
Introduction

1.1 Scope

 The scope of this document is to describe the solution based on EAP proposed in 21-10-0049-03-0sec-proposal-summary. More concretely, working item #2 option III.

1.2 Purpose

The purpose of this document is to describe the proposed approach for service authentication based on EAP and how this could be used to protect the MIH protocol. Moreover, this proposal assist working item #1 in order to perform the key distribution mechanisms. In particular, this document addresses the following functionalities:

	Work Item #
	Supported Functionality
	Note

	2
	Access Authentication
	Yes

	2
	MIH-Specific Authentication
	Yes

	2
	Key Hierarchy and Derivation
	Yes

	2
	MIH-Specific Protection
	Yes

	2
	Visited Domain Access
	No*

Note*: Does not mention explicitly but the proposed approach may be applicable

1.3 Terminologies

EAP: Extensible Authentication Protocol

PoS: Point of Service

PoA: Point of Attachment

AS: Authentication Server

MN: Mobile Node

1.4 Definitions

MIH Service Authentication : Authentication to enable MIH services provided by PoS. In the context of 802.21a they could be key distribution services for working item #1. It also allows to protect MIH signalling as a consequence of a successful authentication.

PoS: is an entity that interacts with PoAs and facilitates service authentication of other entities attached to the other end of a link of a PoA.

MIH Service AS: It is a backend authentication server for the MIH service authentication.

1.5 References

[RFC 3748] H. Levkowetz, Ed. and et al, “Extensible Authentication Protocol (EAP)”

[RFC5247] B. Aboba, D. Simon and P. Enoren, “Extensible Authentication Protocol (EAP) Key Management Framework”

[RFC5246] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2”
[IEEE802.21a] Subir Das, Ashutosh Dutta , Toshikazu Kodama, “Proactive Authentication and MIH security”, 21-09-0102-01-0Sec.
[RFC5191] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig and A. Yegin, “Protocol for Carrying Authentication for Network Access (PANA)”

[RFC5873] Y. Ohba, A. Yegin, “Pre-Authentication Support for the Protocol for Carrying Authentication for Network Access (PANA)”

2 EAP for MIH Service Authentication (Option III)

The main aim of this section is to provide a description about how EAP could be used, in the scope of IEEE 802.21a work item #2, to allow the MN gains MIH service from a PoS and protect the subsequent MIH messages specified in IEEE 802.21a work item #1. Two main objectives must be achieved. First one, to authenticate and authorize the MN, against a Service AS, to use the available services provided by the PoS; and the second one, to use the key material generated by the EAP authentication to protect the MIH signaling. The next figure shows the general process.

[image: image1.png]
Figure 1 General process

2.1 Media Independent Authentication process

In this section we describe how the Media Independent Authentication using EAP is performed. Is worth noting that MIH is acting as a EAP lower layer so, EAP messages are going to be transported inside MIH messages (this extension must be added to the MIH protocol, if it is not available).

Before providing any service to the MN, a media independent authentication must be performed in order to authenticate and authorize the credentials provided by the MN. Therefore, in order to achieve this objective, MN credentials and authentication servers (AS) are needed in the architecture. To clarify, the next figure depicts a general message flow needed to achieve a Media independent authentication based on EAP.

[image: image2.png]
Figure 2 General message flow
We divide Media Independent Authentication in four phases, which are:

· Negotiation Phase. In this phase, both the MN and the PoS exchange unprotected MIH messages in order to agree on the services which want to be accessed by the MN. PoS provide a list of the available services and the MN chooses, for example, by priority the service or services that it supports.

· Media Independent Service Authentication phase. The MN authenticates against a PoS (is acting as EAP authenticator) using a Service AS. To achieve this, EAP is transported by MIH protocol to the current PoS which manage the MN’s communications. In order to carry out the authentication the PoS may need a backed authentication server (Service AS, e.g. AAA server) to verify the MN’s credentials. After performing the authentication key material will be shared between the MN and the PoS. So, both at MN’s and PoS’ MIH layer key material is exported and it could be used to protect the rest of the communication (how to MIH is protected is explained in section 2.3). In order to preserve the security of the exported key material, the exported MSK is used as root key to derive new session keys which are use to protect the MIH packets. How this key hierarchy is carried out is described in section 2.3.

