	Project
	IEEE: 802.21 MIHO
<http://www.ieee802.org/21/>

	Title
	Comments #4155/4156/4158/4172/4177/4179/4243/4265/4269/4271/4447 - Issues with definition and usage of link parameters, link states, QoS parameters

	Date Submitted
	March 2007

	Source(s)
	Qiaobing Xie, Nada Golmie
	

	Re:
	IEEE 802.21 Session #19 in March 2007

	Abstract
	This discusses the lack of consistency and clarity in the draft on how to request and receiver link parameters and proposes fixes.

	Purpose
	Propose improvements to link parameters list encoding

	Notice
	This document has been prepared to assist the IEEE 802.21 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.21.

	Patent Policy
	The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual <http://standards.ieee.org/guides/opman/sect6.html#6.3> and in Understanding Patent Issues During IEEE Standards Development <http://standards.ieee.org/board/pat/guide.html>.

1. Problem Statement:

There are several comments related to the definition and usage of link/QoS parameters in LB#1c (comments #4155, 4156, 4158, 4172, 4177, 4179, 4243, 4265, 4269, 4271, 4447).

And currently we have the following definitions use link/QoS parameters list.

In IE definition:

- 6.4.5.2.6 Network QoS IE

In MIH_Link_SAP definition:

- 7.5.3 Link_Configure_Thresholds

- 7.5.9 Link_Parameters_Report.indication

- 7.5.14 Link_Get_Parameters

In MIH_SAP definition:

- 7.6.10 MIH_Link_Parameters_Report

- 7.6.15 MIH_Get_Status

- 7.6.17 MIH_Configure_Link

Even though we currently call them all "link/QoS parameters", we are in fact dealing with 3 types of very different entities:

1) Network QoS attributes (as used in Network QoS IE) - they are *static* values assigned to a network (not a link) by its owner. 802.21 only query those values through MIIS. They can NOT be set with any primitive.

2) Link parameter measurements (as used in Link_Configure_Thresholds) - they are *dynamic* values which change overtime. 802.21 primitive can set thresholds on them but NEVER set their values! An example is link SINR.

3) Link states (as used in MIH_Configure_Link) - they are configurable values associated with a link. An MIH User can set and get the values with primitives but it makes NO sense to set thresholds on them since they are NOT changing. An example is OPERATION_MODE.

This is likely be the source of confusion and results in problems within the definitions of primitives. We propose to name them separately (Network QoS Attributes, Link Parameter Measurements, Link States), encode them separately, and perhaps deal with them separately.

2. Proposed Remedy

1) Define a generic set of Network QoS Attributes for MIH IS – there seems to be no significant value for supporting network specific QoS attributes.

2) For each link type, define a set of link specific parameter measurements that we can set thresholds against and get report from. In addition, define a generic set of link parameter measurements that we can set thresholds against and get report from.

3) Define a generic set of link states that we can control (set and get) - many link states are generic already by their nature (OPERATION_MODE, BATTERY_LEVEL, etc.).

3. Link_Configure_Thresholds.request

This primitive deals with link parameter measurements. The following link parameter list structure is needed here:

	link Type (e.g., generic, .11, .16, 3GPP, 3GPP2)

	parameterType 1
	Init-threshold
	Rollback-threshod
	Exec-threshold

	parameterType 2
	Init-threshold
	Rollback-threshod
	Exec-threshold

	…
	…
	…
	…

	parameterType k
	Init-threshold
	Rollback-threshod
	Exec-threshold

Note 1: parameterTypes are defined for each linkType, i.e., under 802.16 link type, there are a list of 802.16 parameterTypes; under 3GPP/LTE link type, there are a separate list of LTE parameterTypes, and so on.

Note 2: We can only hope the type of the target link matches the link type indicated in the primitive.

Note 3: Should a report be sent when any one of the threshold is crossed? Or any two of the thresholds are croseed? …. Or all k thresholds are crossed?

Note 4: When 1 threshold is crossed, should the report contain value for all k parameters, or just the one parameter that triggered the report?

