IEEE Std <designation>™-0

P802.15/D5, July 2019

Draft Standard for Part 22.3: Spectrum Characterization and Occupancy Sensing

P802.2215™/D5
Draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT Standard for Part 22.3: Spectrum Characterization and Occupancy Sensing
Sponsor
LAN/MAN Standards Committee
of the

IEEE Computer Society
Approved <Date Approved>
IEEE-SA Standards Board

Copyright © 2018 by The Institute of Electrical and Electronics Engineers, Inc.

Three Park Avenue

New York, New York 10016-5997, USA

All rights reserved.

This document is an unapproved draft of a proposed IEEE Standard. As such, this document is subject to change. USE AT YOUR OWN RISK! IEEE copyright statements SHALL NOT BE REMOVED from draft or approved IEEE standards, or modified in any way. Because this is an unapproved draft, this document must not be utilized for any conformance/compliance purposes. Permission is hereby granted for officers from each IEEE Standards Working Group or Committee to reproduce the draft document developed by that Working Group for purposes of international standardization consideration. IEEE Standards Department must be informed of the submission for consideration prior to any reproduction for international standardization consideration (stds.ipr@ieee.org). Prior to adoption of this document, in whole or in part, by another standards development organization, permission must first be obtained from the IEEE Standards Department (stds.ipr@ieee.org). When requesting permission, IEEE Standards Department will require a copy of the standard development organization's document highlighting the use of IEEE content. Other entities seeking permission to reproduce this document, in whole or in part, must also obtain permission from the IEEE Standards Department.

IEEE Standards Department

445 Hoes Lane

Piscataway, NJ 08854, USA

Abstract: This standard specifies the architecture, abstraction layers, interfaces and metadata requirements for Spectrum Characterization and Occupancy Sensing (SCOS) system, and defines performance parameters, units and measures. This SCOS system comprises one or more semi-autonomous spectrum sensors which scan electromagnetic spectrum, digitize it and perform processing, transmitting the resultant data with appropriate metadata to a central storage and processing system.
Keywords: Radio spectrum sensing, spectrum monitoring, signal characterization, cognitive radio, IEEE 802.22.3, WRAN standards
(

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading “Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.
Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed through scientific, academic, and industry-based technical working groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers and users of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.
IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.
Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.
Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.
Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.
Copyrights
IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.
Photocopies
Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Updating of IEEE Standards documents
Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.
In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit IEEE Xplore at http://ieeexplore.ieee.org/ or contact IEEE at the address listed previously. For more information about the IEEE-SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.
Errata
Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Patents
Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants
At the time this draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT *Lowerstandard was completed, the Part 22.3: Spectrum Characterization and Occupancy Sensing Working Group had the following membership:

Roger Hislop, Chair
Oliver Holland, Vice Chair
Nilesh Khambekar
Mike Cotton
Jerry Kalke
Participant4

Participant5

Participant6

Participant7

Participant8

Participant9

The following members of the <individual/entity> balloting committee voted on this

 DOCVARIABLE "txtGorRPorSTD" *Lower * MERGEFORMAT standard. Balloters may have voted for approval, disapproval, or abstention.
[To be supplied by IEEE]

Balloter1

Balloter2

Balloter3

Balloter4

Balloter5

Balloter6

Balloter7

Balloter8

Balloter9

When the IEEE-SA Standards Board approved this

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT *Lowerstandard on <Date Approved>, it had the following membership:

[To be supplied by IEEE]

<Name>, Chair
<Name>, Vice Chair
<Name>, Past Chair
Konstantinos Karachalios, Secretary
SBMember1

SBMember2

SBMember3

SBMember4

SBMember5

SBMember6

SBMember7

SBMember8

SBMember9

*Member Emeritus

Introduction

This introduction is not part of P802.22/D4, Draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT Standard for Part 22.3: Spectrum Characterization and Occupancy Sensing.

