAssociationID
	SEQUENCE(ID_TYPE, ID_VALUE)
	(Optional) ID of the GKB generated SA.

a In case the ResponseFlag parameter is not present, the MIHF should always generate a request message, otherwise the MIHF generates either a request or an indication message, based on the ResponseFlag parameter.
When generated
The MIH user generates this primitive to create, delete or modify groupmembership.
Effect on receipt
Upon receipt of this primitive, MIHF on the PoS sends the corresponding MIH_Net_Group_Manipulate indication message or MIH_Net_Group_Manipulate request message to the MN(s) or other PoS(es). The ResponseFlag TLV indicates which message shall be sent.
[bookmark: _Ref353985311]MIH_Net_Group_Manipulate.indication
Function
This primitive is used by an MIHF to notify an MIH User that a MIH_Net_Group_Manipulate indication message or an MIH_Net_Group_Manipulate request message has been received.
Semantics of service primitive
MIH_Net_Group_Manipulate.indication	(
SourceIdentifier,
ResponseFlag,
TargetIdentifier,
UserSpecificData,
GroupStatus,
SecurityAssociationID
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies MIHF-ID of the remote MIHF that issued MIH_Net_Group_Manipulate.request.

	ResponseFlag
	RESPONSE_FLAG
	(Optional) Flag which represents whether or not a response is needed.

	TargetIdentifier
	MIHF_ID
	The target MIHF group identifier for the group operation.

	MulticastAddress
	TRANSPORT_ADDR
	(Optional) Multicast address corresponding with the target group

	UserSpecificData	
	OCTET_STRING
	(Optional) Auxiliary dataa.

	GroupStatus
	GROUP_STATUS
	Status of the group.

	SecurityAssociationID
	SEQUENCE(ID_TYPE, ID_VALUE)
	(Optional) ID of the GKB generated SA.

a The UserSpecificData parameter can be used to convey additional information such as version information of the GKB used or additional credentials.
When generated
This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Net_Group_Manipulate indication message or an MIH_Net_Group_Manipulate request message from a remote MIHF.
Effect on receipt
Upon reception of this primitive, an MIH user on an MN or a PoS may join or leave the group specified in the TargetIdentifier parameter. The MIH User may also decrypt and install the encrypted group key associated with the group and contained in the GroupKeyData. The detailed procedure is described in subclause 9.4.2.
[bookmark: _Ref353985465]MIH_Net_Group_Manipulate.response
Function
This primitive is generated by an MIH User to acknowledge the result of an MIH_Net_Group_Manipulate request from a PoS.
Semantics of service primitive
MIH_Net_Group_Manipulate.response 	(
DestinationIdentifier,
TargetIdentifier,
GroupStatus
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the requestor of the group manipulation.

	TargetIdentifier
	MIHF_ID
	The target MIHF group identifier for the group operation.

	GroupStatus
	GROUP_STATUS
	Status of the group

When generated
An MIH User generates this primitive after receipt and processing of MIH_Net_Group_Manipulate.request.
Effect on receipt
MIH_Net_Group_Manipulate response message is sent back to the group manipulate requester.
MIH_Net_Group_Manipulate.confirm
Function
This primitive is generated by an MIHF that receives an MIH_Net_Group_Manipulate response to indicate the status of the group manipulation.
Semantics of service primitive
MIH_Net_Group_Manipulate.confirm 	(
SourceIdentifier,
TargetIdentifier,
GroupStatus
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the responder of the group manipulation.

	TargetIdentifier
	MIHF_ID
	The target MIHF group identifier for the group operation.

	GroupStatus
	GROUP_STATUS
	Status of the group

When generated
An MIH User generates this primitive after receipt and processing an MIH_Net_Group_Manipulate request.
Effect on receipt
MIH_Net_Group_Manipulate response message is sent back to the group manipulate requester.
[bookmark: _Ref363033457][bookmark: _Ref353982660]MIH_Pull_Credential
[bookmark: _Ref356468302]MIH_Pull_Credential.request
Function
This primitive is generated by an MN or a PoS and it is used to request sending of a certificate from the destination PoS to the requestor.
Semantics of service primitive
MIH_Pull_Credential.request 	(
DestinationIdentifier,
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the sender of the credential.

When generated
An MN generates this primitive for requesting a credential or for credential updates.
Effect on receipt
Upon receipt of this primitive, the MIHF on the MN sends the corresponding MIH_Pull_Credential request message to the destination MN or PoS.
MIH_Pull_Credential.indication
Function
This primitive is generated by an MIHF that receives an MIH_Pull_Credential request message in order to inform the MIH User.
Semantics of service primitive
MIH_Pull_Credential.indication 	(
SourceIdentifier,
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the requester of the credential.

When generated
This primitive is generated by an MIHF when an MIH_Pull_Credential request message is received.
Effect on receipt
Upon reception of this primitive, the MIH user generates an MIH_Pull_Credential.response to deliver a credential to the requester.
[bookmark: _Ref356468382]MIH_Pull_Credential.response
Function
This primitive is generated by an MIH User in order to deliver a credential to an MN or other PoS for MIH protocol protection as described in IEEE Std 802.21a-2012 Section 9.
Semantics of service primitive
MIH_Pull_Credential.response 	(
DestinationIdentifier,
EncryptedCredential
)

Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the requestor of the credential.

	EncryptedCredential
	ENCRYPTED_KEY
	Encrypted credential used for creating an EAP-generated MIH SA.

When generated
An MIH User generates this primitive using a leaf key corresponding with the credential requester.
Effect on receipt
Upon receipt of this primitive, the MIHF on the PoS generates an MIH_Pull_Credential response message to the destination MN or PoS.
MIH_Pull_Credential.confirm
Function
This primitive is generated by an MIHF that receives an MIH_Pull_Credential response, in order to inform of the credential received by the MIH User.
Semantics of service primitive
MIH_Pull_Credential.confirm 	(
SourceIdentifier,
Credential
)

Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the remote MIHF that invoked MIH_Pull_Credential response.

	Credential
	CREDENTIAL
	A credential for MIH protection as described in IEEE Std 802.21a-2012 Section 9

When generated
The MIHF that receives an MIH_Pull_Credential response message generates this primitive to indicate the credential.
Effect on receipt
After verification, validated credential keys within their expiration period can be utilized for IEEE 802.21a.
[bookmark: _Ref363033486]MIH_Push_Credential
[bookmark: _Ref353985484]MIH_Push_Credential.request
Function
This primitive is generated by an MIH User at the PoS to send a Credential to a destination PoS or MN.
Semantics of service primitive
MIH_Push_Credential.request 	(
DestinationIdentifier,
Credential
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the recipient of the credential.

	Credential
	CREDENTIAL
	A credential for MIH protection as described in IEEE Std 802.21a-2012 Section 9

When generated
A PoS generates this primitive for initial provisioning of credentials or for credential updates.
Effect on receipt
Upon receipt of this primitive, the MIHF on the PoS sends the corresponding MIH_Push_Credential request message to the destination MN or PoS.
MIH_Push_Credential.indication
Function
This primitive is generated by an MIHF to notify a local MIH User that an MIH_Push_Credential request message has been received.
Semantics of service primitive
MIH_Push_Credential.indication 	(
SourceIdentifier,
Credential
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the sender of the credential.

	Credential
	CREDENTIAL
	A credential for MIH protection as described in IEEE Std 802.21a-2012 Section 9

When generated
This primitive is generated by an MIHF when an MIH_Push_Credential request message is received.
Effect on receipt
Credential signature is verified and result of verification is provided back to push requester by CredentialStatus. After verification, the validated credential public keys can be utilized for multicast message exchange within their expiration period.
[bookmark: _Ref353985497]MIH_Push_Credential.response
Function
This primitive is generated by an MIH User to acknowledge receipt of a credential from a PoS.
Semantics of service primitive
MIH_Push_Credential.response 	(
DestinationIdentifier,
CredentialStatus
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the requestor of the credential revocation.

	CredentialStatus
	CERT_STATUS
	Indicates whether a credential has been verified and is now in use by the recipient.

When generated
An MIH User generates this primitive after receipt and processing of credential.
Effect on receipt
If the credential signature is valid, then an MIH_Push_Credential response message is sent back to the push requester. The result of the request is provided in the CredentialStatus.
MIH_Push_Credential.confirm
Function
This primitive is generated by an MIHF that receives an MIH_Push_Credential response to indicate the status of the credential inspection.
Semantics of service primitive
MIH_Push_Credential.confirm 	(
SourceIdentifier,
CredentialStatus
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the remote MIHF that invoked MIH_Revoke_Credential.response.

	CredentialStatus
	CERT_STATUS
	Indicates whether a credential has been verified and is now in use by the recipient.

When generated
The MIHF that receives an MIH_Push_Credential response message generates this primitive to indicate the status of the credential inspection.
Effect on receipt
If Credential Status is success, then it indicates the device is capable of receiving signed multicast messages.
[bookmark: _Ref353982672]MIH_Revoke_Credential
[bookmark: _Ref353985512]MIH_Revoke_Credential.request
Function
This primitive is generated by a PoS used to revoke a credential.
Semantics of service primitive
MIH_Revoke_Credential.request (
DestinationIdentifier,
CredentialSerialNumber
)
Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies an MIHF or a group of MIHF peers to revoke the credential.

	CredentialSerialNumber
	CERT_SERIAL_NUMBER
	X.509 certificate subfield – serial number

	CredentialRevocation
	SIGNATURE
	Digital signature for a revoked X.509 certificate serial number generated by CA.

When generated
The MIH user generates this primitive to revoke a credential.
Effect on receipt
Upon receipt of this primitive, the MIHF on the PoS sends the corresponding MIH_Revoke_Credential request message to the destination MIHF(s).
MIH_Revoke_Credential.indication
Function
This primitive is generated by an MIHF to revoke a credential stored in MN(s) and PoS(es).
Semantics of service primitive
MIH_Revoke_Credential.indication 	(
SourceIdentifier,
CredentialSerialNumber
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the remote MIHF that invoked MIH_Revoke_Credential.request primitive.

	CredentialSerialNumber
	CERT_SERIAL_NUMBER
	X.509 certificate subfield – serial number

	CredentialRevocation
	SIGNATURE
	Digital signature for a revoked X.509 certificate serial number generated by CA.

When generated
This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Revoke_Credential request message from a remote MIHF.
Effect on receipt
Upon receipt of this primitive, an MIH user on a MN or a PoS verifies Credential Revocation signature, and if it is valid, then it deprecate the credential specified by the CredentialSerialNumber and invokes a MIH_Revoke_Credential.confirm primitive.
[bookmark: _Ref353985528]MIH_Revoke_Credential.response
Function
This primitive is generated by an MIH User to acknowledge receipt of a credential revocation request from a PoS.
Semantics of service primitive
MIH_Revoke_Credential.response 		(
DestinationIdentifier,
CredentialStatus
)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the remote MIHF that invoked MIH_Revoke_Credential.request primitive.

	Credential Status
	CERT_STATUS
	Indicates whether a credential has been revoked.

When generated
This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Revoke_Credential request message from a remote MIHF.
Effect on receipt
Upon receipt of this primitive, an MIH user on an MN or a PoS deprecate the credential specified by the CredentialSerialNumber and invokes a MIH_Revoke_Credential.confirm primitive.
MIH_Revoke_Credential.confirm
Function
This primitive is generated by an MIHF that receives an MIH_Revoke_Credential response to indicate the status of the credential revocation.
Semantics of service primitive
MIH_Revoke_Credential.confirm (
SourceIdentifier,
CredentialStatus
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the remote MIHF that invoked MIH_Revoke_Credential.response.