· Service Access phase. At this point, the MN is authenticated and authorized to use the MIH services, agreed and provided by the PoS. The authentication session is already established and the MIH protocol is protected by using the key material obtained in the Media Independent Service Authentication Phase. This phase is related with section 2.3 for key derivation and section 2.4 for protecting MIH protocol.

· Finalization phase. When the MN and the PoS desire to finish the authentication session in order to release resources and the MN’ state related with the provided services.

2.2 Internal architecture

In this section we describe the architecture needed to use the key material generated by the EAP authentication by the MIH layer in order to provide MIH packet protection.

To be available to use the key material provided by EAP from a layer which wants protection, this layer must be a lower layer of the EAP protocol, as specified in RFC5247. Therefore, to be available to protect MIH packets, MIH must act as EAP lower layer. In that sense, when the EAP authentication finish the key material (MSK) obtained throw the EAP authentication is exported to the MIH lower layer and using this key material the MIH layer could protect its packets.

[image: image3.png]
Figure 3 General architecture

2.3 Key Hierarchy

As we commented in the previous section, in Media Independent Authentication phase, a key hierarchy is needed in order to preserve MSK security. The proposed hierarchy is showed in the next figure.

[image: image4.png]
Figure 4 Key hierarchy proposed

Using the MSK or rMSK provided by the EAP authentication a MI-PMK is derived in order to preserve the key material security. Using this MI-PMK as root key, other session keys are derived: PAIK, this key is used to provide integrity protection to the MIH protocol. PAEK, used to provide confidentiality to the MIH protocol by encrypting MIH data. This key hierarchy has been based on the key hierarchy described in [IEEE802.21a].

The key generation algorithm is based on the following functions:

KDF : Key derivation function specified in RFC5246. The default KDF (i.e., IKEv2 PRF+ with based on HMAC-SHA-256) is used unless explicitly negotiated between MN and PoS. PRF+ is defined in RFC4306 and it is calculated as follows:

PRF+ (K,S) = T1 | T2 | T3 | T4 | ...

 Where:

 ‘|’ means concatenation

 T1 = PRF (K, S | 0x01)

 T2 = PRF (K, T1 | S | 0x02)

 T3 = PRF (K, T2 | S | 0x03)

 T4 = PRF (K, T3 | S | 0x04)

 …

The key hierarchy key hierarchy is derived in the following way:

· MI-PMK = KDF(MK, “MI-PMK” | RAND_P | RAND_A | length)

· Length of MI-PMK is 64 octets

· MK (Master Key): MSK or rMSK

· RAND_P: A random number generated by peer

· RAND_A: A random number generated by authenticator

· PAIK = KDF(MI-PMK, “integrity key” | RAND_P | RAND_A | length)

· Length of PAIK is 64 octets

· MI-PMK (Master Key)

· RAND_P: A random number generated by peer

· RAND_A: A random number generated by authenticator

· PAEK = KDF(MI-PMK, “encryption key” | RAND_P | RAND_A | length)

· Length of PAEK is 64 octets

· MI-PMK (Master Key)

· RAND_P: A random number generated by peer

· RAND_A: A random number generated by authenticator

2.4 MIH Packet Protection

In this section we propose the MIH protocol message security. As we commented before, this is carried out in the Authenticated/Authorized phase. Once authentication process is finish, MIH layer has key material which could be used to protect MIH messages. To perform this, using the MSK as root key and using the mechanisms described in the previous section, the MIH protocol could be protected, by means of encrypting the MIH data using PAEK and providing integrity protection using PAIK. Next figure depicts how to protect the MIH protocol, MIC represents Message Integrity Code needed to provide integrity protection.