<Select this text and type or paste introduction text>

Contents
<After draft body is complete, select this text and click Insert Special->Add (Table of) Contents>
Draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT Standard for Part 22.3: Spectrum Characterization and Occupancy Sensing
IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Documents." They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope
The scope of this document is to define a standard for Spectrum Characterization and Occupancy Sensing (SCOS). It establishes a high-level architecture, defines functional entities and their interfaces, specifies command and control messages and parameters, and defines metadata describing the nature and configuration of the sensing system and the data it gathers. It also describes operating characteristics and behaviors of the components of the SCOS system, with reference implementations for common use cases. This standard is intended to enable specialization in the following three areas: sensor technology, data acquisition/distribution, and data analysis.
1.2 Purpose

The purpose of the SCOS system is to characterize and assess the occupancy of spectrum resource towards supporting it’s more efficient and effective use. The intent of the SCOS system is to create a high-level architecture to support different spectrum sensing technologies and deployments, to enable specialization and provide incentive, to promote broad adoption of sensing technologies and subsequent economies of scale, and to ultimately achieve broader availability and usage of sensing information from different sources. This will enable clients to acquire and use spectrum sensing information from a multiplicity of predefined independent systems to serve their goals.
Various national regulators and government authorities are developing regulatory and policy frameworks to allow cooperative spectrum sharing approaches in order to optimize spectrum utilization. There is emphasis on greater spectrum efficiencies, spectrum sharing and spectrum utilization, which requires not only database-driven configuration of the radios, but systems that can provide spectrum occupancy at a particular location and at a particular time.

1.3 Application

Greater efficiencies in spectrum utilization through spectrum sharing and optimized resource allocation require not only coordinated use by radio systems, but also better information on spectrum occupancy at a particular location and time.

The Spectrum Characterization and Occupancy Sensing (SCOS) system has many applications which include:

a) Policy and Planning

b) Radio Planning, Management and Engineering

c) Regulatory Enforcement where systems can Detect (RF incursion), Locate (source), Classify (by type and severity), Resolve/Remediate

d) Research and Technology Development
2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

IEEE Std 1003.1-1988, IEEE Standard for Information Technology - Portable Operating System Interface (POSIX)
IETF RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999.

IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format, December 2017.
ISO 8601-1:2019. ISO 8601-2:2019
The GNU Radio Foundation, Inc., “The Signal Metadata Format (SigMF)”, v0.0.2, July 2018

3. Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary Online should be consulted for terms not defined in this clause.

Action: Sensor function that the sensor developer implements and exposes to the API. Actions give the sensor owner control over what the sensor can be tasked to do, e.g., instrument control, data acquisition, data processing.
Acquisition: The combination of data and metadata created by an action (though an action does not have to create data).

Antenna: Required Sensor hardware components that convert environmental electromagnetic fields into a voltage. An RF cable connects the antenna with the next hardware component.
API: Application Programming Interface.
Association: The process by which a SCOS entities join the SCOS system.
Capability: Available actions, installation specifications (e.g., mobile or stationary), and hardware specification (e.g., frequency range of receiver).

Data Client: An external application that may utilize the services exposed from the Manager. For example, a Data Client could be an application that provides long term storage, analysis, and visualization of sensor data.
GUI: Graphical User Interface

Computer: Required Sensor hardware components that can provide control signals and messages to the preselector and receiver. Computers may also provide data processing, data packaging, and web-accessible services
HTTP: Hypertext Transfer Protocol (IETF RFC 2616)
JSON: JavaScript Object Notation is a lightweight data interchange format (IETF RFC 8259).
Manager: SCOS entity that allows Users and Data Clients to interact with a distributed network of Sensors via web-based Graphical User Interface (GUI) and/or remotely accessible API. It exposes the capabilities of the SCOS system to Users and Data Clients, manages schedule requests by users and Data Clients, provides control over the network of Sensors, and distributes data to Data Clients.
Message: a discrete unit of communication utilized to transfer information or invoke a behavior.
Object: a data abstraction used to encapsulate related information and behaviors.
Preselector: Optional Sensor hardware components that can provide preselection filtering, improved sensitivity via low noise amplification, and calibration signal sources.
Property: data with a type and name that is encapsulated within an Object.
Protocol: a standard set of rules that allow electronic devices to communicate with each other.
Schedule: The collection of all schedule entries (active and inactive) on the sensor.

