	Project
	IEEE 802.21 MIHO

<http://www.ieee802.org/21/>

	Title
	Introduction to 802.21 Information Service Using XML/RDF Technologies

	Date Submitted
	September 14th, 2005

	Source(s)
	
	

	Re:
	21-05-0347-00-0000-XML_IS_Introduction

	Abstract
	This document contains introductory description about IEEE 802.21 Information Service using XML/RDF technologies such as XML, RDF, RDF Schema, OWL and SPARQL. This document also provides analysis on applicability of the XML/RDF technologies to 802.21 Information Service based on qualitative comparison with other technologies.

	Purpose
	

	Notice
	This document has been prepared to assist the IEEE 802.21 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.21.

	Patent Policy
	The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual <http://standards.ieee.org/guides/opman/sect6.html#6.3> and in Understanding Patent Issues During IEEE Standards Development <http://standards.ieee.org/board/pat/guide.html>.

List of Contributors

	Name

	Company
	Address
	Phone
	Fax
	Email

	Kenichi Taniuchi Yoshihiro Ohba
	Toshiba America Research Inc.

	P.O. Box 429, Piscataway, NJ 08854-4151

	732-699-5305
	732-336-3578
	yohba@tari.toshiba.com

	Subir Das
	Telcordia Technologies Inc

	One Telcordia Drive, RRC-1B229, Piscataway, NJ 08854-4157

	732 699 2483
	732 336 7026
	subir@research.telcordia.com

1 Introduction
This document contains introductory description about IEEE 802.21 Information Service using XML/RDF technologies such as XML, RDF, RDF Schema, OWL and SPARQL. This document also provides analysis on applicability of the XML/RDF technologies to 802.21 Information Service based on qualitative comparison with other technologies.
2 Introduction to XML-related Technologies

2.1 XML (Extensible Markup Language)
XML is a simple, very flexible text format derived from SGML (Standard Generalized Markup Language) [2]. Both XML and SGML are “meta” languages (i.e., a language for creating other languages) that are used to create mark up languages, such as HTML. XML is less expensive to implement than SGML. Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in the exchange of a wide variety of data on the Web and elsewhere [1].
An example XML document is shown in Figure 1.

[image: image1]
Figure 1 Simple XML document
2.1.1 Design Goals of XML
The XML 1.0 recommendation [1] outlines a number of design goals or constraints which resulted in the creation of XML as it is known today. The design goals were:
· XML shall be straightforwardly usable over the Internet.
· XML shall support a wide variety of applications.

· XML shall be compatible with SGML.

· It shall be easy to write programs which process XML documents.

· The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

· XML documents should be human-legible and reasonably clear.

· The XML design should be prepared quickly.

· The design of XML shall be formal and concise.

· XML documents shall be easy to create.

· Terseness in XML markup is of minimal importance.
2.1.2 W3C XML Binary Characterization Working Group
An XML format is a format that is capable of representing the information in an XML document. An XML document itself is represented in the particular XML format that is defined in [1] and referred to as XML 1.x. An XML document can be stored, transmitted and processed in the form of an XML format depending on use cases.
However, XML 1.x may not be the optimal format for all use cases. There are cases where the overhead of generating, parsing, transmitting, storing, or accessing XML-based data may be deemed too great for a particular application. As a result, some use cases' requirements may not be met by XML 1.x.
Since IEEE 802.21 Information Elements needs to be transmitted over various media including wireless media and implemented on various user terminals such as cellular phones and PDAs, it is important to use an XML format that satisfies the requirements of 802.21 Information Service. There are a number of existing binary interchange mechanisms and formats that are used to address some or all of these requirements.
The XML Binary Characterization Working Group of the W3C is working on the task of gathering information that will help determine the nature of various XML use cases [3], characterizing the properties that XML provides as well as those that are required by the use cases [4], and establishing objective, shared measurements to help judge whether XML 1.x and alternate (binary) encodings provide the required properties.
3GPP has explicitly asked the W3C about binary formats, and has researched them itself.
2.2 RDF (Resource Description Framework)

The Resource Description Framework (RDF) is a language for representing information about resources in the World Wide Web. By generalizing the concept of a "Web resource", RDF can also be used to represent information about things that can be identified on the Web, even when they cannot be directly retrieved on the Web. RDF is intended for situations in which this information needs to be processed by applications, rather than being only displayed to people. RDF provides a common framework for expressing this information so it can be exchanged between applications without loss of meaning.
The design of RDF is intended to meet the following goals [5]:
· having a simple data model
· having formal semantics and provable inference

· using an extensible URI-based vocabulary

· using an XML-based syntax

· supporting use of XML schema datatypes

· allowing anyone to make statements about any resource
2.2.1 RDF Concepts
In this section, several key concepts of RDF are explained. Refer to [5] for more details about all RDF concepts.
2.2.1.1 Graph Data Model
The underlying structure of any expression in RDF is a collection of triples. Each triple represents a statement of a relationship between the things denoted by the nodes that it links. Each triple has three parts:
1. a subject,
2. an object, and
3. a predicate (also called a property) that denotes a relationship.
A set of such triples is called an RDF graph. This can be illustrated in Figure 2 by a node and directed-arc diagram, in which each triple is represented as a node-arc-node link.
[image: image2.png]Predicate

Figure 2 Graphical View of RDF Tripe

The direction of the arc is significant: it always points toward the object. The nodes of an RDF graph are its subjects and objects.
The assertion of an RDF triple says that some relationship, indicated by the predicate, holds between the things denoted by subject and object of the triple. The assertion of an RDF graph amounts to asserting all the triples in it, so the meaning of an RDF graph is the conjunction (logical AND) of the statements corresponding to all the triples it contains.
An RDF triple is also represented in the following textual form.
Subject Predicate Object .
2.2.1.2 URI-based Vocabulary and Node Identification
A node is either a URI reference (i.e., Uniform Resource Identifier with optional fragment identifier) [6], a literal, or blank (having no separate form of identification). Predicates are URI references.
A URI reference or literal used as a node identifies what that node represents. A URI reference used as a predicate identifies a relationship between the things represented by the nodes it connects. A predicate URI reference may also be a node in the graph.
A blank node is a node that is not a URI reference or a literal. In the RDF abstract syntax, a blank node is just a unique node that can be used in one or more RDF statements, but has no intrinsic name.
2.2.1.3 Datatypes
Datatypes are used by RDF in the representation of values such as integers, floating point numbers and dates.