[image: image5.png]
Figure 5 MIH packet protection

MIH protocol is protected by the MIH layer itself. Therefore, MIH protocol security does not depend on others layers or mechanisms to be protected.

2.5 Extensions of IEEE802.21 Specification

2.5.1 New Commands

	Primitives
	Service Category
	Description

	MIH_Start_Auth
	Command
	Initiates the authentication process with a target PoS.

	Extension: MIH_Capability_Discover
	Command
	To carry out the negotiation process.

	MIH_Auth
	Command
	To perform the authentication process.

	MIH_Finish_Auth
	Command
	For finishing the current secured session.

2.5.1.1 MIH_Start_Auth.request

2.5.1.1.1 Function

This primitive is used by the MIHF (MN side) to initiate the authentication process with a candidate PoS.

2.5.1.1.2 Semantics of service primitive

MIH_Start_Auth.request (

DestinationIdentifier,

SourceIdentifier

)
	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

2.5.1.1.3 When generated

This primitive is generated by the MN MIHF in order to start the authentication process to authenticate with the candidate PoS. This primitive is received by a remote MIHF.

2.5.1.1.4 Effect on receipt

The remote MIHF must generate a corresponding MIH_Auth_Neg request message which starts the negotiation of the authentication parameters needed.

2.5.1.2 Extension: MIH_Capability_Discover

2.5.1.2.1 Function

This primitive is extended to carry out the negotiation between the MN and the candidate PoS. This primitive is used by a Candidate PoS to show its current security capabilities.

2.5.1.2.2 Extension in the semantics of service primitive

DestinationIdentifier,

SourceIdentifier,

Session,

KeyDistributionMechanism,

Integrity-Algorithm,

Cipher-Algorithm,

KDF-Algorithm,

Cipher-Required,

Identity-opt

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	KeyDistributionMechanismList
	KEY_DIST_LIST
	Identifies the available key distribution mechanism.

	Integrity-Algorithm-List
	INT_ALG_LIST
	Identifies the different integrity algorithms available.

	Cipher-Algorithm-List
	CIPH_ALG_LIST
	Identifies the different encryption algorithms available.

	KDF-Algorithm-List
	KDF_ALG_LIST
	Identifies the different KDF algorithm available.

	Cipher-Required
	BOOL
	Use to indicate if cipher is going to be used

	Identity-opt
	ID_OPT
	Provides a new identity to be used for optimization purposes.

2.5.1.3 MIH_Auth.request

2.5.1.3.1 Function

This primitive is used to perform the authentication process.

2.5.1.3.2 Semantics of service primitive

MIH_Auth.request (

DestinationIdentifier,

SourceIdentifier,

Session,

Nonce,

AuthenticationInformation

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	Nonce
	NONCE_VALUE
	Represent a random value.

	AuthenticationInformation
	AUTH_INF_VALUE
	The authentication information used to authenticate a MN.

*Only included the first time MIH_Auth.request is sent.

2.5.1.3.3 When generated

This primitive is generated after receive a MIH_Auth_Neg response or a MIH_Auth indication. This primitive requests the required information to authenticate a MN.

2.5.1.3.4 Effect on receipt

The MN must generate a MIH_Auth response in order to provide the required information if it is required.

2.5.1.4 MIH_Auth.indication

2.5.1.4.1 Function

This primitive is used by an MIHF to indicate to an MIH user that an MIH_Auth request or a MIH_Auth response was received from a remote MIHF.
2.5.1.4.2 Semantics of service primitive

MIH_Auth.indication (

AuthenticationInformation

)

	Name
	Data type
	Description

	AuthenticationInformation
	AUTH_INF_VALUE
	The authentication information used to authenticate a MN.

2.5.1.4.3 When generated

This primitive is generated after receive a MIH_Auth response. This primitive requests the required information to authenticate a MN.

2.5.1.4.4 Effect on receipt

An MIH user receiving this indication shall invoke an MIH_Auth response in order to provide authentication information.

2.5.1.5 MIH_Auth.response

2.5.1.5.1 Function

This primitive is used to perform the authentication process.

