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ORTHOGONALITY CONDITION IN OFDM WITH FILTERING

The modulated waveform corresponding to the k;th subchannel is given by
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The modulated waveform corresponding to the k;th subchannel is given by
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Where k; and k; are the subchannel numbers and N is the IFFT size and a(k;)
and a(k;) are the modulation symbols corresponding to these subchannels.

The inner product of the modulated waveforms is given by
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If k; = k;, the above exponential term becomes e72m70n — 1 which eventually
becomes a summation of 1s.

If k; # k; the above expression represents the sum of a finite geometric series.
The sum of a finite geometric series 1,7, 72,73, ..rN=1
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Substituting for r = exp , we get
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Since k; and k; are two integers, exp(j2m(k; — k;)) =1
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Hence, we can conclude the following.
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The above proves the orthogonality of the waveforms. The orthogonality re-
quires the condition that the symbol duration is the reciprocal of the subcarrier

spacing.

Applying FIR filtering on the modulated waveforms S;(n) and S;(n) result
in the following
Yi(n) = Si(n) * hi(n)
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The first two terms in the above expression are constants and the third term
follows the same orthogonality condition as in (1)