	Credential Status
	CERT_STATUS
	Indicates whether a credential has been revoked.

When generated
The MIHF that receives an MIH_Revoke_Credential response message generates this primitive to indicate the status of the credential revocation.
Effect on receipt
If Credential Status indicates success for all the MIHF peers to which credential revocation request was sent, the PoS can change status of the credential to revoked.
[bookmark: _Toc230358981]Media independent handover protocol
1. [bookmark: _Toc230358983]MIH protocol description
3. MIH protocol acknowledgement service
Modify the following paragraphs:
The acknowledgement service shall be used when the MIH transport used for remote communication does not provide reliable services. When the MIH transport is reliable, the use of the acknowledgement service is not needed. The acknowledgement service is particularly useful when the underlying transport used for remote communication does not provide reliable services. When the MIH transport is reliable, the acknowledgement service is optional. In case the destination of the communication is a MIHF Group ID, the acknowledgement service shall not be used, even in cases when underlying transport is not reliable.

The source MIHF requests for an acknowledgement message to ensure successful receipt of an MIH protocol message. This MIH message is used to acknowledge the successful receipt of an MIH protocol message at the destination MIHF.

The MIH acknowledgement service is supported by the use of two bits of information that are defined exclusively for acknowledgement (ACK) usage in the MIH header. The ACK-Req bit is set by the source MIH node and the ACK-Rsp bit is set by the destination MIH node to utilize the acknowledgement service. It is expected that the underlying transport layer would take care of ensuring the integrity of the MIH protocol message during delivery.

When seeking acknowledgement service, the source MIH node shall start a retransmission timer after sending an MIH protocol message with the ACK-Req bit set and saves a copy of the MIH protocol message while the timer is active. The algorithm defined in IETF RFC 2988 is used to calculate the value of the retransmission timer. If the acknowledgement message is not received before the expiration of the timer, the source MIH node immediately retransmits the saved message with the same Message-ID and with the same Transaction-ID (with ACK-Req bit set). If the source MIH node receives the acknowledgement before the expiration of the timer on the first or any subsequent retransmitted attempt, then the source MIH node has ensured the receipt of the MIH packet and therefore, resets the timer and releases the saved copy of the MIH protocol message. During retransmission, if the source MIH node receives the acknowledgement for any of the previous transmission attempts then the source MIH node determines successful delivery of the message and does not have to wait for any further acknowledgements for the current message. The source MIH node retransmits an MIH protocol message with ACK-Req bit set until it receives an acknowledgment or the number of retransmissions reaches its maximum value. The maximum number of retransmissions can be configured through a parameter defined in the MIB (see Annex J). The source MIH node does not attempt to retransmit a message with same Message-ID and Transaction-ID when the ACK-Req bit was not set in the first MIH message. Implementations may consider adjusting the retransmission time-out (RTO) when operating over links with power save mobile nodes.

When a destination MIH node receives an MIH protocol message with the ACK-Req bit set, then the destination MIH node returns an MIH message with the ACK-Rsp bit set and copying the Message-ID and Transaction-ID from the received MIH protocol message. The MIH message with the ACK-Rsp bit set has only the MIH header and no other payload. In instances where the destination MIH node immediately processes the received MIH protocol message and a response is immediately available, then the ACK-Rsp bit is set in the corresponding MIH protocol response message.
The destination MIH node responds with an acknowledgement message for duplicate MIH messages (messages with same transaction-ID) that have the ACK-Req bit set. However, the destination MIH node does not process these duplicate messages if it has already done so. If a destination MIH node receives an MIH protocol message with no ACK-Req bit set, then no action is taken with respect to the acknowledgement service.

In all cases, the MIH protocol message in a transaction is processed only once at the destination MIH node, irrespective of the number of received messages with the ACK-Req bit set. The destination MIH node sets the ACK-Rsp bit in an MIH protocol response message and additionally requests acknowledgement by setting the ACK-Req bit for the same MIH protocol response message.
In case an MIH protocol message with destination MIHF Group ID is received with the ACK-Req bit set, the receiving station should ignore this flag.
MIH protocol transaction state diagram
0. Inter-state-machine procedures
Change item c) of IEEE 802.21 as amended by IEEE 802.21b, as follows:
BOOLEAN IsMulticastMsg(MIH_MESSAGE)—This procedure outputs TRUE if the input message has an MIHF Group ID zero length destination MIHF ID. Otherwise, it outputs FALSE.
0. Transaction source and destination state machines
Intra-state-machine variables
Change item a) and add item b) as follows:
IsMulticast—This variable’s type is BOOLEAN. When its value is TRUE, it indicates that a message has a zero length destination MIHF Group ID. Otherwise, its value is FALSE.
ResponseSent – This variable’s type is BOOLEAN. When its value is TRUE, it indicates that a Response message has been sent. Otherwise, its value is FALSE.
1. Transaction destination state machine
replace Figure 24 as follows: 	Comment by Michelle Turner: Typically replace is used for figures.

[bookmark: _Ref353890149]—Transaction destination state machine
Other considerations
0. MIHF discovery
2. [bookmark: _Ref353983884]Solicited MIH capability discovery
Change first paragraph in 8.2.4.3.4 as follows:
An MIHF (the requestor) discovers its peer MIH functions and capabilities by sending an MIH_Capability_Discover request message to either its multicast domain with zero length a MIHF Group ID or a known MIHF ID, respectively. Only MIH network entities respond to a multicast MIH_Capability_Discover request.
Change last paragraph of 8.2.4.3.4 as follows:
If the MIH capability discovery is invoked upon receiving MIH capability advertisement in unauthenticated state through media specific broadcast messages, such as beacon frames and DCD, destination MIHF ID is filled with a zero length MIHF Broadcast ID and this message is transmitted over the control plane using an L2 management frame, such as an IEEE 802.11 management action frame or an IEEE 802.16 MAC management message. This message contains the SupportedMihEventList, SupportedMihCommandList, SupportedISQueryTypeList, SupportedTransportList, and MBBHandoverSupport TLVs to enable the receiving MIHF to discover the sending MIHF’s capability. Therefore, peer MIHF entities can discover each other’s MIH capabilities by one MIH protocol message transaction. When the requestor receives the unicast MIH_Capability_Discover response message, which is embedded in the media specific control message, it retrieves the responder.'s MIHF ID by checking the source of the MIH_Capability_Discover response message.
[bookmark: _Toc230358984]MIH protocol identifiers
[bookmark: _Ref353983918]MIHF ID
Change subclause 8.3.1 as amended by IEEE 802.21b as follows:
MIHF Identifier (MIHF ID) is an identifier that is required to uniquely identify an MIHF entity a specific MIHF or a group of MIHF peers for delivering the MIH services. MIHF ID is used in all MIH protocol messages. This enables the MIH protocol to be transport agnostic.
MIHF ID is assigned to the MIHF during its configuration process. The configuration process is outside the scope of the standard.
Broadcast MIHF Broadcast ID is defined as an MIHF Group ID of zero length. A zero length broadcast (zero length) MIHF ID may be used in an MIH message when destination MIHF ID is not known to a source MIHF. MIHF Group ID is used when a message is addressed to a group of MIHF peers. The following MIH messages can use a zero length broadcast MIHF ID:
MIH Messages for Management Service:
MIH_Capability_Discover request
MIH Messages for Command Service:
MIH_Link_Get_Parameters request
MIH_Link_Configure_Thresholds request
MIH_Net_HO_Bcst_Commit indication
MIH Messages for Information Service:
MIH_Push_Information indication

In addition the following rules apply to the case of messages addressed to a MIHF Group ID:
Multicast transmission is not allowed for MIES.	Comment by asd: Check this
Multicast transmission in general is not allowed for messages sent by the MN. Hence, commands in the form of MIH_MN_* cannot use multicast transmission.
Multicast transmission is not allowed for MIH_NET_SAP primitives.
Multicast transmission is not allowed for MIH_LINK_SAP primitives.
 In particular, the following MIH messages can use an MIHF Group ID. In the next list, when a message can be sent by a PoS and an MN, the only allowed multicast transmission is when the message is sent by the PoS:
1. MIH Messages for Management Service:
MIH_Registration request
MIH_DeRegister request
MIH_Net_Group_Manipulate request
MIH_Net_Group_Manipulate indication
MIH_Net_Push_Credential request
MIH_Push_Credential request
MIH_Revoke_Credential request
MIH_Pull_Credential request
MIH Messages for Command Service: 	Comment by asd: Add handover commit for bcast
Check indication messages

MIH_Link_Get_Parameters request
MIH_Link_Configure_Thresholds request
MIH_Link_Actions request
MIH_Net_HO_Candidate_Query request
MIH_N2N_HO_Query_Resources request
MIH_Net_HO_Commit request
MIH_Configuration_Update indication
MIH_Event_Subscribe request
MIH_Event_UnSubscribe request
MIH Messages for Information Service:
MIH_Push_Information indication

The MIHF ID is of type MIHF_ID. (See F.3.11.)
[bookmark: _Toc230358985]MIH protocol frame format
General frame format
[bookmark: _Ref353986029]Change numbering of subclause 8.4.1a to 8.4.2
[bookmark: _Ref356380978]Protected MIH protocol frame format
Change second paragraph of subclause 8.4.2 as follows:

A protected MIH PDU is an MIH PDU that has an MIH header with S bit set to one indicating that the MIH service specific TLVs in this PDU are protected encrypted or the PDU is digitally signed. When the MIH service specific TLVs in this PDU are encrypted, Each each security association is defined for a pair of MIHF identifiers and is identified by a security association identifier (SAID). Therefore, for a protected MIH PDU, when a security association identifier is defined and the PDU is not digitally signed, the Source and Destination MIHF identifier TLVs may not be present. In this case, an MIH header is followed by an SAID TLV, which is followed by a security TLV. When no SAID TLV is carried, Service Specific TLVs shall be carried without encryption and therefore no Security TLV is carried. A Signature TLV is carried when a multicast PDU is digitally signed. When an MIH message is multicast and the S bit is set, Source and Destination Identifier TLVs and an SAID TLV shall be carried in which the ID_VALUE of the SAID TLV contains a NULL string.
Change numbering of Figure 28a to Figure 29 and modify as follows:

1. [bookmark: _Ref353984702]—Protected MIH frame format
[bookmark: _Ref353984713]NOTE—Modify accordingly the reference number of Figures 28x accordingly:
[bookmark: _Ref356380955]MIH PDU protected by (D)TLS
Add the following text at the end of subclause 8.4.2.1:
A Signature TLV shall not be carried when MIH PDU is protected by (D)TLS.
[bookmark: _Ref353984725]MIH PDU protected through EAP-generated MIH SA
Add the following text at the end of subclause 8.4.2.2:
A Signature TLV shall not be carried when MIH PDU is protected through EAP-generated MIH SA.
Add the following subclause:
[bookmark: _Ref353984845]MIH PDU protected through GKB-generated MIH SA
When GKB is used the MIH SA must be protected through it. A group MIH SA is established among a group of MIHF peers. It includes a ciphersuite used for the protection. A security association identifier is assigned by the PoS as a result of successful GKB procedure. Figure 34 shows a protected MIH PDU for GKB-generated MIH SA with a Signature TLV. The protection procedure is specified in 9.4.1.
Insert the following figure at the end of subclause 8.4.2.3:

