March 2023

doc.: 15-23-0133-00-0thz-TIMES_Project_Overview

Project: IEEE P802.15 Working Group for Wireless Speciality Networks (WSN)

Submission Title: Overview on the Horizon Europe 6G SNS Project TIMES

Date Submitted: 12 March 2023 Source: Thomas Kürner, TU Braunschweig Address Schleinitzstr. 22, D-38092 Braunschweig, Germany Voice:+495313912416, FAX: +495313915192, E-Mail: t.kuerner@tu-braunschweig.de

Re: n/a

Abstract: This document provides information on the Horizon Europe 6G SNS Project TIMES (THz Industrial Mesh Networks in Smart Sensing and Propagation Environments)

Purpose: Information of IEEE 802.15 SC THz

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

TIMES

THz Industrial Mesh Networks in Smart Sensing and Propagation Environments

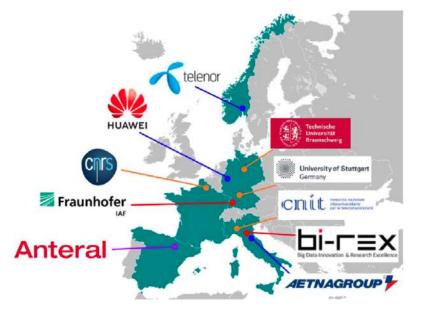
¹Prof. Luca Sanguinetti, ²Prof. Thomas Kürner, ¹CNIT/Pisa University, Italy, ²TU Braunschweig, Germany, ¹luca.sanguinetti@unipi.it; ²t.Kuerner@tu-braunchweig.de Roles in TIMES: ¹Project Coordinator, ²Technical Manager

IEEE 802.15 SC THz Atlanta, March 13, 2023

Università di Pisa

Funding Framework

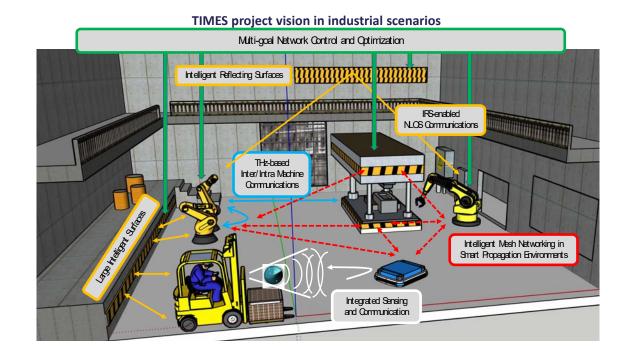
- A total of 35 Research and Innovation (R&I) projects have been selected following the evaluation of proposals submitted under the first call of the EU's <u>Smart Networks and Services Joint Undertaking (SNS JU)</u>.
- TIMES is one of those funded projects in Stream-B, see <u>https://smart-networks.europa.eu/stream-b-research-for-revolutionary-technology-advancement-towards-6g/</u>
- Project run-time: 1 January 2023 31 December 2025



Project Overview

- Project Website: <u>www.times6g.eu</u> (available soon)
 - <u>https://wilab.cnit.it/times/</u> (temporary)
- SNS-2022-STREAM: B-01-02
- Consortium 10 Partners (5 EU countries):
 - Coordinator: CNIT (IT).
 - Academics: TU Braunschweig (GE), CNRS (FR), USTUTT (GE)
 - Research institutes: FRAUNHOFER (GE), BIREX (IT)
 - Industries: HUAWEI (GE), TELENOR (NO), AETNA (IT)
 - **SMEs:** ANTERAL (ES)
- Verticals: Manufacturing (I4.0, I5.0), Healthcare, Automotive

Project vision and pillars


- TIMES long-term vision:
 - Smart radio ecosystem in complex scenarios offering similar performance as wired networks.
- Pillars:

Exploiting ultra-wide bandwidth and sensing-friendly characteristics of **THz communications** as wired networks.