2.5.1.5.2 Semantics of service primitive

MIH_Auth.response (

DestinationIdentifier,

SourceIdentifier,

Session,

Nonce,

AuthenticationInformation

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	*Nonce
	NONCE_VALUE
	Represent a random value.

	AuthenticationInformation
	AUTH_INF_VALUE
	The authentication information used to authenticate a MN.

*Only included the first time MIH_Auth.response is sent.

2.5.1.5.3 When generated

This primitive is generated after receive a MIH_Auth indication if it is required. This primitive provide the required information to authenticate a MN.

2.5.1.5.4 Effect on receipt

The MN must generate a MIH_Auth request in order to request required information.

2.5.1.6 MIH_Finish_Auth.request

2.5.1.6.1 Function

This primitive is used to request the finalization of the established security session.

2.5.1.6.2 Semantics of service primitive

MIH_Finish_Auth.request (

DestinationIdentifier,

SourceIdentifier,

Session,

IntegrityAuth

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	IntegrityAuth
	INTREGRITY_DATA
	This contains the message integrity data.

2.5.1.6.3 When generated

This primitive is generated by a MIHF to finalize the current security session.

2.5.1.6.4 Effect on receipt

The MIHF must generate a MIH_Auth confirm in order to confirm the session finalization.

2.5.1.7 MIH_Finish_Auth.response

2.5.1.7.1 Function

This primitive is used to confirm from the remote MIHF that the authentication session has been closed.

2.5.1.7.2 Semantics of service primitive

MIH_Finish_Auth.response (

DestinationIdentifier,

SourceIdentifier,

Session,

IntegrityAuth

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	IntegrityAuth
	INTREGRITY_DATA
	This contains the message integrity data.

2.5.1.7.3 When generated

This primitive is generated by a remote MIHF after receiving a MIH_Finish_Auth request.

2.5.1.7.4 Effect on receipt

The MIHF must generate a MIH_Auth confirm in order to confirm the session finalization.

2.5.1.8 MIH_Finish_Auth.confirm

2.5.1.8.1 Function

This primitive is used to confirm the finalization of the established security session.

2.5.1.8.2 Semantics of service primitive

MIH_Finish_Auth.confirm (

SourceIdentifier,

Session

)

	Name
	Data type
	Description

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

2.5.1.8.3 When generated

This primitive is generated by a MIHF to finalize the current security session.

2.5.1.8.4 Effect on receipt

The security session finish.

2.5.2 MIH Protocol Extensions

2.5.2.1 MIH_Start_Auth.request

	MIH Header Fields (SID = 2, Opcode = 1, AID = XX-1)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

2.5.2.2 MIH_Auth.request
	MIH Header Fields (SID = 2, Opcode = 1, AID = XX-1)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

	Nonce

(Nonce TLV)

	AuthenticationInformation

(Authentication Information TLV)

2.5.2.3 MIH_Auth.indication
	MIH Header Fields (SID = 2, Opcode = 3, AID = XX-2)

	AuthenticationInformation

(Authentication Information TLV)

2.5.2.4 MIH_Auth.response
	MIH Header Fields (SID = 2, Opcode = 3, AID = XX-3)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

	Nonce

(Nonce TLV)

	AuthenticationInformation

(Authentication Information TLV)

2.5.2.5 MIH_Finish_Auth.request
	MIH Header Fields (SID = 2, Opcode = 1, AID = XX-1)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

2.5.2.6 MIH_Finish_Auth.response

	MIH Header Fields (SID = 2, Opcode = 2, AID = XX-2)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

2.5.3 Message flows

This section shows the message flow of the different phases explained using the MIH commands defined before.
2.5.3.1 Negotiation phase

[image: image6.png]
Figure 6. Negotiation phase messages

2.5.3.2 Authentication phase

[image: image7.png]
Figure 7 authentication phase messages

Some clarifications:

· AAA_SAP_EVENT: Represent how the corresponding MIH User communicates with the AAA client in order to proceed with the service AS.