1. [bookmark: _Ref353984799]—MIH PDU protected by a GKB-generated MIH SA with a signature TLV
Modify subclause numbering:	Comment by Michelle Turner: I’m not sure I understand why this is here. Typically the only time we use this instruction is if we are modifying a particular area and we show that change and when doing so, we just say renumber clause numbering accordingly, however we don’t restate the clauses, unless we are actually showing the changes. I didn’t adjust the numbering for the remainder of the subclauses, based on not understanding the instruction.
Protected MIH PDU upon transport address change
Fragmentation and reassembly
[bookmark: _Toc230358986]Message parameter TLV encoding
[bookmark: _Ref353985651][bookmark: _Toc230358987]MIH protocol messages
MIH messages for service management
[bookmark: _Ref353984883]MIH_Capability_Discover request
Change 8.6.1.1 as follows:
If a requesting MIHF entity does not know the destination MIHF entity’s MIHF ID, the requesting MIHF entity may fill its destination MIHF ID with an zero length MIHF Broadcast ID to send this capability discover message.
[bookmark: _Ref353984894]MIH_Capability_Discover response
Change 8.6.1.2 as follows:
The corresponding MIH primitive of this message is defined in Error! Reference source not found.. This message is sent in response to an MIH_Capability_Discover request message that was destined to an MIHF ID or an zero length MIHF Broadcast ID.
[bookmark: _Ref353984903]MIH_Register request
Change 8.6.1.3 as follows:
This message is transmitted to the remote MIHF to perform a registration or re-registration. The message must contain the Link identifier TLV or Multicast link identifier TLV.
Insert and modify the following parameters:
	MIH Header Fixed Fields (SID=1, Opcode=1, AID=2)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkIdentifier (Optional)
(Link identifier TLV)

	GroupLinkIdentifier (Optional)
(Multicast link identifier TLV)

	RequestCode
(Register request code TLV)

MIH_Register response
Insert the following parameters:
	MIH Header Fixed Fields (SID=1, Opcode=2, AID=2)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Status
(Status TLV)

	ValidTimeInterval (not included if Status does not indicate “Success”)
(Valid time interval TLV)

	MulticastCipherSuite
(Multicast Ciphersuite TLV)

	Credential
(Credential TLV)

MIH_DeRegister request
MIH_DeRegister response
[bookmark: _Ref353984925]MIH_Event_Subscribe request
Change 8.6.1.7 as follows:
This message is sent by a remote MIHF (the subscriber) to subscribe to one or more event types from a particular event origination point. The message must contain the Link identifier TLV or Multicast link identifier TLV.
Insert and modify the following parameters:
	MIH Header Fixed Fields (SID=1, Opcode=1, AID=4)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkIdentifier (Optional)
(Link identifier TLV)

	GroupLinkIdentifier (Optional)
(Multicast link identifier TLV)

	RequestedMihEventList
(MIH event list TLV)

	EventConfigurationInfoList (Optional)
(Event configuration info list TLV)

MIH_Event_Subscribe response
[bookmark: _Ref353984943]MIH_Event_Unsubscribe request
Change 8.6.1.9 as follows:
This message is sent by a remote MIHF (the subscriber) to unsubscribe from a set of link-layer events. The message must contain the Link identifier TLV or Multicast link identifier TLV.
Insert and modify the following parameters:
	MIH Header Fixed Fields (SID=1, Opcode=1, AID=5)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkIdentifier (Optional)
(Link identifier TLV)

	GroupLinkIdentifier (Optional)
(Multicast link identifier TLV)

	RequestedMihEventList
(MIH event list TLV)

MIH_Event_Unsubscribe response
MIH_Auth indication
MIH_Auth request
MIH_Auth response
MIH_Termination_Auth request
MIH_Termination_Auth response
MIH_Push_key request
MIH_Push_key response
MIH_LL_Auth request
MIH_LL_Auth response
Add the following subclauses:
[bookmark: _Ref353988439]MIH_Configuration_Update indication
The corresponding MIH primitive of this message is defined in 7.4.30.2.
This message is used by the MIHF to change configuration of the MIH node(s) identified by the Destination Identifier.
The Destination Identifier is passed to the local MIH User as a TargetIdentifier in a MIH_Configuration_Update.indication.
	MIH Header Fields (SID=1, Opcode=3, AID=10)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	ConfigurationData
(Configuration Data TLV)

MIH_MN_Group_Manipulate request
The corresponding MIH primitive of this message is defined in 7.4.31.1.
This message is used by the MIHF to manipulate group membership of MIH node(s) identified by the Destination Identifier.
	MIH Header Fields (SID=1, Opcode=1, AID=11)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	TargetIdentifier
(Group Identifier TLV)

	GroupAction
(Group Action TLV)

MIH_MN_Group_Manipulate response
The corresponding MIH primitive of this message is defined in 7.4.31.3.
This message is used by the MIHF to supply the group status of MIH node(s) identified by the Source Identifier.
	MIH Header Fields (SID=1, Opcode=2, AID=11)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	TargetIdentifier
(Group Identifier TLV)

	SequenceNumber (conditional)ª
(Sequence Number TLV)

	MulticastAddress (Optional)
(Multicast Address TLV)

	SubgroupRange (Optional)
(Subgroup_Range TLV)

	VerifyGroupKey (Optional)
(Verify Group Key TLV)

	UserSpecificData (Optional)
(Aux Data TLV)

	CompleteSubtree (Optional)
(Complete Subtree TLV)

	GroupKeyData (Optional)
(Group Key Data TLV)

	GroupStatus
(Group Status TLV)

	SecurityAssociationID (Optional)
(SAID TLV)

ª This parameter is only used in the case CCM encryption method is used and the group key is not updated.
MIH_Net_Group_Manipulate request
The corresponding MIH primitive of this message is defined in 7.4.32.1.
This message is used by the MIHF to manipulate group membership of MIH node(s) identified by the Destination Identifier.
	MIH Header Fields (SID=1, Opcode=1, AID=12)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	GroupKeyUpdateFlag
(Group Key Update Flag TLV)

	TargetIdentifier
(Group Identifier TLV)

	SequenceNumber (Optional)a
(Sequence Number TLV)

	MulticastAddress (Optional)
(Multicast Address TLV)

	SubgroupRange (Optional)
(Subgroup Range TLV)

	VerifyGroupKey (Optional)
(Verify Group Key TLV)

	UserSpecificData (Optional)
(Aux Data TLV)

	CompleteSubtree
(Complete Subtree TLV)

	GroupKeyData (Optional)
(Group Key Data TLV)

	SecurityAssociationID (Optional)
(SAID TLV)

[bookmark: _Ref353985836]a This parameter is only used in the case CCM encryption method is used and the group key is not updated.
MIH_Net_Group_Manipulate indication
The corresponding MIH primitive of this message is defined in 7.4.32.2.
This message is used by the MIHF to manipulate group membership of MIH node(s) identified by the Destination Identifier.
	MIH Header Fields (SID=1, Opcode=3, AID=12)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	TargetIdentifier
(Group Identifier TLV)

	GroupKeyUpdateFlag
(Group Key Update Flag TLV)

	SequenceNumber (Optional)
(Sequence Number TLV)

	MulticastAddress (Optional)
(Multicast Address TLV)

	SubgroupRange (Optional)
(Subgroup Range TLV)

	VerifyGroupKey (Optional)
(Verify Group Key TLV)

	UserSpecificData (Optional)
(Aux Data TLV)

	CompleteSubtree
(Complete Subtree TLV)

	GroupKeyData (Optional)
(Group Key Data TLV)

	SecurityAssociationID (Optional)
(SAID TLV)

MIH_Net_Group_Manipulate response
The corresponding MIH primitive of this message is defined in 7.4.32.3.
This message is used by the MIHF to inform group status of MIH node(s) identified by the Source Identifier.
	MIH Header Fields (SID=1, Opcode=2, AID=12)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	TargetIdentifier
(Group Identifier TLV)

	UserSpecificData (Optional)
(Aux Data TLV)

	GroupStatus
(Group Status TLV)

MIH_Pull_Credential request
The corresponding MIH primitive of this message is defined in 7.4.33.1.
This message is used by the MIHF to request a credential to the PoS identified by the Destination Identifier.
	MIH Header Fields (SID=1, Opcode=1, AID=13)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

MIH_Pull_Credential response
The corresponding MIH primitive of this message is defined in 7.4.33.3.
This message is used by the MIHF to deliver a credential from a PoS used for creating an EAP-generated MIH SA. EncryptedCredential is decrypted by the leaf key of the MN.
	MIH Header Fields (SID=1, Opcode=2, AID=13)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	EncryptedCredential
(EncryptedCredential TLV)

MIH_Push_Credential request
The corresponding MIH primitive of this message is defined in 7.4.34.1.
This message is used by the MIHF to deliver a credential encrypted by the leaf key that the MIH node identified by the Destination Identifier holds to the MIH node.
	MIH Header Fields (SID=1, Opcode=1, AID=14)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Credential
(Credential TLV)

MIH_Push_Credential response
The corresponding MIH primitive of this message is defined in 7.4.34.3.
This message is used by the MIHF to acknowledge receipt of a credential from a PoS.
	MIH Header Fields (SID=1, Opcode=2, AID=14)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	CredentialSerialNumber
(Credential Serial Number TLV)

	CredentialStatus
(Credential Status TLV)

MIH_Revoke_Credential request
The corresponding MIH primitive of this message is defined in 7.4.35.1.
This message is used by the MIHF to revoke a credential.
	MIH Header Fields (SID=1, Opcode=1, AID=15)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	CredentialSerialNumber
(Credential Serial Number TLV)

	CredentialRevocation
(Credential Revocation Signature TLV)

MIH_Revoke_Credential response
The corresponding MIH primitive of this message is defined in 7.4.35.3.
This message is used by the MIHF to acknowledge receipt of a credential revocation request from a PoS.
	MIH Header Fields (SID=1, Opcode=2, AID=15)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	CredentialStatus
(Credential Status TLV)

MIH messages for event service
MIH_Link_Detected indication
MIH_Link_Up indication
MIH_Link_Down indication
MIH_Link_Parameters_Report indication
MIH_Link_Going_Down indication
MIH_Link_Handover_Imminent indication
MIH_Link_Handover_Complete indication
MIH messages for command service
[bookmark: _Ref353984966]MIH_Link_Get_Parameters request
Change 8.6.3.1 as follows:
This message is used to discover the status of currently available links. The message must contain the Link identifier list TLV or Multicast link identifier TLV.
Insert and modify the following parameters:
	MIH Header Fixed Fields (SID=3, Opcode=1, AID=1)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	DeviceStatesRequest (Optional)
(Device states request TLV)

	LinkIdentifierList (Optional)
(Link identifier list TLV)

	GroupLinkIdentifier (Optional)
(Multicast link identifier TLV)

	GetStatusRequestSet
(Get status request set TLV)