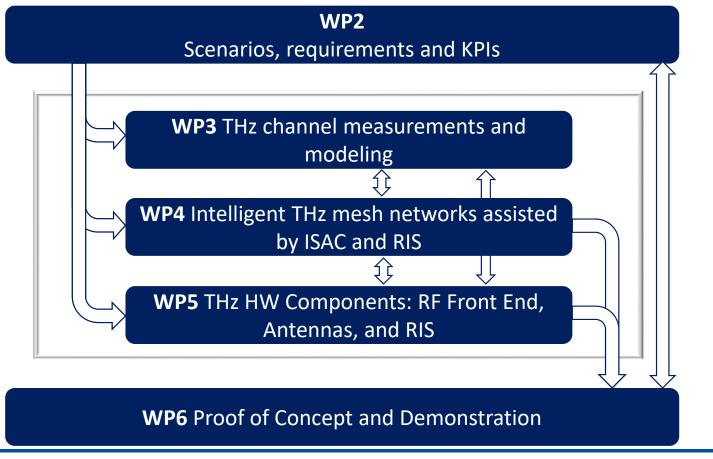
Deploying intelligent mesh THz networks in smart propagation environments.

Enabling high-definition integratedcommunications and sensing at THz.

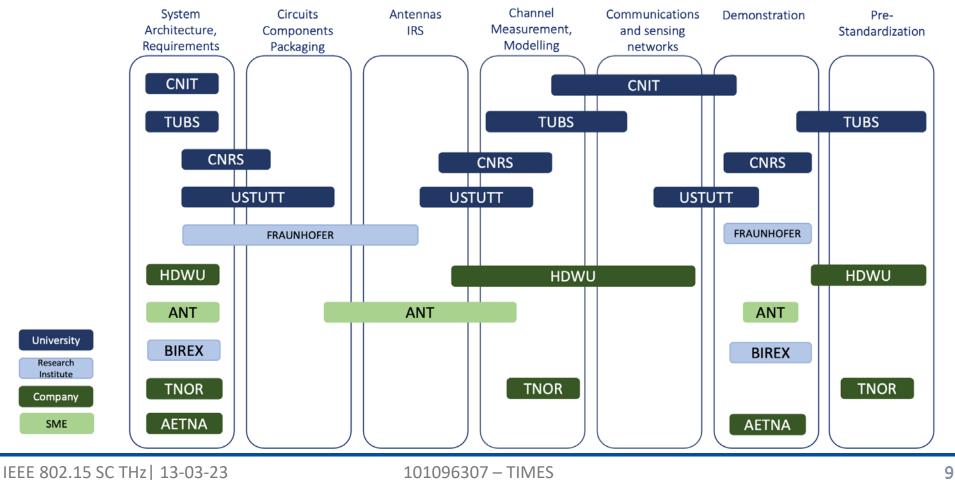
Main Innovations

	Identification of potential use cases Definition of KPIs				
THz communications	Intra-device/machine and inter-device/machine THz channel measurements and modelling EM exposure characterization Ultra-Massive MIMO, fast beamforming, electromagnetic signal processing 250-300 GHz higly integrated THz RF front-ends				
Intelligent Mesh Networking in Smart Propagation enviroements	Mesh topology with active/passive devices Efficient and reliable transmission over multiple THz links 300 GHz RIS made of metamaterials				
Integrated sensing and communications	Enable see-around-the-corner functionality with RISs Enhanced localization functionalities through near-field THz propogation conditions				
Proof-of-concept	Integration of THz RF front-ends, antennas, RISs Multiple THz links between static and mobile devices through direct/reflected paths				
() IEEE 802.15 SC THz 13-03	8-23 101096307 – TIMES 6				