A datatype consists of a lexical space, a value space and a lexical-to-value mapping.

For example, the lexical-to-value mapping for the XML Schema datatype xsd:boolean, where each member of the value space (represented here as 'T' and 'F') has two lexical representations, is as follows:
	Value Space
	{T, F}

	Lexical Space
	{"0", "1", "true", "false"}

	Lexical-to-Value Mapping
	{<"true", T>, <"1", T>, <"0", F>, <"false", F>}

RDF predefines just one datatype rdf:XMLLiteral, used for embedding XML in RDF.

There is no built-in concept of numbers or dates or other common values. Rather, RDF defers to datatypes that are defined separately, and identified with URI references. The predefined XML Schema datatypes [7] are expected to be widely used for this purpose.

RDF provides no mechanism for defining new datatypes. XML Schema Datatypes [7] provides an extensibility framework suitable for defining new datatypes for use in RDF.

2.2.1.4 Literals
Literals are used to identify constant values such as numbers and dates by means of a lexical representation. Anything represented by a literal could also be represented by a URI, but it is often more convenient or intuitive to use literals.

A literal may be the object of an RDF statement, but not the subject or the predicate.

Literals may be plain or typed :
· A plain literal is a string combined with an optional language tag. This may be used for plain text in a natural language.
· A typed literal is a string combined with a datatype URI. It denotes the member of the identified datatype's value space obtained by applying the lexical-to-value mapping to the literal string.
The typed literals that can be defined using the XML Schema datatype xsd:boolean are:

	Typed Literal
	Lexical-to-Value Mapping
	Value

	<xsd:boolean, "true">
	<"true", T>
	T

	<xsd:boolean, "1">
	<"1", T>
	T

	<xsd:boolean, "false">
	<"false", F>
	F

	<xsd:boolean, "0">
	<"0", F>
	F

2.2.1.5 RDF Expression of Simple Facts
Some simple facts indicate a relationship between two things. Such a fact may be represented as an RDF triple in which the predicate names the relationship, and the subject and object denote the two things. A familiar representation of such a fact might be as a row in a table in a relational database. The table has two columns, corresponding to the subject and the object of the RDF triple. The name of the table corresponds to the predicate of the RDF triple. A further familiar representation may be as a two-place predicate in first order logic.

Relational databases permits a table to have an arbitrary number of columns, a row of which expresses information corresponding to a complex predicate, or a predicate in first order logic with an arbitrary number of places. Such a table of complex facts can be converted to multiple tables of simple facts by decomposing each row of the complex predicate into multiple rows of two-place predicates for representation as RDF triples.
Thus, a more complex fact is expressed in RDF using a conjunction (logical-AND) of simple binary relationships. RDF does not provide means to express negation (NOT) or disjunction (OR).
2.2.2 The RDF Data Model
RDF uses URI references to identify the things referred to in RDF statements, and RDF/XML as a machine-processable way to represent RDF statements. With that background, this section describes how RDF uses URIs to make statements about resources. For example, the English statements about point of attachment X in Figure 3 could be represented by RDF statements having:
· a subject http://informationserver.org/poa1 (assuming that this is the URI for point of attachment X)
· a predicate http://www.mih.org/basic-schema#poa-type (assuming that this is the URI reference to point of attachment type.)
· an object of unsigned short integer of value 19 (the value of 19 is the NAS-Port-Type value assigned for Wireless - IEEE 802.11).
and

· a subject http://informationserver.org/poa1
· a predicate http://www.mih.org/basic-schema#poa-id (assuming that this is the URI reference to point of attachment identifier.)
· an object 00022D0D6CBA (literal for a specific value of point of attachment identifier.)

[image: image3]
Figure 3: English statements about point of attachment X

The RDF statement above would be represented by the graph shown in Figure 4.

[image: image4]
Figure 4: An RDF Graph about point of attachment X

2.2.3 An XML Syntax for RDF: XML/RDF

RDF provides an XML syntax for writing down and exchanging RDF graphs, called RDF/XML. RDF/XML is defined in [8].

The RDF statements in section 2.2.2 would be represented in XML/RDF as follows.

[image: image5]
2.2.4 Defining RDF Vocabularies: RDF Schema
RDF provides a way to express simple statements about resources, using named properties and values. However, RDF also needs an ability to define the vocabularies (terms) they intend to use in those statements, specifically, to indicate that they are describing specific kinds or classes of resources, and will use specific properties in describing those resources. For example, the example about point of attachment X in the previous section needs some description about classes such as mihbase:PoA, and uses properties such as mihbase:poa-type and mihbase:poa-id to describe them (“mihbase” is a prefix for representing the URI of the schema that defines these properties). RDF itself provides no means for defining such application-specific classes like mihbase:PoA and properties like mihbase:poa-type and mihbase:poa-id. Instead, such classes and properties are described as an RDF vocabulary, using extensions to RDF provided by [9], referred to here as RDF Schema or RDFS.
RDF Schema does not provide a vocabulary of application-specific classes and properties. It provides the facilities needed to describe such classes and properties, and to indicate which classes and properties are expected to be used together. For example, the property mihbase:poa-type will be used in describing the class mihbase:PoA. In other words, RDF Schema provides a type system for RDF. The RDF Schema type system is similar in some respects to the type systems of object-oriented programming languages such as Java. For example, RDF Schema allows resources to be defined as instances of one or more classes. In addition, it allows classes to be organized in a hierarchical fashion; for example a class mihext:IEEE-802-11 might be defined as a subclass of mihbase:Media-Dependent-Information, meaning that any resource which is in the class mihext:IEEE-802-11 is also implicitly in the class mihbase:Media-Dependent-Information as well. However, RDF classes and properties are in some respects very different from programming language types. RDF class and property descriptions do not create a straightjacket into which information must be forced, but instead provide additional information about the RDF resources they describe.
The RDF Schema facilities are themselves provided in the form of an RDF vocabulary; that is, as a specialized set of predefined RDF resources with their own special meanings. The resources in the RDF Schema vocabulary have URIrefs with the prefix http://www.w3.org/2000/01/rdf-schema# (conventionally associated with the QName prefix rdfs:). Vocabulary descriptions (schemas) written in the RDF Schema language are legal RDF graphs. Hence, RDF software that is not written to also process the additional RDF Schema vocabulary can still interpret a schema as a legal RDF graph consisting of various resources and properties, but will not "understand" the additional built-in meanings of the RDF Schema terms. To understand these additional meanings, RDF software must be written to process an extended language that includes not only the rdf: vocabulary, but also the rdfs: vocabulary, together with their built-in meanings. This point will be illustrated in the next section.
The following sections will illustrate RDF Schema's basic resources and properties.
2.2.4.1 Describing Classes
A class in RDF Schema corresponds to the generic concept of a Type or Category, somewhat like the notion of a class in object-oriented programming languages. RDF classes can be used to represent almost any category of thing. Classes are described using the RDF Schema resources rdfs:Class and rdfs:Resource, and the properties rdf:type and rdfs:subClassOf.