MIH_Link_Get_Parameters response
[bookmark: _Ref353984981]MIH_Link_Configure_Thresholds request
Change 8.6.3.3 as follows:
This message is used to configure thresholds of the lower layer link. The message must contain the Link identifier TLV or Multicast link identifier TLV.
Insert and modify the following parameters:
	MIH Header Fixed Fields (SID=3, Opcode=1, AID=2)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkIdentifier (Optional)
(Link identifier TLV)

	GroupLinkIdentifier (Optional)
(Multicast link identifier TLV)

	ConfigureRequestList
(Configure request list TLV)

MIH_Link_Configure_Thresholds response
Add the following subclause:
[bookmark: _Ref356286496]MIH_Link_Configure_Thresholds indication
The corresponding MIH primitive of this message is defined in 7.4.15.1.
This message is used to configure thresholds of the lower layer link when an MIHF Group ID is used as Destination Identifier. The message must contain the Link identifier TLV or Multicast link identifier TLV.
Insert and modify the following parameters:
	MIH Header Fixed Fields (SID=3, Opcode=3, AID=2)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkIdentifier (Optional)
(Link identifier TLV)

	GroupLinkIdentifier (Optional)
(Multicast link identifier TLV)	Comment by asd: Change to Group

	ConfigureRequestList
(Configure request list TLV)

MIH_Link_Actions request
Change the message format as follows:
	MIH Header Fields (SID=3, Opcode=1, AID=3)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkActionsList (Optional)
(Link actions list TLV)

	MulticastLinkActionList (Optional)
(Multicast link action list TLV)

MIH_Link_Actions response
Add the following subclause:
MIH_Link_Actions indication
The corresponding MIH primitive of this message is defined in 7.4.16.1.
This message is used to control the behavior of a set of lower layer links when an MIHF Group ID is used as Destination Identifier. The message must contain the Link identifier TLV or Multicast link identifier TLV.
	MIH Header Fields (SID=3, Opcode=3, AID=3)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkActionsList (Optional)
(Link actions list TLV)

	MulticastLinkActionList (Optional)
(Multicast link action list TLV)

MIH_Net_HO_Candidate_Query request
MIH_Net_HO_Candidate_Query response
MIH_MN_HO_Candidate_Query request
MIH_MN_HO_Candidate_Query response
MIH_N2N_HO_Query_Resources request
MIH_N2N_HO_Query_Resources response
MIH_MN_HO_Commit request
MIH_MN_HO_Commit response
MIH_Net_HO_Commit request
Change the message format as follows:
	MIH Header Fields (SID=3, Opcode=1, AID=7)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkType
(Link type TLV)

	TargetNetworkInfoList
(List of target network info TLV)

	AssignedResourceSet (Optional)
(Assigned resource set TLV)

	LinkActionExecutionDelay (Optional)
(Time interval TLV)

	LinkActionsList (Optional)
(Link actions list TLV)

	GroupLinkActionsList (Optional)
(Multicast Link action list TLV)

MIH_Net_HO_Commit response
MIH_Net_HO_Commit indication
Change the message format as follows:
	MIH Header Fields (SID=3, Opcode=3, AID=7)

	Source Identifier = sending MIHF ID
(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	LinkType
(Link type TLV)

	TargetNetworkInfoList
(List of target network info TLV)

	AssignedResourceSet (Optional)
(Assigned resource set TLV)

	LinkActionExecutionDelay (Optional)
(Time interval TLV)

	LinkActionsList (Optional)
(Link actions list TLV)

	GroupLinkActionsList (Optional)
(Multicast Link action list TLV)

MIH_N2N_HO_Commit request
MIH_N2N_HO_Commit response
MIH_MN_HO_Complete request
MIH_MN_HO_Complete response
MIH_N2N_HO_Complete request
MIH_N2N_HO_Complete response
MIH_Net_HO_Bcast_Commit indication
MIH messages for information service
MIH_Get_Information request
MIH_Get_Information response
MIH_Push_Information indication
[bookmark: _Toc230358988]MIH protocol protection
NOTE—Editor: The following subclauses are not changed, they appear in order to be able to reference them later.
[bookmark: _Toc230358989]Protection established through MIH (D)TLS
[bookmark: _Toc230358990]Key establishment through an MIH service access authentication
[bookmark: _Ref353988331]MIH service access authentication
Key derivation and key hierarchy
[bookmark: _Toc230358991]MIH message protection mechanisms for EAP-generated SAs
[bookmark: _Ref353983201]Insert the following subclause:
[bookmark: _Toc230358992]Multicast MIH message protection mechanisms
MIH message protection mechanisms using GKB-generated SAs
Group Key Block (GKB) is a data field used to distribute master group keys (MGKs) to protect group manipulation command and groupMIH multicast/broadcast commands. A GKB contains GroupkeyVerificationCode, CompleteSubtree and GroupKeyData (see 7.4.31.3 and 7.4.32.1). A group manipulation command accompanies a target MIHF Group ID and a GKB. An MN follows the procedure described in 9.4.2.2.2 to determine whether it should try to recover the key from the GKB. If an MN succeeds in recovering a group keyan MGK, the MN will keep the pair of the target MIHF Group ID and the group keyMGK, which means that the MN belongs to the group designated by the target MIHF Group ID. Otherwise, if an MN fails to derive a group keyan MGK from the GKB, it means that the MN does not belong to the group designated by the target MIHF Group ID. Then, the MN leaves the group discarding the stored pair of MIHF Group ID and group keyMGK.
A series of group commands may follow a group manipulation command which defines a target group of MNs. A group command is issued, for instance, to instruct the group that the members should handover to a PoA or that they should update their configuration parameters. A payload of a group command can be protected (encrypted) using an SA derived from the group keyMGK. The following two steps describe how group manipulation and command delivery are performed:
Step 1: A Command center, which is an MIH PoS, issues a group manipulation command to instruct MNs to join or leave a group. A group manipulation command may also be used to update a group key stored at a target MN. Group manipulation commands may be delivered to MNs through existing multicast channels. A multicast channel is associated with a group: If an MN joins a group then it starts listening to the multicast channel associated with the group. The address used by this multicast channel can be provided by the group manipulation command itself.
Step 2: A Command center issues to a group of MNs a group command (not a group manipulation command) to instruct the MNs in the group to take an action. The target group is designated by the MIHF Group ID field in the group command. A group command is delivered through the multicast channel associated with the MIHF Group ID. A group command may alternatively take two types of payload: Encrypted and non-encrypted. If a payload is encrypted, it is encrypted with a key derived from the current group key.
Each MN has a Device Key, which is a sequence of AES keys. The number of keys in a Device Key is 8, 16, 24 or 32, which is a system-wide constant. All MNs which are managed by a Group Manager have the same number of device keys. The format of Device Key may vary depending on its implementation and is out of the scope of this specification. For convenience, an example format of a Device Key is described in clause 9.4.2.2 and Annex U. When confidentiality is not required for group manipulation, a GKB without encrypted key dataGroupKeyData should be used. Note that each MN need not have a Device Key if the GKBs always have no encrypted key dataGroupKeyData.
A Command center has a module called GKB Generator. A GKB Generator receives combinations of a Device Key, a Leaf Number and a master group keyan MGK, where the Device Keys cover all the MNs that constitute a group. A Leaf Number is uniquely associated with a Device Key. Definition of Leaf Number is showngiven in Section ???.9.4.3. The MGK is the group key is for the concerned group. On receiving a set of such combinations, a GKB Generator outputs a GKB, or several GKBs. An example of creationgeneration of GKBs is described in sectionSection ???.
[bookmark: _Ref353985692]There are four modules involved in group manipulation: The MIH User of the Command center, the MIHF of the Command center, the MIH User of the MN and the MIHF of the MN.
Secure group manipulation with group key distribution
Figure 45 illustrates group manipulation command distribution initiated by a Command center via a multicast channel. The MIH User of the Command center generates an MIH_Net_Group_Manipulate.request, described in 7.4.32, and then it passes the request to the MIHF of the Command center. Upon receiving the request, the MIHF generates MIH_Net_Group_Manipulate indication (Note that the decision on sending an indication message or a request message depends on the ResponseFlag parameter of the MIH_Net_Group_Manipulate.request primitive), described in 0, and sends it to the MNs via multicast mechanisms. When an MN receives the MIH_Net_Group_Manipulate indication message, the MIHF of the MN processes the message. After processing the message, the MIHF sends MIH_Group_Manipulate.indication to the MIH User of the MN.

