May 2013		doc.: IEEE 802.19-13/0062r0
IEEE P802.19
Wireless Coexistence
	Coexistence Decision Making Algorithm for Profile N

	Date: 2013-05-15

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Stanislav Filin
	NICT
	
	
	sfilin@nict.go.jp

	[bookmark: _GoBack]Hiroshi Harada
	NICT
	
	
	

 (
Abstract
This document is a submission to IEEE 802.19 TG1
proposing
a coexistence
decision making
algorithm
 for profile N
.
)
 (
Notice:
 This document has been prepared to assist IEEE 802.19. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
)

Proposed update

It is proposed to add clause 8.4.2.7 using the text below.

8. [bookmark: _Toc351514684]
8.4.
8.4.2.
8.4.2.7. Coexistence decision making algorithm based on per-coordinate optimization
8.4.2.7.1. [bookmark: _Toc351514685]Algorithms 1a, 1b, and 2
Three types of algorithms are distinguished:
· Coexistence decision making algorithm 1a
· This algorithm is run at the beginning of state C before sending CoexistenceSetElementReconfigurationRequest messages to neighbor CMs
· The goal of this algorithm is to select operating frequencies to the subject WSOs and to the neighbor WSOs
· Coexistence decision making algorithm 1b
· This algorithm is run at the end of state C after receiving all CoexistenceSetElementReconfigurationResponse messages from neighbor CMs
· The goal of this algorithm is to select operating frequencies to the subject WSOs based on the responses from the neighbor CMs
· Coexistence decision making algorithm 2
· This algorithm is run when a CoexistenceSetElementReconfigurationRequest message is received from a neighbor CM
· The goal of this algorithm is to decide whether to proposed reconfiguration of the subject WSOs is acceptable or not.

Four types of WSOs are distinguished in the coexistence decision making algorithm:
·
Subject WSO with flexible operating frequency
· Any subject WSO subscribed to management service
·
Subject WSO with fixed operating frequency
· Any subject WSO subscribed to information service
·
Neighbor WSO with flexible operating frequency
· Any neighbor WSO subscribed to management service before sending CoexistenceSetElementReconfigurationRequest message to the neighbor CM
·
Neighbor WSO with fixed operating frequency
· Any neighbor WSO after receiving CoexistenceSetElementReconfigurationResponse message from the neighbor CM.

Optimization of the target function is done only over subject WSOs with flexible operating frequency and neighbor WSO with flexible operating frequency.

In general form, target function is:

8.4.2.7.1.1. [bookmark: _Toc351514686]Coexistence decision making algorithm 1a
For the coexistence decision making algorithm 1a, four types of WSOs are as follows:
·
Subject WSO with flexible operating frequency
· Any subject WSO subscribed to management service
·
Subject WSO with fixed operating frequency
· Any subject WSO subscribed to information service
·
Neighbor WSO with flexible operating frequency
· Any neighbor WSO subscribed to management service
·
Neighbor WSO with fixed operating frequency
· Any neighbor WSO subscribed to information service.

Initialization

For all WSOs and , previous operating frequencies and are selected randomly from their available frequencies.

Previous target function value is calculated .
This is initial point of optimization for the first iteration.

Iterations 1-N

First WSO is selected.
Among all its available frequencies one operating frequency is selected that optimizes the target function given that all other WSOs have previous operating frequencies:

.

Previous operating frequency for WSO is updated .
Then proceed to next WSO and so on.

Once all WSOs and are considered, proceed to the next iteration with updated initial point of optimization and .
Number of iterations can be set to some reasonable value.

Once all iterations are finalized, the CM shall check whether any of the neighbor WSOs has potential operating frequencies different from their current operating frequencies. If there are such neighbor WSOs, the CM shall send CoexistenceSetElementReconfigurationRequest messages to the neighbor CMs serving these WSOs.