Key objectives


- Focused on 8 objectives
 - 1. Definition of **use cases/requirements** for future industrial applications
 - 2. Derivation of **new THz channel models** based on measurements in industrial scenarios
 - 3. Design of novel **THz solutions** at the **PHY/MAC layers**
 - 4. Design/implementation of THz front-ends, antennas, and IRSs
 - 5. Design of a **multi-goal mesh-based RAN** composed of active and passive (RIS) nodes
 - 6. Design of integrated sensing and communications functionalities/waveforms
 - 7. Realization and validation of a PoC in real industrial environments

Project Implementation



Expertise of Partners in TIMES

Previous Experience: an example

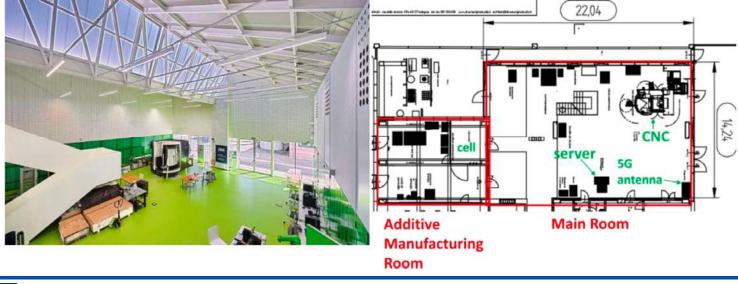
Thor project https://thorproject.eu

- Joint EU-Japan Project
- TUBS, USTUTT, CNRS, FRAUNHOFER

• Successful PoC of a 2 x 20 Gbps bidirectional 300 GHz link over 160 m

Channel ID	Maximum performance		IEEE802.15.3d			
	-	-	44	54	25	26
f _{IF,center} / GHz	79.1	79.25	85.7	79.1	84.6	84.6
f _{RF,center} / GHz	301.2	304.25	302.4	300.2	305.6	307.8
Bandwidth / GHz	8.64	1.35	4.32	8.64	2.16	2.16
Data Rate / Gbit/s	32	8	9.6	25.6	9.6	11.2
Modulation Scheme	32-QAM	256-QAM	8-PSK	16-QAM	64-QAM	128-QAM
Constellation					· · · · · · · · · · · · · · · · · · ·	· 在在一部分, 一部分子的一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
EVM / dB	-23.6	-30.8	-20.9	-21.4	-27.1	-30.5
SNR / dB	19.6	26.3	20.6	19	23.5	25.6

IEEE 802.15 SC THz | 13-03-23



Mobile Wagon

PoC: BIREX Pilot Plant

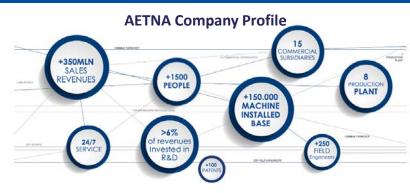
Advanced production line

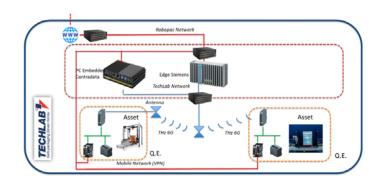
- test new technologies for industrial processes
- thematic areas: additive manufacturing, robotics, Big Data and IoT.
- covered by a dedicated 27 GHz private 5G network.

Mobile Rack

IEEE 802.15 SC THz | 13-03-23

101096307 - TIMES




PoC: AETNA Techlab

- Large area with packaging machines and test equipments
 - To demonstrate TIMES solutions in automated packaging
 - To connect the PLCs with the edge network

Standardization activities

Project activities / technologies that may lead to standardization:

- Industrial simulation scenarios and KPIs
- THz channel measurements/modelling in industrial scenarios
- Technology enablers for industrial THz communications

Potential targeted standardization bodies / groups:

- **ETSI ISG THz** 5 founding members: TUBS (ISG THz Chair), HUAWEI, TELENOR, CNRS, FRAUNHOFER
- ETSI ISG RIS
- IEEE 802 SC THz
- COST-INTERACT
- **<u>one6G</u>** 4 founding members: CNIT, TUBS, HUAWEI, TELENOR
- 3GPP

Follow us on line