1. [bookmark: _Ref353985744]—Example of group manipulation distribution using multicast mechanisms
[bookmark: _Ref227929611]MIH User of a Command Center
Note that this section is informative. Required components in an MIH User of a Command Center relevant to group manipulation and group commands are listed as follows:
A GKB Generator.
All the MIHF IDs and all the Device Keys each of which is uniquely associated with one of the MIHF IDs. Each Device Key accompanies a Leaf Number.
A Group Management Database which stores a groups table, a members table and a memberships table. The groups table stores the existing groups:. It at least has the following threetwo columns: mihf_group_id, group_key and sa_idmgk. A row of the table tells that a group designated by the mihf_group_id exists and has the group_key which hasmgk for the sa_idmaster group key. The members table stores the group members (MNs): It at least has the following three columns: mihf_id, device_key and leaf_number. A row of the table tells that an MN designated by the mihf_id exists and has the device_key with the leaf_number. And, the memberships table stores associations between the groups and the members: It at least has the following two columns: mihf_group_id and mihf_id A row of the table tells that the MN designated by the mihf_id belongs to the group designated by the mihf_group_id.
An MIH User generates MIH_Net_Group_Manipulate.request described in 7.4.32 as follows:
a) Define a group to manipulate:
i. If it is a new group, choose a TargetIdentifierTargetGroupIdentifier by consulting with the Group Management Database. A TargetIdentifierA TargetGroupIdentifier should be an MIHF Group ID which is not currently in use as an MIHF Group ID for an existing group. Then, decide group members, i.e. MNs, which should belongbelongs to the group. Choose a master group keyan MGK for the group and an SAID. Add a row to the groups table: The row contains the chosen TargetIdentifier, TargetGroupIdentifier and the master group key and the SAIDMGK. And, add rows to the memberships table for all the group members: Each of the rows contains the TargetIdentifierTargetGroupIdentifier and the MIHF ID of a group member.
ii. For an already existing group, obtain all the group members in the group. Add to them As necessary, add new group members to be added to the group, them and remove group members to be removed from them so that the group. Thus, members of a newthe group are defined. Chose a masterupdated. Choose an MGK for the group key. It may be equal to the current master group key for the existing group. Chose an SAID: The SAID may be left unchanged if the master group key is left unchanged.MGK. If a newly generated SAID is adopted, it should not collide with one usednew MGK is chosen, update by the new MKG the row in the past for the group.
iii. Group membership is registered atgroups table containing the Group Management Database and managed by the Group managerTargetGroupIdentifier of the existing group. Add the rows to the memberships table where the rows have the TargetGroupIdentifier and the MIHF IDs of a new group members. Remove the rows from the memberships table where the rows have the TargetGroupIdentifier and the MIHF IDs of group members which are removed from the group.
b) Send to the GKB Generator all the Device Keys, and the associated Leaf Numbers of the group members determined in a) and the group keyMGK. Then, the MIH User receives from the GKB generator a GKB or a set of GKBs: A GKB contains a CompleteSubtree field, a GroupKeyData field and optionally a SubgroupRange field. A SubgroupRange is a pair of Leaf Numbers and defines a range of Leaf Numbers. A simple example which shows how to make those fields is given in Error! Reference source not found..???. A GKB contains a SubgroupRange field if it is one of divided GKBs. Note that one MIH_Net_Group_Manipulate.request contains one and only one GKB. Plural GKBs result in plural requests.
c) c)	(Optional) Construct the UserSpecificData field.
d) d)	Choose a DestinationIdentifier. A DestinationIdentifier is a Group MIHF ID which represents an existing group. The SubgroupRange indicates the MNs which are the distribution targets of the GKB. If an MN is in the range, it should receive the divided GKB. At least, an MIHF Broadcast Identifier is assumed to exist. Other initial groups may exist though they are out of the scope of this specification.
e) e)	Generate an MIH_Net_Group_Manipulate.request from the DestinationIdentifier, the TargetIdentifierTargetGroupIdentifier, the SubgroupRange (an option), the VerifyGroupKey (an option), the UserSpecificData (an option), the CompleteSubtree and the GroupKeyData (an option). Set the GroupKeyUpdateFlag if the group keyMGK of the group designated by the TargetIdentifierTargetGroupIdentifier should be updated. Send it to the local MIHF.
f)	Update the Group Management Database. If the target group of manipulation is an existing group, add/remove members (MIHF IDs, Device Keys and Leaf Numbers) and update its group key. If the target group is a new one, add a new Group MIHF ID (= TargetIdentifier) with its new members and its new group key to the Group Management Database.
MIHF of a Command Center
IndispensableRequired components relevant to group manipulation and group commands are listed as follows:
A signing key. The key is for creation of a signature of the Command center.
A Device Key to retrieve a group key from a GKB which is received from the local MIH User.
A Multicast Address Database which stores a multicast addressaddresses table, which has the following twofour columns at least: mihf_group_id and, multicast_address, mgk and sa_id. The multicast_address on a row is associated with the group designated by the mihf_group_id recorded on the same row. Additionally, the multicast_address may have an attribute which indicates if it is defined at Layer 2 or 3 of the protocol stackaccompany an attribute which indicates if it is defined at Layer 2 or 3 of the protocol stack. The mgk is the one derived from the latest GKB targetted to the group of the mihf_group_id. The sa_id is the SAID for the mgk. A Multicast Address Database may also have a saids table which has the following two columns at least: mihf_group_id and sa_id. A saids table stores all the SAIDs which have ever been assigned to the group of the mihf_group_id. A saids table is used to check if a generated SAID is unique up to the group. If a SAID is chosen monotoneously increasing for instance, the saids table is not necessary.
MIHF of an MN
Indispensable components relevant to group manipulation and group commands are listed as follows:
A Device Key.
A verification key. The key is for verification of a signature made by the Command center.
	A Group Database which stores a groups table, which has the following three columns at least: mihf_group_id, group_key and multicast_address. A row of the table tells that the MN belongs to the group designated by the mihf_group_id. The group has the group_It is assumed that the MIHF is able to obtain in some way a multicast address associated with a Group MIHF ID. The multicast address may be contained in the MIH_Net_Group_Manipulate.request received from the MIH User. In this case, if the TargetGroupIdentifier in the received request is not registered in the database, obtain the multicast address associated with the TargetGroupIdentifier and update the database with the DestinationIdentifier and the associated multicast address.key and is associated with the multicast_address. The multicast_address may have an attribute which indicates if it defined at Layer 2 or 3 of the protocol stack.
MIH User of an MN

The MIHF of the Command center receives an MIH_Net_Group_Manipulate.request which is generated by the MIH User, the MIHF generates and sends an MIH_Net_Group_Manipulate indication message to a multicast group. Note that this behavior depends on the ResponseFlag parameter. When “ResponseFlag=1”, the MIHF will generate MIH_Net_Group_Manipulate request message. When “ResponseFlag=0”, the MIHF will generate MIH_Net_Group_Manipulate indication message. In this example, we assume “ResponseFlag=0”.
1. Generate a Source MIHF ID TLV using its own MIHF ID.
1. Generate a Destination MIHF ID TLV from the DestinationIdentifier in the received MIH_Group_Manipulate.request.
1. Generate a Group Identifier TLV from the TargetIdentifier in the received MIH_Group_Manipulate.request.
1. Generate, as needed, a Multicast Address TLV from the multicast address corresponding to the TargetIdentifier in the received MIH_Net_Group_Manipulate.request. The Multicast Address Database servescan serve for the purpose of finding the multicast address.
1. (Optional) Generate a SubgroupRange TLV from the SubgroupRange in the received MIH_Net_Group_Manipulate.request.
1. (Optional) Generate a Verify Group Key TLV from the VerifyGroupKey in the received MIH_Net_Group_Manipulate.request.
1. (Optional) Generate an Aux Data TLV from the UserSpecificData in the received MIH_Net_Group_Manipulate.request.	Comment by asd: Mirar si AuxData o User-Specific info
1. Generate a Complete Subtree TLV from the CompleteSubtree in the received MIH_Net_Group_Manipulate.request.
1. Generate a Group Key Data TLV from the GroupKeyData in the received MIH_Net_Group_Manipulate.request.
1. Process the GKB (the Complete Subtree TLV and the Group Key Data TLV) using the Device Key assigned to the MIHF, and obtain the MGK. If the MIHF fails to obtain the master group key, the MIHF shall cancel the rest of the process.
1. Ask the Multicast Address Database and obtain the current MGK and the current SAID for the TargetGroupIdentifier. If the obtained MGK is equal to the MKG derived in j), do nothing here. Otherwise, generate a new SAID which is unique up to the group, and update the mgk and the sa_id on the row for the TargetGroupIdentifier in the multicast addresses table.
1. [bookmark: _Ref356044481]Generate a Signature TLV shown in 8.4.2 using the signing key of the Command center.
1. Generate an MIH_Net_Group_Manipulate indication using the preceding TLVs. If necessary, its Service Specific TLVs are so encrypted that they make a Security TLV.Generate a Signature TLV shown in 8.4.2 using the signing key of the Command center.Generate an MIH_Net_Group_Manipulate indication using the preceding TLVs. If necessary, its Service Specific TLVs are so encrypted that they make a Security TLV.
1. Send the MIH_Net_Group_Manipulate indication message created in REF _Ref356044481 \n \h q) to the multicast address corresponding to the DestinationIdentifier.
MIHF of an MN
Required components relevant to group manipulation and group commands are listed as follows:
A Device Key.
A certificate of a Command Center which contains a verification key. The verification key is for verification of a signature made by the Command Center.
	A Group Database which stores a groups table, which has the following three columns at least: mihf_group_id, mgk and multicast_address. A row of the table tells that this MN belongs to the group designated by the mihf_group_id. The group has the mgk as the master group key and is associated with the multicast_address. The multicast_address may have an attribute which indicates if it defined at Layer 2 or 3 of the protocol stack.
o) Update the Multicast Address Database if necessary. It is assumed that the MIHF is able to obtain a multicast address associated with a Group MIHF ID. The multicast address may be contained in the MIH_Net_Group_Manipulate.request received from the MIH User. If the DestinationIdentifier in the received request is not registered in the database, obtain the multicast address associated with the DestinationIdentifier and update the database with the DestinationIdentifier and the associated multicast address.
When a client MN receives a group manipulation command, i.e., an MIH_Net_Group_Manipulate indication message, issued by a Command center, the MIHF of the MN processes the command. Suppose at first that the GKB in the group manipulation command has a group key data element:	Comment by thor kumbaya: This description of the behaviors of the MIHF of a receiving MN should be updated so that it accords with the flow-chart.
1. [bookmark: _Ref355731163]The MIHF obtains a Source Identifier from the Source MIHF ID TLV.
The MIHF verifies the Signature TLV using the verification key corresponding to the obtained SourceIdentifier. If the verification fails, the MIHF shall cancel the following steps and stop processing the command.
The MIHF checks the DestinationIdentifier in the Destination MIHF ID TLV. If the DestinationIdentifier does not match one of the following MIHF IDs, the MIHF shall cancel the following steps and stop processing the command: (i) An MIHF Group ID corresponding to a broadcast address, (ii) an MIHF Group ID which is registered with a multicast address in the Group Database, or (iii) the MN's own MIHF ID.
[bookmark: _Ref353987556]Decrypt the payload if it is encrypted, i.e., if it is a Security TLV. The decryption key is the one associated with the DestinationIdentifier in the Group Database.
In case an MN cannot decrypt the Security TLV, the message will be silently discarded.
If a SubgroupRange TLV exists in the indication, the MIHF obtains a SubgroupRange and checks whether its own Leaf Number is contained in the SubgroupRange or not. If it is not, the MIHF shall cancel the following steps and stop processing.
[bookmark: _Ref356284967][bookmark: _Ref355731667]The MIHF obtains the TargetIdentifier in the Group Identifier TLV.
[bookmark: _Ref356284938]A GKB is composed of the Complete Subtree TLV, the Group Key Data TLV and optionally the Verify Group Key TLV. The MIHF processes the Complete Subtree TLV and the Group Key Data TLV as described in 9.4.2.2.2. If a Verify Group Key TLV exists, the MIHF verifies the group key derived from the GKB. If an MGK is obtained (and verified), go to the next step. Otherwise, go to Step i). In case the Verify Group Key TLV is not present in the GKB, if an MGK is obtained, go to the next step without verification of the obtained MKG. Otherwise, go to Step i).
[bookmark: _Ref353987494][bookmark: _Ref355730559]The MIHF checks whether the TargetIdentifier obtained in Step f) has already been registered or not in the Group Database. If it has been, go to Step j) [Stay]. Otherwise, go to Step k) [Join].
[bookmark: _Ref356284832]The MIHF checks whether the TargetIdentifier has already been registered or not in the Group Database. If it has been, go to Step m) [Leave]. Otherwise, go to Step j) [Stay].
[bookmark: _Ref355731845][bookmark: _Ref356284906][bookmark: _Ref353987517][Stay] The MIHF throws an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field of the indication shall be “Unchanged successful” (5). The procedure of command processing terminates.
[bookmark: _Ref355732538][bookmark: _Ref353987525][Join] The MIHF obtains a multicast address associated with the TargetIdentifier and starts listening to it. The messages come through the multicast channel may be encrypted with the group key obtained in Step g). The multicast address may be obtained from a server (Note that this operation is out of the scope of this specification). Or, the received indication may accompany it in the Multicast Address TLV. Save in the Group Database the TargetIdentifier, the associated multicast address and the group key obtained in Step f).
The MIHF throws an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field must be “Join operation successful” (0). The procedure of command processing terminates.
[bookmark: _Ref356284895][Leave] The MIHF finds the multicast address recorded on the same row as the TargetIdentifier obtained in Step f) and the MIHF stops listening to it. The MIHF discards the row which has the TargetIdentifier.
The MIHF throws an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field must be “Leave operation successful” (3). The procedure of command processing terminates.
Then, suppose that the GKB in the group manipulation command has no group key data part:
1. The MIHF obtains a Source Identifier from the Source MIHF ID TLV.
The MIHF verifies the Signature TLV using the verification key corresponding to the obtained SourceIdentifier. If the verification fails, the MIHF shall cancel the following steps and stop processing the command.
The MIHF checks the DestinationIdentifier in the Destination MIHF ID TLV. If the DestinationIdentifier does not match one of the following MIHF IDs, the MIHF shall cancel the following steps and stop processing the command: (i) A Group MIHF ID corresponding to a broadcast address, (ii) a Group MIHF ID which is registered with a multicast address in the Group Database, or (iii) the MN's own MIHF ID.
Decrypt the payload if it is encrypted, i.e., if it is a Security TLV. The decryption key is the one associated with the DestinationIdentifier in the Group Database.
If a SubgroupRange TLV exists in the indication, the MIHF obtains a SubgroupRange and check whether its own Leaf Number is contained in the SubgroupRange or not. If it is not, the MIHF shall cancel the following steps and stop processing.
[bookmark: _Ref356081921]The MIHF obtains a TargetIdentifier in the Group Identifier TLV.
A GKB is composed of the Complete Subtree TLV. The MIHF processes the Complete Subtree TLV as described in 9.4.2.2.2. If the MIHF succeeds to find a matching pair of GKB Indices, go to the next step. Otherwise, go to Step i).
The MIHF checks whether the TargetIdentifier obtained in Step f) has already been registered or not in the Group Database. If it has been, go to the Step j) [Stay]. Otherwise, go to Step k) [Join].
[bookmark: _Ref356285017]The MIHF checks whether the TargetIdentifier obtained in Step f) has already been registered or not in the Group Database. If it has been, go to Step m) [Leave]. Otherwise, go to Step j) [Stay].
[bookmark: _Ref356285038][Stay] The MIHF issues an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field of the indication must be “Unchanged successful” (5). The process terminates.
[bookmark: _Ref356285047][Join] The MIHF obtains a multicast address associated with the TargetIdentifier and starts listening to it. The multicast address may be obtained from a server. Or, the received indication may accompany it in the Multicast Address TLV. Save in the Group Database the TargetIdentifier, the associated multicast address.
The MIHF issues an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field must be “Join operation successful” (0). The procedure of command processing terminates.
[bookmark: _Ref356285071][Leave] The MIHF finds the multicast address recorded on the same row as the TargetIdentifier obtained in f) and the MIHF stops listening to it. The MIHF discards the row which has the TargetIdentifier.
The MIHF issues an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field must be “Leave operation successful” (3). The procedure of command processing terminates.

