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1 Background
When estimating the packet error rate (PER) using analytic techniques [1] it is useful to have an analytic expression for the bit error rate (BER).  However, in modern digital communication systems it may be difficult to derive an analytic expression for the BER.  Typically the BER curves are found using simulations.  To simplify the PER calculations it is useful to fit a function to that BER simulation data.  One method for performing that curve fitting is described in this document.  If it is more convenient to deal with symbol error rate (SER) than BER the same process can be applied.
2 Functional Curve Fitting
We would like to find a formula for the BER that fits the simulated BER results.  We begin with a series of simulated BER values for various signal-to-noise ratio (SNR) values.  We would like to find a function
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that represents a good fit to those simulation results. The parameter is the SNR on a linear scale.  The SNR can vary between 0 (all noise) and infinity (all signal).  We would like to select a function of a form that meets certain boundary conditions that we know to be true of any BER formula.  The function should meet the following two conditions,
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These two boundary conditions are based on laws of probability.  When there is not signal and just noise the BER is one-half, the same as tossing a coin.  Then there it is all signal and no noise the BER is zero.  We propose the following structure of a function that meets those two boundary conditions,
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Where 
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 is a polynomial in 
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with no constant term.  An example of this format is given by,
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When 
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 the function evaluates to one-half.  And as long as we have the condition 
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then the function is zero in the limit to infinity. Sometime when this approach is applied the value of b is positive.  Then you need to apply this approximation only over the region when the function is degreasing and set the value of the BER to zero above that limit.  Usually the BER at that point is tiny and setting it to zero for higher SNR is quite reasonable. Higher order polynomials could be considered but we do not think that level of complexity is needed.  It is important that there is no constant term in the exponent so as to insure that the argument of the exponent is zero for
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Given this structure of the function the we must then find appropriate values for the constants a and b.   This can be done as follows.  Assume that we are given a sequence of simulation results of the form
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. It is assumed that the SNR is in a linear scale. If that is not the case you must first convert it into a linear scale.  Beginning with the function for the BER,
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We multiply both sides by two and take the natural logarithm of both sides giving,
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Now we substitute in the N sets of simulation points and we get N linear equations,
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We then solve for the two parameters a and b using a least squared technique.  Several examples will be given to illustrate the approach in more detail.
3 Example – BPSK Modulation
The example is this section is based on a simple BPSK simulation.  The simulation data is given in Table 1, where in this case the SNR is in dB and must be converted to a linear scale before solving for the parameters of the function.
	SNR
	BER

	  0.0
	0.080400000000

	  1.0
	0.061800000000

	  2.0
	0.035000000000

	  3.0
	0.024600000000

	  4.0
	0.013950000000

	  5.0
	0.005650000000

	  6.0
	0.002344444444

	  7.0
	0.000762962963

	  8.0
	0.000187962963

	  9.0
	0.000033612040

	 10.0
	0.000004100000


Table 1: BPSK Simulation Data

By applying the procedure described in the previous section we obtain the following formula for the BER,
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Because in this case the constant b turned out to be positive this approximation will not work for very larger values of b.  So we must limit this function to a range of the SNR.  However, it works fine for values of SNR less than 20 dB.  Above that value of SNR we can easily set the BER to zero.


This function and the original simulation data points are plotted in Figure 1.
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Figure 1: BPSK BER Approximation
4 Example – 802.15.4b PSSS in 915 MHz
The draft IEEE 802.15.4b includes a new PHY referred to at the parallel sequence spread spectrum PHY.   The PHY operates in both the 915 MHz ISM band in the United States and the 868 MHz band in Europe.  This section applies the procedure previously described to simulation data for the 915 MHz PSSS PHY.  Simulation data for this PHY was supplied by Dr. Andreas Wolf and is given in Table 2.  Once again the SNR is in dB in this data set.
	SNR
	BER

	-8.061
	0.082724000000

	-7.061
	0.055939000000

	-6.061
	0.028372000000

	-5.061
	0.011388000000

	-4.061
	0.004448500000

	-3.061
	0.000799750000

	-2.061
	0.000051354000

	-1.061
	0.000002750300

	-0.061
	0.000000032500


Table 2: The 915 MHz PSSS PHY Simulation Data

By applying the procedure described in the previous section we obtain the following formula for the BER,
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This function and the original simulation data points are plotted in Figure 2.
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Figure 2: The 915 MHz PSSS BER Approximation
5 Example – 802.15.4b PSSS in 868 MHz
This section applies the procedure to the BER simulation data for the 868 MHz PSSS PHY.  The simulation data is given in Table 3. 

	SNR
	BER

	-2.041
	0.082724000000

	-1.041
	0.068247000000

	-0.041
	0.052838000000

	0.959
	0.036754000000

	1.959
	0.024277000000

	2.959
	0.011701000000

	3.959
	0.005370300000

	4.959
	0.001739300000

	5.959
	0.000367790000

	6.959
	0.000027530000

	8.959
	0.000000037503


Table 3: The 868 MHz PSSS PHY Simulation Data

By applying the procedure described in the previous section we obtain the following formula for the BER,
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This function and the original simulation data points are plotted on Figure 3.
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Figure 3: The 868 MHz PSSS BER Approximation

We can make an interesting observation about this example.  At low SNR the approximation does not fit very well.  The reason for this is the function we selected tends toward one-half for low SNR.  However, for some unknown reason the simulation BER data appears to be tending toward a much lower BER.  The reason for this is not known to the author.
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