8.4.2.7.1.2. [bookmark: _Toc351514687]Coexistence decision making algorithm 1b
For the coexistence decision making algorithm 1a, four types of WSOs are as follows:
·
Subject WSO with flexible operating frequency
· Any subject WSO subscribed to management service
·
Subject WSO with fixed operating frequency
· Any subject WSO subscribed to information service
·
Neighbor WSO with flexible operating frequency
· These set is empty
·
Neighbor WSO with fixed operating frequency
· Any neighbor WSO.

Initialization

For all WSOs , previous operating frequencies are selected randomly from their available frequencies.

Previous target function value is calculated .
This is initial point of optimization for the first iteration.

Iterations 1-N

First WSO is selected.
Among all its available frequencies one operating frequency is selected that optimizes the target function given that all other WSOs have previous operating frequencies:

.

Previous operating frequency for WSO is updated .
Then proceed to next WSO and so on.

Once all WSOs are considered, proceed to the next iteration with updated initial point of optimization .
Number of iterations can be set to some reasonable value.

Once all iterations are finalized, the CM shall check whether any of the subject WSOs has potential operating frequencies different from their current operating frequencies. If there are such subject WSOs, the CM shall send ReconfigurationRequest messages to the subject CEs serving these WSOs.

8.4.2.7.1.3. [bookmark: _Toc351514688]Coexistence decision making algorithm 2
When a new CoexistenceSetElementReconfigurationRequest message is received, the CM has the following information:
·

Last operating frequencies and
·

New potential operating frequencies for the neighbor WSOs of a CM that have sent the CoexistenceSetElementReconfigurationRequest message , where
·

New proposed operating frequencies for some subject WSOs of the CM , where .

The CM shall calculate potential value of the target function for the case when subject WSOs does not change operating frequencies and neighbor WSOs have new operating frequencies:

.

The CM shall calculate proposed value of the target function for the case when subject WSOs change operating frequencies and neighbor WSOs have new operating frequencies:

.

If is better than
·
Then the CM shall accept the proposal and change operating frequencies of the corresponding subject WSOs to the proposed values
· Else the CM shall reject the proposal.

8.4.2.7.2. [bookmark: _Toc351514689]Target functions
Two types of the target function are proposed:
· Total interference target function
· Total throughput target function.

All WSOs known to CM are .

Total interference target function is equal to

.
Here:
·

, if and WSO is not operating, otherwise
·

 if WSO is neighbor to WSO on frequency with interference direction equal to victim or mutual (WSO creates interference to WSO) and frequency overlaps with frequency , otherwise
·

 is transmission power of WSO
·

 is distance between WSO and WSO on frequency .
Total interference target function shall be minimized.

Total throughput target function is equal to

.
Here:
·

 is maximum throughput of WSO
·

 is loss in throughput of WSO if WSO is neighbor on frequency .
· Total interference throughput function shall be maximized.

Submission	page 1	NICT

image2.wmf
i

%

oleObject59.bin

image35.wmf
(

)

fk

oleObject60.bin

oleObject61.bin

oleObject62.bin

image36.wmf
(

)

fl

oleObject63.bin

oleObject64.bin

image37.wmf
(

)

(

)

(

)

,,,0

ckfklfl

=

oleObject65.bin

oleObject2.bin

image38.wmf
(

)

Pl

oleObject66.bin

oleObject67.bin

image39.wmf
(

)

(

)

,,

dkfkl

oleObject68.bin

oleObject69.bin

oleObject70.bin

oleObject71.bin

image40.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

max

1,2,,

1,2,,

1,,,,,,,

tot

kAB

lAB

lk

TokTkckfklflLntkntldkfkl

=

=

¹

=××-×

å

Õ

oleObject72.bin

image3.wmf
nei

i

image41.wmf
(

)

max

Tk

oleObject73.bin

image42.wmf
k

oleObject74.bin

image43.wmf
(

)

(

)

(

)

(

)

(

)