4. Link_Configure_Thresholds.confirm

This primitive deals with link parameter measurements. The following link parameter list structure is needed here:

	link Type (e.g., generic, .11, .16, 3GPP, 3GPP2)

	parameterType 1
	Status (success/failure)

	parameterType 2
	Status (success/failure)

	…
	…

	parameterType k
	Status (success/failure)

5. Link_Parameters_Report.indication

This primitive deals with link parameter measurements. The following link parameter list structure is needed here:

	link Type (e.g., generic, .11, .16, 3GPP, 3GPP2)

	parameterType 1
	Old value
	New value

	parameterType 2
	Old value
	New value

	…
	…
	…

	parameterType k
	Old value
	New value

Note 1: Where the old values come from? How “old” is defined?

6. Link_Get_Parameters.request

This primitive deals with link parameter measurements. The following link parameter list structure is needed here:

	link Type (e.g., generic, .11, .16, 3GPP, 3GPP2)

	A bitmap defined for the link type

(1 – the param is requested; 0 – the param is not requested)

Note 1: A bitmap should be defined for each link type (802.16, 3GPP, etc.).

7. Link_Get_Parameters.confirm

This primitive deals with link parameter measurements. The following link parameter list structure is needed here:

	link Type (e.g., generic, .11, .16, 3GPP, 3GPP2)

	parameterType 1
	Current value

	parameterType 2
	Current value

	…
	…

	parameterType k
	Current value

8. MIH_Link_Parameters_Report.indication

This primitive deals with link parameter measurements. The following link parameter list structure is needed here:

	link Type (e.g., generic, .11, .16, 3GPP, 3GPP2)

	parameterType 1
	Old value
	New value

	parameterType 2
	Old value
	New value

	…
	…
	…

	parameterType k
	Old value
	New value

Note 1: This should match the definition for Link_Parameters_Report.indication

Note 2: LinkType probably is not needed since Link ID will indicate the type of the link.

9. MIH_Get_Status.request

This primitive deals with both device states and link parameter measurements.

Issue 1: very overloaded – defined to get both device states and link parameter measurements of multiple links in a single invocation.

Issue 2: no way to specify which link parameter measurements are requested from which link.

Remedy: Use a separate bitmap for device states and separate bitmap for each link ID:

	Name
	Type
	Valid range
	Description

	Destination Identifier
	Identifier
	Valid MIHF identi fier
	The destination identifier of request or response. This is the identifier of local or peer MIHF.

	Device States Request
	BITMAP
	N/A
	List of device states being requested. The encoding uses a 16-bit bitmap as follows:

Bit #0: DEVICE_INFO

Bit# 1: OPERATION_MODE

Bit# 2: CHANNEL_ID

Bit# 3: BATTERY_LEVEL

Bit# 4-15: reserved

	List of Link Parameter Measurements Requests (optional)
	List
	N/A
	Each Link Parameter Measurements Request contains a Link Identifier and a link specific bitmap indicating the requested parameter measurements, as shown in the table below.

	Link ID 1
	parameterType bitmap 1

	Link ID 2
	parameterType bitmap 2

	…
	…

	Link ID k
	parameterType bitmap k

Note 1: A bitmap should be defined for each link type (generic, 802.16, 3GPP, etc.).

10. MIH_Get_Status.confirm

This primitive deals with both device states and link parameter measurements.
	Name
	Type
	Valid range
	Description

	Source Identifier
	Identifier
	Valid MIHF identifier
	This is the MIHF ID of local or peer MIH entity that this primitive is origi nated.

	Device States Response
	LIST
	N/A
	List of the requested Device State values

	List of Link Parameter Measurements Responses
	LIST
	N/A
	List of Link Parameter Measurements Responses.

	Status
	Enumerated
	Success

Error
	Status of operation

Note 1: Device States Response is a list of variable size values. Each value is only present when the corresponding bit was set in the request. How to best encode this?

Note 2: List of Link Parameter Measurements Responses is even more complicated to encode – it is 0 to k variable list; each contains a link ID to indicate the link, followed with a variable number of values of variable size. How to encode this?

11. MIH_Configure_Link.request

This primitive deals with both device states and link parameter thresholds.
Issue 1: need to define how to pass threshold settings in the syntax

Issue 2: To configure multiple links in a single invocation, need to include a list of link IDs

Issue 3: need to handle device states and link parameter thresholds separately in the syntax. How?

Issue 4: How to exactly encode all those variable number of lists of variable length with variable sized values??

12. MIH_Configure_Link.confirm

This primitive deals with both device states and link parameter thresholds.
We have to figure out a remedy for (11) above first before we can think about this one (should be easier to deal with since no variable sized values here).