Subclause 7.4.31 introduces a mechanism enabling the MN to trigger the Join/Leave operations controlled by the Command center. In order to do so, the MIH User located at the MN notifies the Command center of its desire to Join or Leave a group through the use of the MIH_MN_Group_Manipulate primitive. The Command center, upon receiving the associated request message, performs the same process as defined in this subclause, for the use of the MIH_Net_Group_Manipulate, although in this case, the group to be manipulated is provided by the MN. The resulting GKB parameters are returned to the MN in the MIH_MN_Group_Manipulate response message.
[bookmark: _Ref356457820]GKB operation by the complete subtree method
A GKB is generated based on a binary tree. It is assumed that a key is assigned to each node of the binary tree. The key is sometimes called Node Key. A node of the binary tree is naturally identified with a bit sequence. (See Figure 46 for an example of depth 3) The maximum length of bit sequences is equal to the Depth of the binary tree. The Depth shall be one of the following values: 8, 16, 24 or 32. The Depth depends on design of the system, and it is a system-wide constant.

Figure 3 [bookmark: _Ref356285123]—Example of GKB operation by the complete subtree method (this figure corresponds to a depth of 3)
A GKB contains a complete subtree part and a group key data part. A group key data part appears when a GKB is used to deliver a group key. A complete subtree part is, for instance, the field of CompleteSubtree in an MIH_NET_Group_Manipulate.request defined in 7.4.32.1. And, a group key data part is, for instance, the field of GroupKeyData in an MIH_Net_Group_Manipulate.request defined in 7.4.32.1. A complete subtree part is a list of GKB Indices. The data type of a complete subtree part is COMPLETE_SUBTREE, and the data type of a GKB Index is GKB_INDEX. A GKB Index is a pair of a Node Bit Length and a Node Index. The data type of a Node Index is NODE_INDEX, and the data type of a Node Bit Length is NODE_BIT_LENGTH (as defined in Error! Reference source not found.). A Node Index stores the bit sequence which represents a node, and the Node Bit Length paired with the Node Index is an octet which stores the length of the bit sequence. A Node Index is rightleft aligned in the networkInternet byte order. The size of a Node Index varies depending on the value of the preceding Node Bit Length. If the value of a Node Bit Length is not greater than 8, the size of the following Node Index is 1 octet (= 8 bits). If the value of a Node Bit Length is greater than 8 and not greater than 16, the size of the following Node Index is 2 octets. If the value of a Node Bit Length is greater than 16 and not greater than 24, the size of the following Node Index is 3 octets. And, if the value of a Node Bit Length is greater than 24 and not greater than 32, the size of the following Node Index is 4 octets. There is one-to-one correspondence between a GKB Index and a node of the binary tree. An example of GKB Index is (0x05, 0b00010011). A Node Index shall have a zero padding added to the right. A Node Index for a leaf node is sometimes called Leaf Number. An example of GKB Index is (0x05, 0b10011000). This GKB Index represents the node ‘10011’ in the binary tree of Depth 8, Depth 16, Depth 24 or Depth 32.. Another example of GKB Index is (0x14, 0b000001100101000011100b1100101000011100), which represents the node ‘0110010100001110’11001010000111’ in the binary tree of Depth 24 or Depth 32.16. If a system adopts the binary tree of Depth 16, the size of a Node Index in the system is 1 octet or 2 octets.	Comment by asd: Right padding modify example, comment 184
Note that GKB Indices are sequenced following the ascending “dictionary order”: Let (L1, I1) and (L2, I2) be two GKB Indices, where L1 and L2 are Node Bit Lengths and I1 and I2 are Node Indices. The dictionary order on the set of GKB Indices is defined as follows: (L1, I1) <= (L2, I2) if and only if L1 < L2 or (L1 == L2 and I1 <= I2), where L1, L2, I1 and I2 are considered as natural numbers.
A group key data part of a GKB is a sequence of encrypted group keys, where a group key is encrypted by Node Keys. The data type of a group key data part is GROUP_KEY_DATA, and the data type of an encrypted group key is ENCRYPTED_GROUP_KEY. There is one-one correspondence between the complete subtree part and the group key data part in a GKB. The number of GKB Indices in the complete subtree part is equal to the number of encrypted group keys in the group key data part. And, the n-th encrypted group key is a group key encrypted by the Node Key assigned to the node designated by the n-th GKB Index. The encryption is made using the AES-ECB mode.
[bookmark: _Ref356284140]Encapsulation/Decapsulation
An MIHF has a Device Key. The format of a Device Key may vary depending on implementations and is out of the scope of this specification. The procedures of GKB encapsulation/decapsulation are explained here using an example format of Device Key. A Device Key is a sequence of Device Key Units. The number of Device Key Units in a Device Key is equal to the Depth of the tree. A Device Key Unit is a pair of a GKB Index and a Node Key. The GKB Index in a Device Key Unit represents the node of the binary tree to which the Node Key in the Device Key Unit is assigned. A Device Key stores nodes and the associated Node Keys along a path in the binary tree which starts at the root node and arrives at a leaf node descending the tree.
 Encapsulation 	Comment by thor kumbaya: Provide a simple bridge between the toy example and the GKB-format.	Comment by thor kumbaya: It is desirable to give a detailed description about the method to create a GKB or fragmented GKBs.
Error! Reference source not found. provides an example of creation of a GKB at a GKB Generator.
[bookmark: _Ref353987468]Decapsulation
At first, the decapsulation procedure for a GKB with a group key data part is described as follows:
1. An MIHF finds a GKB Index in the complete subtree part of the GKB and a Device Key Unit in the Device Key that the MIHF itself owns such that the GKB Index and the GKB Index of the Device Key Unit are identical. Suppose that the GKB Index thus found is the n-th GKB Index in the complete subtree part. If the MIHF fails to find such GKB Indices, the procedure shall terminate.
If the procedure terminates here, it means that the MN does not belong to the group designated by the TargetIdentifier defined in 7.4.32.1. The MN shall leave the group if it currently belongs to the group.
Using the Node Key in the Device Key Unit found in a), the MIHF decrypts the n-th encrypted group key in the group key data part. The result of the decryption is a group key KG.
The group key KG is the group key for the group designated by the TargetIdentifier. The MN shall belong to the group.
If there exists a field of VerifyGroupKey in the MIH_Net_Group_Manipulate.request defined in 7.4.32.1, check the MAC in the VerifyGroupKey field using the group key KG. If it fails, the decapsulation procedure shall abort.
If a GroupKeyData TLV is absent in an MIH_Net_Group_Manipulate indication message, an MIHF recognizes that it carries a GKB without a group key data.
 The following procedures apply:
1. An MIHF tries to find a GKB Index in the complete subtree part of the GKB and a GKB Index in the Device Key which the MIHF itself owns such that the two GKB Indices are identical.
If the MIHF fails to find a matching pair, it means that the MN does not belong to the group designated by the TargetIdentifier defined in 7.4.32.1. The MN leaves the group if it currently belongs to the group.
If the procedure succeeds to find a matching pair, it means that the MN belongs to the group designated by the TargetIdentifier defined in 7.4.32.1. The MN joins in the group if it does not currently belong to the group.
Note that an MN need not necessarily have a Device Key when GKBs without keys are used. Then, an MN is only required to have a sequence of GKB Indices.