Scheduler: A Sensor process responsible for executing the schedule.

Schedule Entry: Input to the sensor schedule that describes action, start and stop times, interval, and priority.
SCOS: Spectrum Characterization and Occupancy Sensing

Sensor: SCOS entity that provides distributed RF sensing through a remotely accessible API. The API allows Manager Users to discover capabilities, schedule actions, and download data. Sensors package data with SigMF metadata in a SigMF TAR archive.

SDR: Software Defined Radio

SigMF: Signal Metadata Format (SigMF) is a specification to describe sets of recorded digital signal samples with metadata written in JSON.
Signal Analyzer: Required Sensor hardware components, e.g., Software Defined Radios (SDRs), which capture discrete raw data (e.g., baseband representation of the signal) and can apply digital signal processing algorithms to the raw data to achieve a desired metric.
SLA: Service Level Agreement

Subscription: The process by which Data Clients specify what Acquisitions they will receive from Manager.
TAR: a software utility for collecting many files into one archive file.
Task: An action that was or will be executed at a specific time as part of a Schedule Entry
Task Result: A record of the outcome of a task.

User: An individual using a Data Client, Manager.
4. System Concept
4.1 Context
Figure 1 depicts the boundaries, entities, and high level interactions of the SCOS system. Users and/or Data Clients interact with the system through the Manager to access a distributed network of one or more Sensors to perform RF sensing.
[image: image1.jpg]Data Client

User

Manager

Sensor

SCOS

Figure 1 —SCOS Context Diagram

4.2 Entities

The two entities that comprise the SCOS system are the Manager (server application) and one or more Sensor(s) operating in the field. The Manager API also allows third party applications, referred to as Data Clients, to integrate with the SCOS system.
· Manager: SCOS entity that allows Users and Data Clients to interact with a distributed network of Sensors via web-based Graphical User Interface (GUI) and/or remotely accessible API. It exposes the capabilities of the SCOS system to Users and Data Clients, manages schedule requests by Users and Data Clients, provides control over the network of Sensors, and distributes data to Data Clients.
· Sensor: SCOS entity that provides distributed RF sensing through a remotely accessible API. The API allows Manager Users to discover capabilities, schedule actions, and download data. Sensors package data with SigMF metadata (The GNU Radio Foundation, Inc) in a SigMF TAR archive (IEEE Std 1003.1-1988).
4.3 Interactions
Figure 2 describes the basic interactions between a User, Data Client, Manager, and Sensor. The SCOS system supports the following interactions:

· Association: Sensors may associate themselves with a Manager by sending an association request (defined in Table 1), but that does not preclude users from registering a Sensor manually within the Manager. Similarly, a Data Client may associate itself with the Manager with a Data Client association request (defined in Table 15), but that does not preclude a user from manually registering a Data Client within the Manager. The Manager replies to an association request with an association response (defined in Table 2 and Table 16) indicating the status of the request.

· Capabilities: Upon registration, or user action, the Manager may request a description of the Sensor’s capabilities (Table 5). Data Clients may also send a capabilities request to the Manager to discover a Sensor’s capabilities. A capabilities response message (Table 6) may be returned from the Sensor to the Manager and from the Manager to a Data Client.

· Subscription: A Data Client may send a subscription request (defined in Table 19) to the Manager, but depending upon the implementation a user may configure a Data Client subscription within the Manager as well.

· Schedule: After a Sensor has been associated with a Manager, a user may use the Manager to define a schedule request. Different implementations may choose to introduce manual approval processes, but any approval processes are implementation specific and beyond the scope of the standard. After the user specifies the schedule parameters, the Manager sends the request (defined in Table 7) to the Sensor. In response, the Sensor will notify the Manager if the ScheduleEntry was accepted with a ScheduleEntry response (defined in Table 8). If the Sensor accepts the schedule request, the Sensor will begin executing the Action as defined in the schedule entry. Schedule entry requests may also be sent from a Data Client to a Manager.