· AAA-REQ/RES: Represent the communication established with the Service AS.

2.5.3.3 Finalization phase

[image: image8.png]
Figure 8 Finalization phase messages
3 Bundle option with WI#1 option B

3.1 Key Hierarchy extension

Regarding the key hierarchy proposed for Media Independent Authentication phase, needed in order to preserve MSK security, for the bundle option in WI#1 option B we propose to extend the existing hierarchy to provide a MS-PMK.

[image: image9.png]
Figure 9 Key hierarchy proposed

This MS-PMK is used as media-specific pre-shared key to assist the key distribution methods in working item #1. This key hierarchy has been based on the key hierarchy described in [IEEE802.21a].

Following the same aspects as in the previous section, the MS-PMK will be derived as follows:

MS-PMK =KDF(MI-PMK, “MS-PMK” | MN_LINK_ID | POA_LINK_ID | length)

· Length of MS_PMK depends on each media. In the case of 802.11, Length=32.

· MN_LINK_ID: Link identifier of MN, encoded as LINK_ID data type

· POA_LINK_ID: Link identifier of media-specific authenticator, encoded as LINK_ID data type

3.2 Key Distribution Mechanisms

The described solution in this document as well as provide key material to protect the MIH protocol, the new key hierarchy generated could be use to assist the key distribution to operated in the context of IEEE 802.21a working item #1 to reduce the media-specific network access time after a handoff. In that sense, this solution can assist the following key distribution mechanisms:

· Push key distribution. Its objective is to push a key into the target PoA by the PoS which controls that PoA. The key to be pushed could be derived from key hierarchy (see section 2.3) since the PoS and the MN have the necessary key material. To perform the installation the MN uses the MIH protocol, which at this point could be protected (see section 2.4), to notify the PoS to start the key installation.

· Reactive pull key distribution. It is performed after the MN moves to the target PoA. It assumes that both the MN and the PoS shares a symmetric key, in that way, the symmetric key is derived from the key hierarchy shared between the MN and the PoS, section 3.1. Therefore, the key distribution to the target PoA could be performed, for example, executing an EAP authentication where the PoS act as a local AAA server. The general message flow is depicted in the next figure.

· Proactive pull key distribution. This mechanism allows the MN to perform a pro-actively media specific authentication with the target PoA without being directly connected to the wireless link of the target PoA by means sending level two frames throw the PoS to the target PoA. As in reactive pull key distribution, the key hierarchy shared between the MN and the PoS could be used in order to derive a shared key to be used in the authentication process, where the PoS will be acting as a local AAA.

3.3 Bundle option: Extensions of IEEE802.21 Specification

3.3.1 New commands

	Primitives
	Service Category
	Description

	MIH_Push_Key
	Command
	To perform the push key distribution mechanism

	MIH_Proact_Pull_key
	Command
	To perform the proactive pull key distribution mechanism.

3.3.1.1 MIH_Push_Key.request

3.3.1.1.1 Function

This primitive is used to request to a remote MIHF (PoS) to install a key in a target PoA.

3.3.1.1.2 Semantics of service primitive

MIH_Push_Key.request (

DestinationIdentifier,

SourceIdentifier,

Session,

PoAIndentifier,

IntegrityAuth

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	PoAIdentifier
	PoA_ID
	This identifies a PoA.

	IntegrityAuth
	INTREGRITY_DATA
	This contains the message integrity data.

3.3.1.1.3 When generated

This primitive is generated by an MIHF from the MN to request a remote MIHF, the Serving PoS, to install a key in a target PoA.

3.3.1.1.4 Effect on receipt

The remote MIHF must generate a MIH_Push_Key response in order to confirm that the key has been installed successful.

3.3.1.2 MIH_Push_Key.indication

3.3.1.2.1 Function

This primitive is used to send a key to the corresponding MIH User by a remote MIHF (PoS side).