For example, 802.21 may want to use RDF to provide information about networks. In RDF Schema, 802.21 would first need a class to represent the category of things that are networks. The resources that belong to a class are called its instances. In this case, 802.21 intends for the instances of this class to be resources that are networks.

In RDF Schema, a class is any resource having an rdf:type property whose value is the resource rdfs:Class. So the network class would be described by assigning an URIref, say mihbase:Network (using mihbase: to stand for the URIref of the 802.21 basic schema, which is used as the prefix for URIrefs from the vocabulary of the 802.21 basic schema) and describing that resource with an rdf:type property whose value is the resource rdfs:Class. That is, the 802.21 basic schema has the RDF statement:

mihbase:Network rdf:type rdfs:Class .

The property rdf:type is used to indicate that a resource is an instance of a class. So, having described mihbase:Network as a class, a resource myServer:Newtork1 would be described as a network by the RDF statement:

myServer:network1 rdf:type mihbase:Network .

(This statement uses a common convention that class names are written with an initial uppercase letter, while property and instance names are written with an initial lowercase letter. However, this convention is not required in RDF Schema. The statement also assumes that IEEE 802.21 has decided to define separate vocabularies for classes of things, and instances of things.)
The resource rdfs:Class itself has an rdf:type of rdfs:Class. A resource may be an instance of more than one class.

IEEE 802.21 wants to describe additional classes representing MDI which includes an IEEE 802.11 specific class mihext:802dot11 (“mihext” is a prefix for representing the URI of the schema that defines the IEEE 802.11 specific class). These classes can be described in the same way as class mihbase:Network, by assigning an URIref for each new class, and writing RDF statements describing these resources as classes, e.g., writing:
mihbase:Media-Dependent-Information rdf:type rdfs:Class .

mihext:802dot11 rdf:type rdfs:Class .

However, these statements by themselves only describe the individual classes. IEEE 802.21 wants to indicate their special relationship between class mihbase:Media-Dependent-Information and class mihext:802dot11, i.e., that the latter are specialized kinds of the former.

This kind of specialization relationship between two classes is described using the predefined rdfs:subClassOf property to relate the two classes. For example, to state that mihext:802dot11 is a specialized kind of mihbase:Media-Dependent-Information, IEEE 802.21 would write the RDF statement:

mihext:802dot11 rdfs:subClassOf mihbase:Media-Dependent-Information .
The meaning of this rdfs:subClassOf relationship is that any instance of class mihext:802dot11 is also an instance of class mihbase:Media-Dependent-Information.
This example illustrates the point made earlier about RDF Schema defining an extended language. RDF itself does not define the special meaning of terms from the RDF Schema vocabulary such as rdfs:subClassOf. So if an RDF schema defines this rdfs:subClassOf relationship between mihext:802dot11 and mihbase:Media-Dependent-Information, RDF software not written to understand the RDF Schema terms would recognize this as a triple, with predicate rdfs:subClassOf, but it would not understand the special significance of rdfs:subClassOf, and not be able to draw the additional inference that an instance of mihext:802dot11 is also an instance of mihbase:Media-Dependent-Information.
The rdfs:subClassOf property is transitive. This means that when a class A is defined as a sub-class of class B which is a sub-class of class C, an instance of class A is also being an instance of class C (as well as being instances of class B).
A class may be a subclass of more than one class (similar to multiple class inheritances in C++ language). RDF Schema defines all classes as subclasses of class rdfs:Resource (since the instances belonging to all classes are resources).

The classes defined in the above example are described using the RDF Schema language as follows:

[image: image6]
2.2.4.2 Describing Properties

In addition to describing the specific classes of things they want to describe, user communities also need to be able to describe specific properties that characterize those classes of things. In RDF Schema, properties are described using the RDF class rdf:Property, and the RDF Schema properties rdfs:domain, rdfs:range, and rdfs:subPropertyOf.

All properties in RDF are described as instances of class rdf:Property. A new property is described by assigning the property an URIref, and describing that resource with an rdf:type property whose value is the resource rdf:Property, for example, by writing the RDF statement:
mihbase:mdi rdf:type rdf:Property .

RDF Schema also provides vocabulary for describing how properties and classes are intended to be used together in RDF data. The most important information of this kind is supplied by using the RDF Schema properties rdfs:range and rdfs:domain to further describe application-specific properties.

The rdfs:range property is used to indicate that the values of a particular property are instances of a designated class. For example, if IEEE 802.21 wants to indicate that the properties mihbase:mii and mihbase:mdi have values that are instances of classes mihbase:Media-Independent-Information and mihbase:Media-Dependent-Information, respectively, it would write the RDF statements:

mihbase:mii rdf:type rdf:Property .
mihbase:mii rdfs:range mihbase:Media-Independent-Information .
mihbase:mdi rdf:type rdf:Property .
mihbase:mdi rdfs:range mihbase:Media-Dependent-Information .

These statements indicate that mihbase:Media-Independent-Information and mihbase:Media-Dependent-Information are classes, mihbase:mii and mihbase:mdi are properties, and that RDF statements using the mihbase:mii and mihbase:mdi properties have instances of mihbase:Media-Independent-Information and mihbase:Media-Dependent-Information as objects, respectively.

The rdfs:range property can also be used to indicate that the value of a property is given by a typed literal such as xsd:integer.
There is no way to define datatypes in RDF Schema. Datatypes are defined externally to RDF (and to RDF Schema), and referred to in RDF statements by their URIrefs. This statement simply serves to document the existence of the datatype, and indicate explicitly that it is being used in this schema.