Multicast message encryption based on group key

Figure 4 [bookmark: _Ref356236815]—Key derivation example
When an MN successfully recovers a GKB, it obtains a master group key (MGK). The following three keys are derived from MGK:
Group key confirmation key (MIGKCK) used as a key confirmation key to confirm that the correct MGK is obtained through a Message Authentication Code (MAC);
Group manipulation encryption key (MIGMEK) used to protect a group manipulation command;
Group encryption key (MIGEK) used to protect the group command.”
The deriving key is specified by the different multicast ciphersuites described in 9.4.6. For the key derivation, the following notations and parameters are used.
K: key derivation key. It is truncated from a master group key (MGK). The length of K is determined by the pseudorandom function (PRF) used for key derivation. If HMAC-SHA-1 or HMAC-SHA-256 is used as a PRF, then the full MGK is used as key derivation key, K. If CMAC-AES is used as a PRF, then the first 128 bits of MGK are used as derivation key, K.
L: The binary length of derived keying material MIGSK. L is determined by selected multicast ciphersuites described in 9.4.6.
h: The output binary length of PRF used in the key derivation. That is, h is the length of the block of the keying material derived by one PRF execution. Specifically, for HMAC-SHA-1, h = 160 bits; for HMAC-256, h = 256 bits; for CMAC-AES, h = 128 bits.
n: The number of iterations of PRF in order to generate L-bits keying material.
c: The multicast ciphersuite code is a one octet string specified for each ciphersuite. The code is defined in 9.4.6.
v: The length of the binary representation of the counter and the length of keying material L. The default value for v is 32.
“MIGSK”: 0x4D4947534B, ASCII code in hex for string “MIGSK.”
[a]2: Binary representation of integer a with a given length.
For given PRF, the key derivation for MIGSK can be described in the following procedures:
Fixed input values: h and v.
Input: K, L, and multicast ciphersuite code.
Process:
1.
If n > 2v-1, then indicate an error and stop.
Result(0) := empty string.
For i = 1 to n, do
K(i) := PRF(K, “MIGSK” || [i]2 || c || [L]2).
Result(i) = Result(i-1) || K(i).
Return Result(n) and MIGSK is the leftmost L bits of Result(n).
Output: MIGSK.
The MIGSK is parsed in such a way that
MIGSK = MIGIK || MIGMEK || MIGEK.
With the above procedure, a key hierarchy is derived as shown in Figure 47.
Multicast message encryption based on group key	Comment by thor kumbaya: Needs sub-clauses about MIH User of CC, MIHF of CC, MIHF of MN and MIH User of MN? Needs flow-charts for the behaviors of the MIHFs?
In order to issue an MIH_Configuration_Update indication message, the MIH User of the Command center generates an MIH_Configuration_Update.request described in 7.4.30.1 and delivers it to the local MIHF. Upon receiving the request, the MIHF of the Command center behaves as follows:
1. The MIHF generates a Source MIHF ID TLV based on its own MIHF ID.
The MIHF generates a Destination MIHF ID TLV based on the DestinationIdentifier in the received request.
The MIHF generates a Configuration Data TLV from the ConfigurationData in the received request.
[bookmark: _Ref353988462]Consulting with the Multicast Address Database, the MIHF finds the multicast address associated with the DestinationIdentifer in the received request.
The MIHF generates an MIH_Configuration_Update indication message described in 8.6.1.20, and it sends it to the multicast address found in Step d).
The Configuration Data TLV in the MIH_Configuration_Update indication message may be encrypted to make a Security TLV if necessary in the scheme described in 8.4.2.
When an MIHF of an MN receives an MIH_Configuration_Update indication message, it issues an MIH_Configuration_Update.indication described in 7.4.30.2 to its MIH User, following the next steps:
1. The Destination Identifier is retrieved from the Destination MIHF ID TLV. The MIHF checks if the Destination Identifier is registered in the Group Database or not. If it is not, the message is not for the MN. Thus, it cancels the following steps and stops processing.
The Source Identifier is retrieved from the Source MIHF ID TLV.
The MIHF verifies the Signature TLV using the verification key corresponding with the preceding Source Identifier. If the verification fails, it cancels the following steps and abort.
The ConfigurationData is retrieved from the Configuration Data TLV. If it is encrypted, The MIHF decrypts the Security TLV with the group key associated with the Destination Identifier in the Group Database.
With this information, the MIHF generates an MIH_Configuration_Update.indication as described in 7.4.30.2.

Figure 5 —Example of configuration update distribution using multicast mechanisms
[bookmark: _Ref356055831]In order to fill the SourceIdentifer, TargetIdentifier and ConfigurationData fields of the MIH_Configuration_Update.indication primitive, the MIHF copies the Source Identifier, the Destination Identifier and the Configuration Data respectively of the MIH_Configuration_Update indication message.
Finally, the MIHF issues the MIH_Configuration_Update.indication created in f) to its MIH User.
Signature and Credential Management
In order to enable signing functionality, the message source requests credentials for public key using an out-of-band mechanism that is not specified in this document. The message source provides the credentials to destination devices. Message signing procedure, signature verification procedure and certificate management procedure are described in 9.4.5.1, 9.4.5.2 and 9.4.5.3, respectively.
[bookmark: _Ref353988716]Multicast Message Signatures
Multicast Messages are signed with the message source using a private key of the message source. Integrity and proof of origin of a multicast message is verified by verifying the message signature with the public key of a message source.
On receipt of signed multicast message there is an optional response indicating the validity of signature. Message source requests credentials for key updates. Message source provides updates of credentials to destination devices (with overlap period).
The message content is signed using elliptical curve cryptography.
[bookmark: _Ref353988723]Signature Verification
The signature is verified using the message source signature verification key. The endpoints might have more than one key used for signature verification. This is to allow for key updates to happen in an efficient manner for large systems.
The message source will identify which key is to be used for the multicast message so that verification will utilize the correct key for signature verification.
[bookmark: _Ref353988735]Certificate Management
A root of trust will exist for the multicast nodes. The root of trust is envisioned to be a certificate authority. X.509 format certificates will be utilized. The root of trust will establish the binding between the identity of the message source and the public/private key pair used for signature generation and verification.
The certificate will include the identity of the certificate authority, the identity of the message source, the public key in use and the expiration date of the certificate and the certificate authority’s signature. For an endpoint (an MN or PoS) to trust the certificate it must have the certificate authority public key.
The initial certificates for multicast signature verification are distributed to multicast destinations as part of the provisioning process to the multi-node network. The certificates will include the certificate authority certificate used to verify the initial and updated certificates.
There will also be one or more certificates that are bound to the identity of the multicast source.
As part of the key update or revocation process, a new certificate will be provided to multicast destinations using the multicast mechanism. There needs to be a mechanism for multicast destinations to acknowledge the receipt of the multicast message.
When there is a suspicion that a certificate is compromised, a mechanism will be provided to revoke the certificate from service. This mechanism will utilize the multicast messaging mechanism. Multicast destinations will need to provide a reply that indicates they have successfully revoked the certificate.
Insert the following subclause.
[bookmark: _Ref353987935]Multicast Ciphersuites
The ciphersuites used for securing multicast MIH message is defined in Table 26.

Table 3 [bookmark: _Ref353988760]
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
[bookmark: _Ref363031529]—Multicast Ciphersuites
	Code
	Encryption Algorithm for Group Manipulation
	Encryption Algorithm for Group Command
	Digital Signature Algorithm
	MAC Algorithm for Verify Group Key

	10000000
	NULL
	NULL
	NULL
	NULL

	10001000
	AES_CCM-128
	AES_CCM-128
	ECDSA-224
	AES_CMAC-128

	10001001
	AES_CCM-128
	AES_CCM-128
	ECDSA-256
	AES_CMAC-128

	10001100
	AES_CCM-128
	NULL
	ECDSA-224
	AES_CMAC-128

	10001101
	AES_CCM-128
	NULL
	ECDSA-256
	AES_CMAC-128

	10010000
	NULL
	NULL
	ECDSA-224
	NULL

	10010001
	NULL
	NULL
	ECDSA-256
	NULL

[bookmark: _Toc230358993]Common procedures
Sending
When a PoS issues an MIH Service Specific TLV, the MIHF of the PoA generates a signature of the TLV using the signing key of the PoS and creates a Signature TLV from the generated signature.
Receiving
When an MN receives an MIH service specific TLV, the MIHF of the MN behaves as follows:
The MIHF verifies the signature in the Signature TLV using the verification key corresponding to the Source Identifier extracted from the received Source MIHF ID TLV. If the verification fails, it cancels the following steps and stops processing.
The Destination Identifier is extracted from the received Destination MIHF ID TLV. The MIHF checks if the Destination Identifier is registered as an MIH Group ID in the Group Database. If it is not, it cancels the following steps and stops processing.
If a Security TLV is found in the MIH Specific TLV, the MIHF decrypts the Security TLV using the MIGMEK derived from the MKG. The MGK is the group key corresponding to the Destination Identifier extracted in the previous step. The group key is found in the Group Database.

(informative)
Bibliography
Bibliographical references are resources that provide additional or helpful material but do not need to be understood or used to implement this standard. Reference to these resources is made for informational use only.

1.
(normative)
Data type definition
0. [bookmark: _Toc230359001]Derived data types
.0.1
.0.2
.0.3
Data types for link identification and manipulation
Insert new row in Table F.4 as follows:
Table F.4—Data types for links
	Data type name
	Derived from
	Definition

	MULTICAST_ACTION_REQ
	SEQUENCE(
NET_TYPE_INC,
CHOICE(NULL, LINK_ADDR),
LINK_ACTION,
LINK_AC_EX_TIME
)
	A set of handover action request parameters destined to a group of links. The choice of LINK_ADDR is to provide PoA address information when the LINK_ACTION contains the attribute for DATA_FWD_REQ.

.0.4
.0.5
.0.6
.0.7
.0.8
.0.9
[bookmark: _Ref353983952]Data type for MIHF identification
Change the following row in Table F.19:
Table F.19—Data type for MIH identification
	Data type name
	Derived from
	Definition

	MIHF_ID

	OCTET_STRING
	The MIHF Identifier: MIHF_ID is a network access identifier (NAI). NAI shall be unique as per IETF RFC 4282. If L3 communication is used and MIHF entity resides in the network node, then MIHF_ID is
the fully qualified domain name or NAI-encoded IP address (IP4_ADDR or IP6_ADDR) of the entity that hosts the MIH Services.
If L2 communication is used then MIHF_ID is the NAI-encoded linklayer address (LINK_ADDR) of the entity that hosts the MIH services.
In an NAI-encoded IP address or link-layer address, each octet of binary-encoded IP4_ADDR, IP6_ADDR and LINK_ADDR data is encoded in the username part of the NAI as .“\.” followed by the octet value. MIHF ID of zero length may be used when a destination MIHF ID is not known. An MIHF broadcast identifier is defined as an MIHF ID of zero length. Ant MIHF group identifier is defined as a NAI-encoded multicast link-layer address in the case L2 communication is used, a NAI-encoded IP address (IP4_ADDR or IP6_ADDR) in case L3 communication is used or any other NAI that is not already used as an MIHF identifier. MIHFs and MIH Users that use MIH group identifiers shall maintain a list of MIH group identifiers allocated via MIH group manipulation primitives in order to distinguish them from MIHF identifiers.”
When an MIH protocol message with zero length MIHF broadcast ID is transmitted over the L2 data plane, a group MAC address (01-80-C2-00-00-0E) shall be used (see IEEE P802.1aj/D2.2). The maximum length is 253 octets.

.0.10
.0.11
.0.12
.0.13
Data type for security
Insert new rows in Table F.24 as follows:
Table 25
Table 26
Table 27
Table 28
Table F.24—Data type for security
	Data type name
	Derived from
	Definition

	CREDENTIAL
	OCTET_STRING
	Provides a X.509 Certificate

	CERT_SERIAL_NUMBER
	OCTET_STRING
	Provides X.509 formatted certificate serial number which are unique by certificate authority.

	CERT_STATUS
	ENUMERATED
	This indicates the status of the certificate being pushed or revoked
0: Not Present – indicates that certificate is not present
1: Certificate Valid – indicates that certificate is present and that the associated public key is being used to verify signatures
2: Certificate Revoked
3: Certificate Expired
4: Verification Failed – indicates that the signature validation of the credential failed

	COMPLETE_SUBTREE
	LIST (GKB_INDEX)
	The data type for the complete subtree part of a GKB. See 9.4.2.1 for the details.

	ENCRYPTED_KEY
	OCTET(16)
	This is the base data type for GROUP_KEY_DATA. This store a key of 16 octets encrypted with an AES key of 16 octets.

	ID_TYPE
	ENUMERATED
	The type of security association.
0: TLS-generated;
1: EAP-generated
2: GKB-generated

	GKB_INDEX
	SEQUENCE(
 NODE_BIT_LENGTH,
 NODE_INDEX
)
	This is the base data type for COMPLETE_SUBTREE.

	GROUP_KEY_DATA
	LIST (ENCRYPTED_KEY)
	The data type for the key data part of a GKB. See 9.4.2.1 for the details.

	GROUP_KEY_UPDATE_FLAG
	ENUMERATED
	This indicates if the group key is to be updated
0: Key is not to be updated
1: Key is to be updated

	GROUP_MGT_ACTION
	ENUMERATED
	This indicates a manipulation command.
0: Join the group.
1: Leave the group.