3.3.1.2.2 Semantics of service primitive

MIH_Push_Key.indication (

MS-Key

)

	Name
	Data type
	Description

	MS-Key
	KEY
	Identifies a media specific key

3.3.1.2.3 When generated

This primitive is generated by a remote MIHF after receiving a MIH_Push_Key response to send a key to the corresponding MIH User.
3.3.1.2.4 Effect on receipt

A media specific key is delivered to the corresponding MIH User.
3.3.1.3 MIH_Push_Key.response

3.3.1.3.1 Function

This primitive is used to confirm that the key installation has been carried out.

3.3.1.3.2 Semantics of service primitive

MIH_Push_Key.response (

DestinationIdentifier,

SourceIdentifier,

Session,

PoAIndentifier,

IntegrityAuth

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	IntegrityAuth
	INTREGRITY_DATA
	This contains the message integrity data.

3.3.1.3.3 When generated

This primitive is generated by a remote MIHF after receiving a MIH_Push_Key request to confirm that a key installation has been performed.

3.3.1.3.4 Effect on receipt

The remote MIHF must generate a MIH_Push_Key confirm in order to confirm that the key has been installed successful.

3.3.1.4 MIH_Proact_Pull_key.request

3.3.1.4.1 Function

This primitive is used by the MN in order to request a key installation in a target PoA.

3.3.1.4.2 Semantics of service primitive

MIH_Proact_Pull_key.request (

DestinationIdentifier,

SourceIdentifier,

Session,

PoAIndentifier,

ProactivePullInformation,

IntegrityAuth

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	PoAIdentifier
	PoA_ID
	This identifies a PoA.

	ProactivePullInformation
	PROACT_PULL_INF
	This contains specific data to carry out the key installation.

	IntegrityAuth
	INTREGRITY_DATA
	This contains the message integrity data.

3.3.1.4.3 When generated

This primitive is generated by the MN in order to perform a key installation in a target PoA through the Serving PoS.

3.3.1.4.4 Effect on receipt

The MN must generate a MIH_Proact_Pull response in order to provide the required information.

3.3.1.5 MIH_Proact_Pull_key.indication

3.3.1.5.1 Function

This primitive is used by the remote MIHF in order to notify the corresponding MIH user about the reception of a MIH_Proact_Pull request.

3.3.1.5.2 Semantics of service primitive

MIH_Proact_Pull_key.indication (

PoAIndentifier,

ProactivePullInformation,

)

	Name
	Data type
	Description

	PoAIdentifier
	PoA_ID
	This identifies a PoA.

	ProactivePullInformation
	PROACT_PULL_INF
	This contains specific data to carry out the key installation.

3.3.1.5.3 When generated

This primitive is generated by the MN in order to perform a key installation in a target PoA through the Serving PoS.

3.3.1.5.4 Effect on receipt

The MN must generate a MIH_Proact_Pull response in order to provide the required information to perform the key distribution.

3.3.1.6 MIH_Proact_Pull_key.response

3.3.1.6.1 Function

This primitive is used by the Serving PoS in order to carry out the key distribution.

3.3.1.6.2 Semantics of service primitive

MIH_Proact_Pull_key.response (

DestinationIdentifier,

SourceIdentifier,

Session,

PoAIndentifier,

ProactivePullInformation,

IntegrityAuth

)

	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	This identifies the local MIHF or a remote MIHF that will be the destination of this request.

	SourceIdentifier
	MIHF_ID
	This identifies the invoker of this primitive, which is a remote MIHF.

	Session
	SESSION_ID
	This identifies a security session.

	ProactivePullInformation
	PROACT_PULL_INF
	This contains specific data to carry out the key installation.

	IntegrityAuth
	INTREGRITY_DATA
	This contains the message integrity data.

3.3.1.6.3 When generated

This primitive is generated after receive a MIH_Proact_Pull indication. This primitive provide the required information to perform the key distribution.

3.3.1.6.4 Effect on receipt

The MN must generate a MIH_Proact_Pull request in order to provide the required information until the key distribution is completed.