The rdfs:domain property is used to indicate that a particular property applies to a designated class. For example, if IEEE 802.21wants to indicate that the property mihbase:mii applies to instances of class mihbase:Network, it would write the RDF statements:

mihbase:Network rdf:type rdfs:Class .

mihbase:mii rdf:type rdf:Property .

mihbase:mii rdfs:domain mihbase:Network .

These statements indicate that mihbase:Network is a class, mihbase:mii is a property, and that RDF statements using the mihbase:mii property have instances of mihbase:Network as subjects.
The use of these range and domain descriptions can be illustrated by extending the schema defined in the previous section. The resulting schema is shown below.

[image: image7]
2.3 OWL (Web Ontology Language)
An ontology defines the terms used to describe and represent an area of knowledge. Ontologies are used by people, databases, and applications that need to share domain information (a domain is a specific subject area or area of knowledge in this context). Ontologies include computer-usable definitions of basic concepts in the domain and the relationships among them. The word ontology has been used to describe artifacts with different degrees of structure. These need to specify descriptions for the following kinds of concepts:

· Classes (general things) in the many domains of interest

· The relationships that can exist among things

· The properties (or attributes) those things may have

Ontologies are critical for applications that want to search across or merge information from diverse communities. Although XML Schemas are sufficient for exchanging data between parties who have agreed to definitions beforehand, their lack of semantics prevent machines from reliably performing this task given new XML vocabularies. The same term may be used with different meaning in different contexts, and different terms may be used for items that have the same meaning. RDF and RDF Schema begin to approach this problem by allowing simple semantics to be associated with identifiers. With RDF Schema, one can define classes that may have multiple subclasses and super classes, and can define properties, which may have sub properties, domains, and ranges. In this sense, RDF Schema is a simple ontology language. However, in order to achieve interoperation between numerous, autonomously developed and managed schemas, richer semantics are needed. For example, RDF Schema cannot specify that an instance of mihbase:Location class must have exactly one instance of mihbase:PoA class as its property.
OWL [10] is an ontology language developed to add richer semantics to RDF Schema. OWL uses both URIs for naming and the description framework provided by RDF to add the following capabilities to ontologies:
· Ability to be distributed across many systems
· Scalability
· Compatibility with other Web standards for accessibility and internationalization
· Openness and extensibility
OWL depends on constructs defined by RDF, RDF Schema, and XML Schema datatypes.
OWL builds on RDF and RDF Schema and adds more vocabulary for describing properties and classes: among others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality, richer typing of properties, characteristics of properties (e.g. symmetry), and enumerated classes.
OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full.

2.3.1 OWL Syntax
An OWL ontology is an RDF graph, which is in turn a set of RDF triples. As with any RDF graph, an OWL ontology graph can be written in many different syntactic forms (as described in [8]. OWL uses some specific syntactic forms of RDF/XML for representing triples. However, the meaning of an OWL ontology is solely determined by the RDF graph. Thus, it is allowable to use other syntactic RDF/XML forms, as long as these result in the same underlying set of RDF triples. Such other syntactic forms would then carry exactly the same meaning as the syntactic form used in this document.
As a simple example of an alternative syntactic form resulting in the same RDF triples, consider the following RDF/XML syntax:

<owl:Class rdf:ID="Continent"/>
The following RDF/XML syntax encodes the same set of RDF triples, and therefore would convey the same meaning.
<rdf:Description rdf:about="#Continent">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

</rdf:Description>
2.3.2 OWL and RDF Semantics

OWL is a vocabulary extension of RDF. Thus any RDF graph forms an OWL Full ontology. Further, the meaning given to an RDF graph by OWL includes the meaning given to the graph by RDF. OWL Full ontologies can thus include arbitrary RDF content, which is treated in a manner consistent with its treatment by RDF. OWL assigns an additional meaning to certain RDF triples [12].
2.3.3 OWL Basic Elements
Most of the elements of an OWL ontology concern classes, properties, instances of classes, and relationships between these instances. This section presents the language components essential to introducing these elements.

2.3.3.1 Simple Classes and Individuals
Many uses of an ontology will depend on the ability to reason about individuals. In order to do this in a useful fashion we need to have a mechanism to describe the classes that individuals belong to and the properties that they inherit by virtue of class membership. We can always assert specific properties about individuals, but much of the power of ontologies comes from class-based reasoning.

Sometimes we want to emphasize the distinction between a class as an object and a class as a set containing elements. We call the set of individuals that are members of a class the extension of the class.

2.3.3.1.1 Simple Names Classes

The most basic concepts in a domain should correspond to classes that are the roots of various taxonomic trees. Every individual in the OWL world is a member of the class owl:Thing. Thus each user-defined class is implicitly a subclass of owl:Thing. Domain specific root classes are defined by simply declaring a named class like:

<owl:Class rdf:ID="Network"/>

The fundamental taxonomic constructor for classes is rdfs:subClassOf. It relates a more specific class to a more general class. If X is a subclass of Y, then every instance of X is also an instance of Y. The rdfs:subClassOf relation is transitive. If X is a subclass of Y and Y a subclass of Z then X is a subclass of Z.

<owl:Class rdf:ID="Network">

 <rdfs:subClassOf rdf:resource="&rdfs;Resource" />
</owl:Class>
For any class there may be any number of subClassOf axioms. For example, we could add the following axiom about the class Network:

<owl:Class rdf:ID="Network">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#mii"/>

 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#mdi"/>

 <owl:Cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:Cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>
</owl:Class>
This class axiom contains a property restriction. The example states that Network is a subclass of an anonymous OWL class (Note: owl:Restriction is a subclass of owl:Class) that has as its class extension the set of all individuals for which the property mii and mdi has exactly one value.
2.3.3.1.2 Individuals
In addition to classes, we want to be able to describe their individuals or instances. An individual is minimally introduced by declaring it to be a member of a class. The following example defines an instance of class mihbase:Cost corresponding to “free of charge”.