,,,,

Lntkntldkfkl

oleObject75.bin

oleObject76.bin

oleObject77.bin

oleObject78.bin

oleObject3.bin

image4.wmf
nei

i

%

oleObject4.bin

image5.wmf
1,...,

iI

=

oleObject5.bin

image6.wmf
1,...,

neinei

iI

=

oleObject6.bin

image7.wmf
(

)

{

}

(

)

{

}

(

)

(

)

(

)

(

)

{

}

(

)

(

)

(

)

{

}

(

)

,1,2,...,,1,2,...,

neinei

TFfifiTFfffIfffI

=

oleObject7.bin

oleObject8.bin

oleObject9.bin

oleObject10.bin

oleObject11.bin

oleObject12.bin

oleObject13.bin

image8.wmf
(

)

old

fi

oleObject14.bin

image9.wmf
(

)

oldnei

fi

oleObject15.bin

image10.wmf
(

)

{

}

(

)

{

}

(

)

,

oldoldoldnei

TFTFfifi

=

oleObject16.bin

image11.wmf
1

i

=

oleObject17.bin

image12.wmf
(

)

(

)

(

)

(

)

(

)

{

}

(

)

(

)

(

)

{

}

(

)

(

)

1

1argopt1,2,...,,1,2,...,

newoldoldoldoldoldnei

f

fTFfffIfffI

=

oleObject18.bin

oleObject19.bin

image13.wmf
(

)

(

)

11

oldnew

ff

=

oleObject20.bin

oleObject21.bin

oleObject22.bin

oleObject23.bin

oleObject24.bin

image14.wmf
(

)

(

)

(

)

{

}

1,2,...,

oldoldoldnei

fffI

oleObject25.bin

oleObject26.bin

oleObject27.bin

oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

image15.wmf
(

)

{

}

(

)

oldold

TFTFfi

=

oleObject32.bin

oleObject33.bin

image16.wmf
(

)

(

)

(

)

(

)

(

)

{

}

(

)

(

)

1

1argopt1,2,...,

newoldold

f

fTFfffI

=

oleObject34.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

oleObject38.bin

image17.wmf
(

)

(

)

(

)

{

}

1,2,...,

oldoldold

fffI

oleObject39.bin

image18.wmf
(

)

(

)

(

)

{

}

1,2,...,

oldoldold

fffI

oleObject40.bin

oleObject41.bin

image19.wmf
(

)

{

}

potnei

fj

oleObject42.bin

image20.wmf
{

}

1,...,

neinei

jI

Î

oleObject43.bin

image21.wmf
(

)

{

}

prop

fj

oleObject44.bin

image22.wmf
{

}

1,...,

jI

Î

oleObject45.bin

image23.wmf
(

)

{

}

(

)

{

}

(

)

{

}

(

)

,,

potoldoldneineipotneinei

TFTFfifijfij

=¹=

oleObject46.bin

image24.wmf
(

)

{

}

(

)

{

}

(

)

{

}

(

)

{

}

(

)

,,,

propoldpropoldneineipotneinei

TFTFfijfijfijfij

=¹=¹=

oleObject47.bin

image25.wmf
prop

TF

image1.wmf
i

oleObject48.bin

image26.wmf
pot

TF

oleObject49.bin

oleObject50.bin

image27.wmf
{

}

{

}

{

}

{

}

neinei

Wiiii

=ÈÈÈ

%%

oleObject51.bin

image28.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

,

,,,

,,

tot

kWlWlk

Pl

Iolckfklfl

dkfkl

ÎÎ¹

=××

åå

oleObject52.bin

image29.wmf
(

)

0

ol

=

oleObject53.bin

oleObject1.bin

image30.wmf
{

}

{

}

(

)

nei

lii

ÎÈ

%%

oleObject54.bin

image31.wmf
l

oleObject55.bin

image32.wmf
(

)

1

ol

=

oleObject56.bin

image33.wmf
(

)

(

)

(

)

,,,1

ckfklfl

=

oleObject57.bin

oleObject58.bin

image34.wmf
k