3.3.2 Bundle option: MIH Protocol Extensions

3.3.2.1 MIH_Push_Key.request
	MIH Header Fields (SID = 2, Opcode = 1, AID = XX-1)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

	PoAIdentifier

(PoA Identifier TLV)

	IntegrityAuth

(Integrity Auth TLV)

3.3.2.2 MIH_Push_Key.indication

	MIH Header Fields (SID = 2, Opcode = 3, AID = XX-2)

	MS-Key

(Media Specific Key TLV)

3.3.2.3 MIH_Push_Key.response

	MIH Header Fields (SID = 2, Opcode = 2, AID = XX-3)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

	IntegrityAuth

(Integrity Auth TLV)

3.3.2.4 MIH_Proact_Pull_key.request
	MIH Header Fields (SID = 2, Opcode = 1, AID = XX-1)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

	PoAIdentifier

(PoA Identifier TLV)

	ProactivePullInformation

(Proactive Pull Information TLV)

	IntegrityAuth

(Integrity Auth TLV)

3.3.2.5 MIH_Proact_Pull_key.response
	MIH Header Fields (SID = 2, Opcode = 2, AID = XX-1)

	Destination Identifier = receiving MIHF ID
(Destination MIHF ID TLV)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Session

(Session TLV)

	ProactivePullInformation

(Proactive Pull Information TLV)

	IntegrityAuth

(Integrity Auth TLV)

3.3.3 Bundle option: Message flow

3.3.3.1 Push key distribution

[image: image10.png]
Figure 8 Push key distribution message

Some clarifications:

· PUSH_PROTOCOL: Represents the protocol used in push key distribution mechanism to install the key in the target PoA by the PoS (e.g. SNMP).

· KEY-REQ/RES: used to request and get a key from the MIHF.
· SET_KEY: To install a key in the MAC layer.
3.3.3.2 Proactive Pull key distribution

[image: image11.png]
Figure 9 Proactive pull key distribution messages
Some clarifications:

· GET_L2_REQ/RES: Used to get the corresponding L2 frames to perform a proactive authentication with a target PoA.

· PROTO: it represents the protocol needed between the PoS and the PoA, in the proactive pull key distribution mechanism, to send wireless level two frames over a wired environment.
3.3.3.3 Optimized pull key distribution
[image: image12.png]
Figure 10 Optimized proactive pull key distribution messages

Some clarifications:

· GET_L2_REQ/RES: Used to get the corresponding L2 frames to perform a proactive authentication with a target PoA.

· KEY-REQ/RES: used to request and get a key from the MIHF.

· AAA_SAP_KEY_INSTALL: Represents how the corresponding MIH user communicates with the AAA server in order to install a key for the corresponding MN.

· PROTO: it represents the protocol needed between the PoS and the PoA, in the proactive pull key distribution mechanism, to send wireless level two frames over a wired environment.
3.3.3.4 Reactive pull key distribution

[image: image13.png]
Figure 11 Reactive pull key distribution messages

Some clarifications:

· GET_L2_REQ/RES: Used to get the corresponding L2 frames to perform a proactive authentication with a target PoA.

· KEY-REQ/RES: used to request and get a key from the MIHF.

· AAA_SAP_KEY_INSTALL: Represents how the corresponding MIH user communicates with the AAA server in order to install a key for the corresponding MN.

· SET_KEY: To install a key in the MAC layer.

4 Alternatives to transport EAP

In this section we analyze PANA (RFC 5191) as alternative to transport EAP between the MN and the PoA in order to authenticate the MN. Using PANA as protocol the actual architecture would be updated as follows: MN would be acting as PaC (PANA Client) and PoS as PAA (PANA Authentication Agent) and PoA as EP (Enforcement Point).

PANA is a protocol (RFC 5191) defined under the IETF and defines a network-layer transport for EAP. Moreover, it is a secure protocol where a security association is created after successfully completion of the EAP authentication creating a MSK. Using this cryptographic material protocol messages could be protected. Furthermore, PANA provides pre-authentication supports (RFC 5873) which allows a MN to establish a PANA session with a target PoS/PAA before to perform the movement. Therefore, PANA protocol provides all the mechanisms necessary to perform a secured seamless handover by the MN once a PANA session is established between the MN and its serving PoS (PAA).