<Cost rdf:ID="Free"/>

A class description of the "enumeration" kind is defined with the owl:oneOf property. The value of this built-in OWL property must be a list of individuals that are the instances of the class. This enables a class to be described by exhaustively enumerating its instances. The class extension of a class described with owl:oneOf contains exactly the enumerated individuals, no more, no less. The list of individuals is typically represented with the help of the RDF construct rdf:parseType="Collection", which provides a convenient shorthand for writing down a set of list elements. For example, the following RDF/XML syntax defines a class of costs.
<owl:Class rdf:ID="Cost">

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="#Free"/>

 <owl:Thing rdf:about="#Non-Free"/>

 </owl:oneOf>

</owl:Class>
2.3.3.2 Simple Properties and Subproperties
A property is a binary relation. Two types of properties are distinguished:

· datatype properties, relations between instances of classes and RDF literals and XML Schema datatypes

· object properties, relations between instances of two classes.
When we define a property there are a number of ways to restrict the relation. The domain and range can be specified. The property can be defined to be a specialization (subproperty) of an existing property. Example datatype property and object property description is given below.
<owl:DatatypeProperty rdf:ID="data-rate">

 <rdfs:label>Data Rate</rdfs:label>

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Media-Dependent-Information"/>

 <rdfs:range rdf:resource="&xsd;unsignedInt"/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="mii">

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 <rdfs:domain rdf:resource="#Network"/>

 <rdfs:range rdf:resource="#Media-Independent-Information"/>

</owl:ObjectProperty>
An rdfs:subPropertyOf axiom defines that the property is a subproperty of some other property. Formally this means that if P1 is a subproperty of P2, then the property extension of P1 (a set of pairs) should be a subset of the property extension of P2 (also a set of pairs).

An example:
<owl:DatatypeProperty rdf:ID="uam">

 <rdfs:label>UAM</rdfs:label>

 <rdfs:SubPropertyOf rdf:resource="#security"/>

</owl:DatatypeProperty>
This states that all instances contained in the property extension of the property "uam" are also members of the property extension of the property "security".

2.3.3.3 Property Characteristics
OWL allows properties to have different characteristic as described in the subsequent sections. To explain property characteristic, a binary relationship P(x,y) is defined as: Resource x has resource y as its property P.
2.3.3.3.1 TransitiveProperty
If a property, P, is specified as transitive, then for all x, y and z:
P(x,y) and P(y,z) implies P(x,z)
2.3.3.3.2 SymmetricProperty

If a property, P, is tagged as symmetric, then for all x and y:

P(x,y) iff P(y,x)
2.3.3.3.3 FunctionalProperty

If a property, P, is tagged as functional, for all x, y and z:
P(x,y) and P(x,z) implies y = z
2.3.3.3.4 InverseOf

If a property, P1, is tagged as the owl:inverseOf P2, then for all x and y:

P1(x,y) iff P2(y,x)

2.3.3.3.5 InverseFunctionalProperty

If a property, P, is tagged as InverseFunctional then for all x, y and z:

P(y,x) and P(z,x) implies y = z

2.3.4 Property Restrictions

2.3.4.1.1 allValuesFrom, someValuesFrom

The owl:allValuesFrom restriction requires that for every instance of the class that has instances of the specified property, the values of the property are all instances of the class indicated by the owl:allValuesFrom clause. The owl:someValuesFrom restriction is similar. If owl:allValuesFrom is replaced with owl:someValuesFrom, it would mean that at least one of the properties of the class instance must be an instance of the class specified by the owl:someValuesFrom clause.
2.3.4.1.2 Cardinality
The owl:cardinality, owl:minCardinatlity and owl:maxCardinality restrictions are used for limiting the number of the instances of the specified property to be allowed for every instance of a specific class. An example is shown below.
<owl:Class rdf:ID="Media-Dependent-Information">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#data-rate"/>

 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
0
</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>
</owl:Class>
2.4 RDF Query Language: SPARQL

SPARQL [13] is a query language for getting information from such RDF graphs. It provides facilities to:
· extract information in the form of URIs, blank nodes, plain and typed literals.

· extract RDF subgraphs.

· construct new RDF graphs based on information in the queried graphs.
As a data access language, it is suitable for both local and remote use. The remote access protocol for SPARQL is specified in [14].
The SPARQL query language is based on matching graph patterns. The simplest graph pattern is the triple patterns, which is like an RDF triple but with the possibility of a variable in any of the subject, predicate or object positions. Combining these gives a basic graph pattern, where an exact match to a graph is needed to fulfill a pattern.
SPARQL also supports a number of numeric and logical operators to allow specifying complex conditions in queries.
2.4.1 A Simple Query
The example below shows a SPARQL query to find the type of a point of attachment from the information in the given RDF graph. The query consists of two parts, the SELECT clause and the WHERE clause. The SELECT clause identifies the variables (a variable has prefix ‘?’) to appear in the query results, and the WHERE clause has one triple pattern.

Data:

· A subject: http://informationserver.org/poa1
· A predicate: http://www.mih.org/basic-schema#poa-type
· An object: 19 (the NAS-Port-Type value for “Wireless – IEEE 802.11”)
Query:
PREFIX mihbase: http://www.mih.org/basic-schema#

SELECT ?poa-type

WHERE

{

 http://informationserver.org/poa1 mihbase:poa-type ?poa-type
}

Query Result:

	poa-type

	19

2.4.2 A Complex Query
The example below shows a SPARQL query to find the list of identifiers of point of attachments that are neighbors of a point of attachment whose type is 802.11 and identifier is 001122334455. It is assumed that the data follows the 802.21 basic schema.
Data :

· A subject: http://informationserver.org/poa2
· A predicate: http://www.mih.org/basic-schema#poa-id
· An object: aabbccddeeff
· A subject: http://informationserver.org/poa3

· A predicate: http://www.mih.org/basic-schema#poa-id

· An object: 001122334455
· A subject: http://informationserver.org/poa3

· A predicate: http://www.mih.org/basic-schema#poa-id

· An object: 0123456789ab
Query (the number at the head of each line is not part of the query):
1. PREFIX mihbase: http://www.mih.org/basic-schema#
2. SELECT ?poa-id

3. WHERE
4. {
5. ?x1 mihbase:neighboring-poa ?x2 .
6. ?x2 mihbase:poa-type 19 .
7. ?x2 mihbase:poa-id ?poa-id .
8. ?x1 mihbase:poa ?x3 .
9. ?x3 mihbase:poa-type 19 .
10. ?x3 mihbase:poa-id "001122334455" .
11. }
Query Result:

	Poa-id

	aabbccddeeff

	001122334455

	0123456789ab

Explanation:
· Line 5: Variable x1 will match the set of subjects that have property mihbase:neighboring-poa. According to the 802.21 basic schema, such subjects are instances of class MII. Variable x2 will match the set of values of property mihbase:neighboring-poa of variable x1. According to the 802.21 basic schema, such values are instances of class PoA.
· Lines 6: Variable x2 will also match the set of subjects that have property mihbase:poa-type with a unsignedShort value of 19.