	GROUP_STATUS
	ENUMERATED
	This indicates a status of group manipulation command.
0: Join operation successful
1: Unauthorized to join the group
2: Leave operation successful
3: Unchanged

	MIH_SEC_CAP
	SEQUENCE(
TLS_CAP,
EAP_CAP,
MULTICAST_CAP,
)
	Represents the MIH security capabilities.

	MULTICAST_CAP
	UNSIGNED_INT(2)
	A multicast ciphersuite. Available multicast ciphersuites are defined in 9.4.6.

	NODE_BIT_LENGTH
	UNSIGNED_INT(1)
	This stores the bit length of the following NODE_INDEX.

	NODE_INDEX
	CHOICE (
 UNSIGNED_INT(1),
 UNSIGNED_INT(2),
 UNSIGNED_INT(3),
 UNSIGNED_INT(4)
)
	This stores the index of a node of the binary tree. See 9.4.2.1 for the details.

	RESPONSE_FLAG
	ENUMERATED
	This indicates if an answer is required
0: No response is needed
1: Response is needed

	SIGNATURE
	OCTET_STRING
	A digital signature data.

	SUBGROUP_RANGE
	CHOICE(
 SEQUENCE(
 UNSIGNED_INT(1),
 UNSIGNED_INT(1)),
SEQUENCE(
 UNSIGNED_INT(2),
 UNSIGNED_INT(2)),
SEQUENCE(
 UNSIGNED_INT(3),
 UNSIGNED_INT(3)),
SEQUENCE(
 UNSIGNED_INT(4),
 UNSIGNED_INT(4)))
	A range of valid leaf identifiers in a complete subtree of a GKB. The first integer indicates the lowest value of the range. The second integer indicates the highest value of the range.

	VERIFY_GROUP_KEY
	SEQUENCE (
 OCTETS(16),
 OCTETS(16)
)
	The first OCTET(16) is arbitrary data, which is an input message to AES-CMAC (defined in RFC-4493). The second OCTET(16) is the MAC value for the first OCTET(16) to be verified.

1.
(normative)
MIH protocol message code assignments
Modify Table L.1 as follows:	Comment by Michelle Turner: The editorial instructions are not clear.
Table L.1 —AID assignment
	MIH messages
	AID

	MIH messages for Service Management

	MIH_Configuration_Update
	10

	MIH_MN_Group_Manipulate
	11

	MIH_Net_Group_Manipulate
	12

	MIH_Pull_Credential
	13

	MIH_Push_Credential
	14

	MIH_Revoke_Credential
	15

Modify Table L.2 as follows:	Comment by Michelle Turner: Same as note above.
Table L.2 —Type values for TLV encoding
	TLV type name	Comment by asd: Renumber

	TLV type value
	Data Type

	Aux Data
	79
	OCTET_STRING

	Configuration Data
	80
	OCTET_STRING

	Credential Revocation Signature
	81
	SIGNATURE

	Credential
	82
	CREDENTIAL

	Credential Serial Number
	83
	CERT_SERIAL_NUMBER

	Credential Status
	84
	CERT_STATUS

	Complete Subtree
	85
	COMPLETE_SUBTREE

	Encrypted Credential
	86
	ENCRYPTED_KEY

	Group Action
	87
	GROUP_MGT_ACTION

	Group Identifier
	88
	MIHF_ID

	Group Key Data
	89
	GROUP_KEY_DATA

	Group_Status
	90
	GROUP_STATUS

	Multicast Address
	91
	TRANSPORT_ADDRESS

	Multicast Ciphersuite
	92
	MULTICAST_CAP

	Multicast Link Action List
	93
	LIST(MULTICAST_ACTION_REQ)

	Multicast Link Identifier
	94
	NET_TYPE_INC

	Response Flag
	95
	RESPONSE_FLAG

	Sequence Number
	96
	OCTET_STRING

	Signature
	97
	SIGNATURE

	Subgroup Range
	98
	SUBGROUP_RANGE

	Verify Group Key
	99
	VERIFY_GROUP_KEY

1.
(informative)
GKB toy example	Comment by Michelle Turner: What is being done here, is this a new
Annex? If so please add the appropriate editorial instructions.
An example is introduced to explain the basic principle of GKB and how to make a GKB. Consider a binary tree of Depth 4. The nodes other than the root node are labeled ‘0’, ‘1’, ‘00’, ‘01’, ‘10’, ‘11’, …, ‘0000’, ‘1111’, up to down and left to right. (See Figure U.1).
The label is sometimes called Node Index. A Node Index assigned to a leaf is especially called Leaf Number. Each node is assigned a key: k(0), k(00), k(01), …, k(0000), k(0001), …, k(1110), k(1111). Let the keys be called Node Keys. An MN is associated with a unique leaf. Thus, sixteen MNs are associated with the leaves of the tree: Call them ‘MN0’, ‘MN1’, …, ‘MN15’, left to right. Each MN is assigned a set of pairs of a Node Index and a Node Key, which is called Device Key: An MN is assigned the pairs along the path that is descending from the root to the leaf associated with the MN. For instance, MN3 is assigned the following Device Key: {(0, k(0)), (00, k(00)), (001, k(001)), (0011, k(0011))}.

[bookmark: _Ref355776030]
Figure U.1— An Example Tree

A set of MNs is called group if and only if they share an MIHF Group ID and a group key. At first, make all the sixteen MNs constitute one group, say, GA. Then, make the GKB such that {{0, 1}, {<k(0)>[KG], <k(1)>[KG]}}, where KG is the group key for the group GA and <k>[D] denotes data D encrypted by a key k. {0, 1} is the complete subtree part of the GKB and {<k(0)>[KG], <k(1)>[KG]} is the group key data part. Check if all the MNs can share the group key. Any Device Key has one of the Node Keys: k(0) or k(1). Therefore, any MN can decrypt the preceding GKB to derive the group key KG. The group key is shared by all the MNs as expected.

Let MN1, MN4 and MN5 be removed from the group GA: Then the GKB will cover {MN0, MN2, MN3, MN6, …, MN16}. The GKB required for this is as follows:
GKB1 = {{1, 001, 011, 0000}, {<k(1)>[KGA], <k(001)>[KGA], <k(011)>[KGA], <k(0000)>[KGA]}},
where KGA is a new group key for the group GA. Check that any MN in GA can decrypt one of the elements of the group key data part and derive the group key. Also note that the complete subtree part of the GKB is ordered in the ascending dictionary order defined in 9.4.2.1. And, let GB be a group which is composed of MN3, MN4, MN8, MN9 and MN12, MN13, MN14 and MN15. The GKB to create group GB is the following GKB2:
GKB2 = {{11, 100, 0011, 0100}, {<k(11)>[KGB], <k(100)>[KGB], <k(0011)>[KGB], <k(0100)>[KGB]}},
where KGB is a group key for the group GB. Note that multiple groups with their own group keys may exist on one tree. An MN with one Device Key Set may belong to multiple groups at the same time.

It may be that the size of a GKB is too large for an MIH service specific TLV. The followings show one example of the ways how a GKB is divided into smaller pieces: Suppose here that the capacity of the TLV allows only two encrypted group keys. GKB2 can be divided into two GKBs: GKB2-1 and GKB2-2 such that GKB2-1 = {{11, 100}, {<k(11)>[KGB], <k(100)>[KGB]}} and GKB2-2 = {{0011, 0100}, {<k(0011)>[KGB], <k(0100)>[KGB]}}. Suppose that GKB2-2 arrives at MN15 after GKB2-1 does first. MN15 joins in the group GB when it receives GKB2-1. Then, MN15 leaves GB receiving GKB2-2 because it has no key to successfully decapsulate GKB2-2. This is clearly not the expected behavior for MN15. This problem can be avoided if the Subgroup Ranges of the GKBs are appropriately set. Let GKB2-1 = {R1, {11, 100}, {<k(11)>[KGB], <k(100)>[KGB]}} and GKB2-2 = {R2, {0011, 0100}, {<k(0011)>[KGB], <k(0100)>[KGB]}}, where R1 = [8, 15] and R2 = [0, 7]. The Leaf Number of MN15 is 15, which means that it is in the range of R1. Thus, it processes GKB2-1 and derives the group key. MN15, however, does not process GKB2-2 because it is out of the range of R2. Thus, MN15 joins in GB and stays there as expected.

There is a version of GKB without a group key data part, which are used when confidentiality is not necessary for group commands. Creation of such a GKB is the same. For instance, just remove the GroupKeyData field from a GKB having a group key data part.

image1.emf
INIT

TransactionStatus = ONGOING;

(Opcode,MID,TID)=MsgIn.(OPCODE,MID,TID);

TransactionStopWhen=TransactionLifetime;

IsMulticast=IsMulticast(MsgIn);

PeerMihfID=SrcMIHF_ID(MsgIn);

MyMihfID=DstMIHF_ID(MsgIn);

StartAckResponder=(MsgIn.ACK-Req == 1 ? TRUE : FALSE) && !IsMulticast;

MsgOutAvail=Process(MsgIn);

MsgInAvail=FALSE;

ResponseSent=FALSE;

WAIT_RESPONSE_PRMFAILURE

TransactionStatus=FAILURE;

SEND_RESPONSE

StartAckRequestor=(MsgOut.ACK-Req == 1 ? TRUE : FALSE);

AckRequestorStatus=ONGOING;

Transmit(MsgOut);

ResponseSent=TRUE;

SUCCESS

TransactionStatus=SUCCESS;

MsgInAvail

Opcode == Indication ||

Opcode == Response

Opcode == Request

IsMulticast

MsgOutAvail &&

(!StartAckResponder ||

MsgOut_ACK-Rsp == 1)

ResponseSent &&

TransactionStopWhen == 0

(!StartAckRequestor || AckRequestorStatus == SUCCESS)&& !IsMulticast

!ResponseSent &&

TransactionStopWhen == 0

AckRequestorStatus == FAILURE

&& !IsMulticast

image2.emf
MIH header

(S=1)

Source MIHF

Identifier TLV

Destination MIHF

Identifier TLV

SAID TLV

Security TLV or Service

Specific TLVs

Signature TLV

image3.emf
MIH Service Specific TLVs

Protection through GKB-generated SA

MIH header

(S=1)

Source MIHF

Identifier TLV

Destination MIHF

Identifier TLV

SAID TLV

(ID_TYPE=2)

Security TLVSignature TLV

image4.emf
Command Center

PoS

MIH User

MIHF

Client

MN

MIH User

MIHF

MIH_Net_Group_Manipulate.request

MIH_Net_Group_Manipulate indication

MIH_Net_Group_Manipulate.indication

image5.emf
0Root Node10000000110101Depth = 3

image6.emf
MGK

K

MIGIKMIGMEKMIGEK

MIGSK

image7.png

image8.emf
Command Center

PoS

MIH User

MIHF

Client

MN

MIH User

MIHF

MIH_Configuration_Update.request

MIH_Configuration_Update indication

MIH_Configuration_Update.indication

image9.emf
0Root Node10000000110101Depth = 400000001010110001001110111101111

Microsoft_PowerPoint__________1.pptx

0

Root Node

1

00

000

001

10

101

Depth = 4

0000

0001

0101

1000

1001

1101

1110

1111