As we explained in the previous sections, PANA achieves the same objectives as MIH protocol (protocol security and seamless handover). But PANA has some lacks which are inherent to its definition which provokes that it could not be used instead of MIH protocol. We have identified a main issue, this is, PANA is a network-layer protocol (it works under UDP) so, PANA assume that the MN has IP connectivity.

We can explain a scenario that must be taken into account shown in Figure 10. The MN is attached to a serving WiFi PoA in a domain. The MN is moving quickly and through the information server knows that there are a WiFi PoA and WiMAX PoA, which belongs to another domain. The WiFi PoA is reachable before the WiMAX PoA, but for network selection reasons (e.g. MN is moving quickly), a pre-authentication with the WiMAX PoA must be performed due to WiMAX provide a better wideband. So, the WiFi PoA could be use as a bridge to deliver the WiMAX link-layer frames to the WiMAX PoA. This can be performed using MIH protocol transported at link layer level; due to the MN has not IP connectivity with the (bridge) WiFi PoA.

[image: image14.png]
Figure 13 scenario using a PoA as a bridge

Another issue, even though this is not a limitation, we can anticipate that in terms of deployment is easier to convince a vendor to implement IEEE technologies than new IP layer protocols.
5 Conclusions

This proposal describes how to carry out a service authentication to access to a set of services. EAP is used to achieve the aim of authenticate the MN to satisfy the requirements of IEEE 802.21a work item #2. Moreover, once the authentication is performed the key material obtained after the service authentication is used to protect the MIH layer. Therefore, EAP provides the flexibility to avoid the need of performing subsequence authentication while the key material exported still valid.

In summary, using EAP and a new key hierarchy derived from the key material provided by EAP (to preserve MSK security) this proposal could protect the MIH protocol on MIH layer without other dependencies.

According to this proposal, we have analyzed the use of PANA instead of MIH as protocol between MN and PoS. Summarizing, PANA does not provide a completely solution to inter-technology handovers due to IP connectivity is needed beforehand, PANA lacks in scenarios where perform a handover using a link-layers protocol is useful. In other hand, MIH is a protocol more general allowing handovers between different distribution systems and it could be used to perform handover inter-technology at link layer level.
Project�
IEEE 802.21a

<https://mentor.ieee.org/802.21>�
�
Title�
Option III: EAP to conduct service authentication and MIH packet protection �
�
DCN�
21-10-0078-02-0sec�
�
Date Submitted�
�
�
Source(s)�
Fernando Bernal-Hidalgo (University of Murcia), Rafael Marin-Lopez (University of Murcia)�
�
Re:�
�
�
Abstract�
This document elaborates 21-10-0049-03-0Sec proposal: Proposal summary�
�
Purpose�
This document proposes a service authentication based on EAP and how this authentication could be used to protect the MIH protocol.�
�
Notice�
This document has been prepared to assist the IEEE 802.21 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.�
�
Release�
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that IEEE 802.21 may make this contribution public.�
�
Patent Policy�
The contributor is familiar with IEEE patent policy, as stated in � HYPERLINK "http://standards.ieee.org/guides/opman/sect6.html" \l "6.3" \n _parent��Section 6 of the IEEE-SA Standards Board bylaws� <� HYPERLINK "http://127.0.0.1:4664/cache?event_id=757737&schema_id=1&s=5X0vID10lu_E6yrIkWkNd4Wz2H8&q=hancock" \n _parent��http://standards.ieee.org/guides/bylaws/sect6-7.html#6�> and in Understanding Patent Issues During IEEE Standards Development � HYPERLINK "http://standards.ieee.org/board/pat/faq.pdf" \n _parent��http://standards.ieee.org/board/pat/faq.pdf��
�

1