· Line 7: Variable poa-id will match the set of values of property mihbase:poa-id of variable x2.
· Line 8: Variable x1 will match the set of subjects that have property mihbase:poa. Again, such subjects are instances of class MII according to the 802.21 basic schema. Variable x3 will match the set of values of property mihbase:poa of variable x1. According to the 802.21 basic schemas, such values are instances of class PoA.
· Line 9: Variable x3 will also match the set of subjects that have property mihbase:poa-type with a value of 19.
· Line 10: Variable x3 will also match the set of subjects that have property mihbase:poa-id with a value of literal "001122334455".
Patterns specified in lines 8 to 11 will make variable x1 to match only one instance of class Media-Independent-Information that has a specific pair of values of properties mihbase:poa-type and mihbase:poa-id. For the matched instance of class Media-Independent-Information, patterns specified in 5 to 7 will retrieve the values of property mihbase:poa-id from each value of property mihbase:neighboring-poa of the instance.
3 Applicability of XML/RDF Technologies to 802.21 Information Service
An information service has several different aspects as listed below.

· Information modeling

· Information construction
· Information query
· Information transfer
Some of these aspects are related to each other. For example, information query depends heavily on information modeling. Also, some information service may design an information query mechanism on top of a particular information transfer mechanism, while others may design an information query mechanism to run over multiple information transfer mechanisms.

Some of the aspects are in the scope of 802.21 (i.e., information modeling, information query and information transfer) and other is not. When we define 802.21 Information Service, it is important to consider not only the in-scope aspects also all of the above aspects.
3.1 Information Modeling
Information modeling is to design the structure of information. Designing an information schema is equivalent to information modeling. There are several requirements identified about information modeling for 802.21 Information Service.
3.1.1 Use of a standardized schema language for information modeling
Since 802.21 Information Service is expected to provide information about various communication layers including physical, link, network and application layers, it is essential to use a standardized schema language to define the information to be supported by the 802.21 Information Service. Examples of such schema languages are ASN.1 (Abstract Syntax Notation One) [15], SMIv2 (Structure of Management Information version 2) [16], XML Schema [7] and RDF Schema [9].
ASN.1 is mainly used for describing messages to be exchanged among protocol entities. SMIv2 is an adapted subset of ASN.1 and used for writing MIB (Management Information Base) modules in SNMP (Simple Network Management Protocol) [17]. Use of ASN.1 without any special adaptation to a particular information structure (hereafter, such use of ASN.1 is referred to as raw ASN.1) for information modeling is more difficult than use of an adapted subset of ANS.1 where semantics of information is more important (and the semantics of information is important for a number of reasons as discussed below). Both XML Schema and RDF Schema are defined for describing information in XML format. RDF Schema is more object-oriented compared to SMIv2 and XML Schema.
3.1.2 Extensibility to define new information elements
Since 802.21 Information Service is expected to provide information about various communication layers, a schema needs to be extensible so that definition about new information elements can be readily added, considering new physical or link layer technologies defined in the future. This leads to a requirement that a schema must be able to describe semantics of information to be extensible to support adding new information elements.

A schema written in raw ASN.1 does not readily allow adding new information elements once the schema is defined. SMIv2 [16] and LDAP Schema of Lightweight Directory Access Protocol [18] allow definition for new information elements to be added to existing information tree. Similarly, RDF Schema allows new classes and properties to be added to existing ones.
3.1.3 Flexibility in describing relationship among information elements

Since 802.21 Information Service deals with a number of different types of information elements, it is important to use a schema that is flexible enough to describe relationship among information elements to (i) make the information elements manageable and (ii) enable efficient queries on the information elements.

SMIv2 and LDAP Schema allow information to be tree-structured. RDF Schema allows RDF resources to be structured in more generic graph topology. Use of raw ASN.1 is difficult to describe complex relationship among information elements.
3.2 Information Construction
Information construction is to gather information and construct information database. Although information construction is out of the scope of 802.21 Information Service, it is important to consider this aspect in the design of 802.21 Information Service.
The most important requirement on information construction is ability to automatically construct information. Architecturally there are several ways to automatically construct information database. There are basically two approaches:
· Mobile terminals gather information from network devices and report it to the information servers.

· Network devices report their own information to the information servers.

MING (Media-Independent Neighbor Graph) is based on the former approach. Information construction using SNMP get belongs to the latter.
In the former approach, it would be important to reduce amount of data exchanged to gather information as much as possible. In this regard, use of a schema that supports rich semantics is important to reduce the amount of data. RDF Schema, LDAP Schema and SMIv2 have ability to describe rich information semantics.
3.3 Information Query
Information query is to search information stored in information database. If an actual information query is just to obtain information of specific types, a schema written in ASN.1 using raw ASN.1 or SMIv2 might be sufficient.
On the other hand, if an actual information query supports a more intelligent and efficient way of searching information, a query language that supports a variety query types using a schema that is capable of describing rich information semantics is necessary.　There are several examples for such a query language is important for efficient information query:
· The entity making a query may want to obtain entire information under a subgraph. Then, a query language that supports subgraph fetching is needed. GET command in SNMP is used for obtaining MIB objects which are tree-structured. However, iterative calls of GET command are needed to traverse the MIB tree since SNMP does not support subtree fetching. SPARQL, the standard RDF query language, supports sub-graph fetching.
· The entity making a query may want to search information efficiently by specifying detailed conditions in order to filter out unnecessary information as much as possible.　An example query is “give me a list of point of attachments within 1 mile of the current point of attachment.” If a query language does not support such information filtering, the entity making a query would need to obtain more information from the network, including information not actually needed, and execute conditional operations to extract the needed information from the obtained information. SNMP GET operation does not have detailed conditioning. LDAP and SPARQL support detailed conditioning similar to SQL.
More detailed examples with comparing a schema-based query method using SPARQL and a schema-less query method are provided in Annex A.
3.4 Information Transfer
Information transfer refers to protocols used to convey information query. Relationship between information query and information transfer are tightly coupled. The following considerations are made about information transfer for 802.21 Information Service.

3.4.1 Use of transport-agnostic protocol
Relationship between information transfer and underlying transport protocol may vary depending on information services. LDAP is tightly coupled with its own search filters and attributes and defined on top of connection-oriented transport such as TCP. SNMP is defined for carrying MIB objects and designed to run on top of any transport protocol (most SNMP implementations use UDP transport, though). SPARQL can use SPARQL Protocol [19] to convey SPARQL queries. The SPARQL protocol can be run on top of any transport protocol including HTTP. The SPARQL Protocol bindings to HTTP defined in [19].
In 802.21 Information Service, information transfer can occur at both link-layer (including LLC) and network layer or higher. Thus, it is critical for 802.21 Information Service to define or reuse a transport-neutral mechanism for information transfer. LDAP does not satisfy this requirement while SNMP and SPARQL Protocol do.
3.4.2 Use of data encoding method with less overhead
Since information elements are to be exchanged over the air in 802.21 Information Service, it is critical for an information transfer protocol to use a data encoding method that has less overhead as much as possible.
ASN.1 and TLV (Type-Length-Value) are widely used data encoding method for information transfer especially by link layer and network layer protocols. They are known to have less overhead and may be preferred to other encoding method when available. On the other hand, XML 1.x is widely used for web applications to carry XML document. As described in section 2.1.2, it is under investigation in W3C as to whether XML 1.x is an acceptable XML format for use by mobile terminals. Depending on the investigation result, an XML binary encoding may be defined to minimize the overhead of XML to accommodate the need. Thus, 802.21 Information Service should be able to carry XML data not only using XML 1.x but also using other XML format when available.
4 References

[1] W3C, “Extensible Markup Language (XML) 1.0 (Second Edition)”, http://www.w3.org/TR/REC-xml/.
[2] "Information Processing -- Text and Office Systems -- Standard Generalized Markup Language (SGML)", ISO 8879:1986, http://www.iso.ch/cate/d16387.html.
[3] W3C, “XML Binary Characterization Use Cases”, http://www.w3.org/TR/xbc-use-cases/.

[4] W3C, “XML Binary Characterization Properties”, http://www.w3.org/TR/xbc-properties/.
[5] W3C, “Resource Description Framework (RDF): Concepts and Abstract Syntax”, http://www.w3.org/TR/rdf-concepts/.
[6] T. Berners-Lee, R. Fielding and L. Masinter, “Uniform Resource Identifiers (URI): Generic Syntax”, RFC 2396, August 1998.

[7] W3C, “XML Schema Part 2: Datatypes”, http://www.w3.org/TR/xmlschema-2/.
[8] W3C, “RDF/XML Syntax Specification (Revised)”, http://www.w3.org/TR/rdf-syntax-grammar/.
[9] W3C, “RDF Vocabulary Description Language 1.0: RDF Schema”, http://www.w3.org/TR/rdf-schema/.

[10] W3C, “OWL Web Ontology Language Guide”, http://www.w3.org/TR/owl-guide/.
[11] W3C, “OWL Web Ontology Language Reference”, http://www.w3.org/TR/owl-ref/.

[12] W3C, “OWL Web Ontology Language Semantics and Abstract Syntax”, http://www.w3.org/TR/owl-semantics/.
[13] W3C Recommendation, “SPARQL Query Language for RDF”, http://www.w3.org/TR/rdf-sparql-query/.
[14] W3C Recommendation, “SPARQL Protocol for RDF”, http://www.w3.org/TR/rdf-sparql-protocol/.
[15] ITU-T, “Abstract Syntax Notation One (ASN.1) Specification of Basic Notation”, ITU-T Rec. X.680 (2002).
[16] K. McCloghrie, et al., “Structure of Management Information Version 2 (SMIv2)”, STD 58 (RFC 2578), April 1999.
[17] D. Harrington, et al., “An Architecture for Describing SNMP Management Frameworks”, RFC 2571, April 1999.
[18] M. Wahl, et al., “Lightweight Directory Access Protocol (v3)”, RFC 2251,
December 1997.
[19] W3C, “SPRRQL Protocol for RDF”, http://www.w3.org/TR/rdf-sparql-protocol/.
Annex A: Query Examples

The following five query patterns are tried with a schema-less query method and a schema-based query method.

· Example 1: “Give all IEs associated with a given PoA and its all neighboring PoAs”
· Example 2: “Give all IEs associated with a given PoA and its all neighboring 802 PoAs”
· Example 3: “Give a list of neighboring network types at a given PoA”
· Example 4: “Give a list of neighboring 802.11 PoAs at a given location (within 10 meters of the location)”
· Example 5: “Give a list of neighboring 802.11 PoAs at a give PoA, where the PoAs support 802.11i and have roaming relationship with my operator (operator-id=12345).
For the schema-less query, the following assumptions are made:

· Each QueryFilterType in a query request carries a static condition where the condition can be a set multiple static sub-conditions.

· Each QueryFilterPamaters in a query request carries zero, one or more IE types, IE attribute types or strings used for specifying dynamic conditions. The semantics of the dynamic conditions depend on the QueryFilterType.

· A query response contains a list of TLV-encoded or ASN.1-encoded IEs that matched the conditions specified in the query request.
For the schema-based query, the following assumptions are made:

· Each QueryFilterType in a query request carries one QueryFilterType (i.e., FILTER_INFO_DATA) that specifies the use of schema-based query.
· Each QueryFilterPamaters in a query request carries any query written in SPARQL language.
· A query response contains a list of XML-encoded IEs that matched the conditions specified in the query request.
· An RDF graph contains RDF triples that describe resources of a particular PoA. A named graph of SPARQL is formed per RDF graph. The information server manages a set of the URIs of the named graph.
Table 1 shows the required parameters for each query method.
Table 1: Required Parameters for Schema-less Query and Schema-based Query
	Example Number
	Schema-less Query
(Upper: QueryFilterTypes

 Lower: QueryFilterParameters)
	Schema-based Query

(QueryFilterParameters)

	1
	FILTER_INFO_ALL_NETWORKS
	- First Query (to obtain IEs for the current PoA)

CONSTRUCT ?s ?p ?o WHERE
{
GRAPH ?g1 {
?s ?p ?o .

 ?x mihbase:poa ?poa .

 ?poa mihbase:poa-type 19 .

 ?poa mihbase:poa-id "123456789abc" .

 }

}
- Second Query (to obtain IEs for the neighboring PoAs)
CONSTRUCT ?s ?p ?o WHERE
{
GRAPH ?g1 {
?s ?p ?o .

?x mihbase:poa ?npoa .

} .

GRAPH ?g2
 {
 ?y mihbase:poa ?poa .

 ?poa mihbase:poa-type 19 .

 ?poa mihbase:poa-id "123456789abc" .

 ?y mihbase:neighboring-poa ?npoa .

 }

}

	
	PoA
	

	2
	FILTER_INFO_802_NETWORKS
	- First Query (to obtain IEs for the current PoA)

CONSTRUCT ?s ?p ?o WHERE
{
GRAPH ?g1 {
?s ?p ?o .

 ?x mihbase:poa ?poa .

 ?poa mihbase:poa-type 19 .

 ?poa mihbase:poa-id "123456789abc" .

 }

}
-Second Query (to obtain IEs for the neighboring PoAs)

CONSTRUCT ?s ?p ?o WHERE
{
GRAPH ?g1 {
?s ?p ?o .

?x mihbase:poa ?npoa .

} .

GRAPH ?g2
 {
 ?y mihbase:poa ?poa .

 ?poa mihbase:poa-type 19 .

 ?poa mihbase:poa-id "123456789abc" .

 ?y mihbase:neighboring-poa ?npoa .

 ?npoa mihbase:poa-type 19 .

 }

}

	
	PoA
	

	3
	FILTER_INFO_802_NEIGHBORING_POA
	SELECT ?poa-id WHERE
{
 GRAPH ?g {

?mii mihbase:poa ?poa .
?poa mihbase:poa-id "0x123456789abc" .

?mii mihbase:neighboring-poa ?neighboring-poa .
?neighboring-poa mihbase:poa-type 19 .
?neighboring-poa mihbase:poa-id ?poa-id .
 }
}

	
	PoA
	

	4
	FILTER_INFO_802_NEIGHBORING_POA
	SELECT ?poa-id WHERE
{
 GRAPH ?g {
?mii mihbase:location ?location .

 ?location mihbase:geo-coordinate ?geo-coordinate .

 ?geo-coordinate mihbase:latitude ?latitude .

 FILTER (?latitude < 38.89873) .

 FILTER (30.89863 < ?latitude) .

 ?geo-coordinate mihbase:longitude ?longitude .

 FILTER (?longitude < 77.03728) .

 FILTER (77.03718 < ?longitude) .

 ?mii mihbase:neighboring-poa ?poa .
?poa mihbase:poa-type 19 .
 ?poa mihbase:poa-id ?poa-id .
 }
}

	
	Location, Location.latitude, “<”, “38.89873” “&&” Location.latidude, “>”, “30.89863”, “&&” Location.longitude, “<”, “77.03728”,

“&&” Location.longitude “>” “77.03718”
	

	5
	FILTER_INFO_802_NEIGHBORING_POA_802.11i
	PREFIX ieee802dot11-mib <http://mih.org/IEEE802dot11-MIB>

SELECT ?npoa-id WHERE

{

 GRAPH ?g
 {

 ?network mihbase:mii ?mii .
?x mihext:ieee802dot11-mib:1.2.840.10036.1.7 ?z .
 ?mii mihbase:poa ?poa .

 ?poa mihbase:poa-id "0x123456789abc" .

 ?mii mihbase:neighboring-poa ?neighboring-poa .

 ?neighboring-poa mihbase:poa-id ?npoa-id .

 ?neighboring-poa mihbase:poa-type 19 .
 ?mii mihbase:roaming-partner ?operator .
 ?operator mihbase:operator-id 12345 .

 }
}

	
	PoA, Operator, Operator.operator-id, “==”, “12345”
	

The following observation can be made for Table 1:
· The schema-less query needs clear semantics definition for each pair of a specific QueryFilterType value and a QueryFilterParameters pattern used for the QueryFilterType value.

· The number of QueryFilterType values required for the schema-less query exponentially increases as the number of static conditions used combined in a single QueryFilterType value increases.
· If only limited number of query patterns needs to be supported, then the schema-less query may be acceptable. Otherwise, the schema-based query is required to support more query patterns including simple and complex ones.
<?xml version=”1.0”?>

<myMessage>

 <message>Welcome to XML!</message>

</myMessage>

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

 <!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

 <!ENTITY mihbase 'http://www.mih.org/base-schema#'>

]>

<rdf:RDF

 xmlns:rdf="&rdf;"

 xmlns:rdfs="&rdfs;"

 xmlns:mihbase="&mihbase;"

 xmlns:mihextended="&mihextended;">

<rdf:Description rdf:about="http://informationserver/poa1">

 <mihbase:poa-type>19</mihbase:poa-type/>

 <mihbase:poa-id>00022D0D6CBA</mihbase:poa-id>

</rdf:Description>

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

<!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

<!ENTITY mihbase 'http://www.mih.org/basic-schema#’>

]>

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:mihbase="&mihbase;"

xml:base="&mihbase;">

<rdfs:Class rdf:ID="Network">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdfs:Class rdf:ID="MDI">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

</rdf:RDF>

X has a point of attachment type whose value is 19 (Wireless - IEEE 802.11).

X has a point of attachment identifier whose value is 00022D0D6CBA.

http://informationserver/poa1

00022D0D6CBA

http://www.mih.org/basic-schema#poa-id

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

<!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

<!ENTITY mihext 'http://www.mih.org/extended-schema#’>

]>

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:mihbase="&mihbase;"

 Xmlns:mihext=”&mihext;” xml:base="&mihext;">

<rdfs:Class rdf:ID="802dot11">

<rdfs:subClassOf rdf:resource="&mihbase;MDI"/>

<rdfs:comment/>

</rdf:RDF>

http://www.mih.org/basic-schema#poa-type

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

<!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

<!ENTITY mihbase 'http://www.mih.org/basic-schema#’>

]>

<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:mihbase="&mihbase;"

xml:base="&mihbase;">

<rdfs:Class rdf:ID="Network">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Media-Independent-Information">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdf:Property rdf:ID="mii">

<rdfs:domain rdf:resource="#Network"/>

<rdfs:range rdf:resource="#Media-Independent-Information"/>

</rdf:Property>

<rdf:Property rdf:ID="mdi">

<rdfs:domain rdf:resource="#Network"/>

<rdfs:range rdf:resource="#Media-Dependent-Information"/>

</rdf:Property>

</rdf:RDF>

19

PAGE
13