· Data Distribution: Each time the Sensor executes the Action it will result in an Acquisition that may contain sensed data and the Sensor sends the Manager an Acquisition notification (defined in Table 13). If the Manager has Data Clients that have subscribed to receive the Acquisition it will send the Data Clients an Acquisition notification. In addition, the Manager may download archives from Sensors, and provide Users and Data Clients the ability to download archives.
[image: image2.jpg]Manager Sensor

T T

T
e e

Do

|
[——Association Request—Pb)

]

i |
e copabiities eauest— P

1 !
€ — Copsbities Respone —

|

| —Subcrption Request—
! i
1< Subscription Response—

subscription

T
T
i
i
i
i
i
i
i
I
T
i
I
I
i
1
I
|
i

T
schedle | schedule Reauestand Approval————)
i f—sSchedule Entry Request—by

|
| I schedule Entry Response- -
L e R rvResenem

T 1 T
i i i

i) I€-Acquisition Notification-
| [€-Acquisition Notification—

i
i
|

Data Distribution

i I-Acquisition Notification
[-Acquisition Notification—

Figure 2 —System Interactions

4.4 General Requirements

The primary goals of the SCOS architecture are to achieve distributed persistent sensing and data aggregation. To meet these goals, SCOS developers are required to meet general requirements categorized and described in the following subsections.
4.4.1 Connectivity, Control, and Access

The following requirements are related to connectivity, sensor control, and data access.

· Connectivity and access: Sensors and Manager shall be remotely accessible to authorized users over a network.

· Control: SCOS entities shall provide interfaces for distributed control and data acquisition.

· Discoverable capabilities: SCOS capabilities and resources shall be discoverable.

· Data access: SCOS entities shall make data available to authorized users.
· Data standardization: Compliance with a common metadata/data specification is required to allow for collaborative research, large-scale analytics, and sharing of sophisticated tools and methodologies. Sensor data acquisitions shall include shall include SigMF metadata and should use the SigMF extensions defined in Annex A.

4.4.2 Design Flexibility

The following requirements support the evolution of SCOS technology and broad deployments.
· Extensible technologies, algorithms, and metrics: The SCOS architecture shall support the evolution of centralized and edge processing, sensor technologies, and metrics.
· Hardware, software, OS, and protocol agnostic: SCOS standard implementations shall not be bound to specific hardware, software, operating systems or protocols to allow for cost-performance tradeoffs to be considered during the design process and for implementations to be tailored to address unique domain requirements.
5. Sensor
5.1 Hardware
Figure 3 provides a block diagram of the basic Sensor hardware model. There may be more sophisticated hardware models, e.g., with multiple antennas and/or multiple signal analyzers connected to a single computer. Each of the components may also be integrated within a single unit (e.g., a mobile phone). Metadata to describe the hardware components is defined in Annex A.
[image: image3.jpg]Antenna

Presel

lector

Signal
Analyzer

Computer

Figure 3 —Sensor Hardware Model

· Antenna: Required Sensor hardware components that convert environmental electromagnetic fields into a voltage. An RF cable may connect the antenna with the next hardware component.

· Preselector: Optional Sensor hardware components that can provide preselection filtering, improved sensitivity via low noise amplification, and calibration signal sources.

· Signal Analyzer: Required Sensor hardware components, e.g., Software Defined Radios (SDRs), which capture discrete raw data (e.g., baseband representation of the signal) and can apply digital signal processing algorithms to the raw data to achieve a desired metric.
· Computer: Required Sensor hardware components that can provide control signals and messages to the preselector and receiver. Computers may also provide data processing, data packaging, and remotely accessible services.
5.2 Software
5.2.1 Functional Requirements
The following are functional requirements of the Sensor software in order to provide a common language for sensor control and data acquisition. Sensors shall:
· Associate with a Manger using the association request defined Table 1.
· Describe Sensor Status, e.g., location, system datetime, last calibration datetime, and execution status as defined in Table 4.
· Advertise Sensor Capabilities, e.g., sensor hardware configuration and available Actions, as defined in Table 6. Actions are functions that the sensor developer implements and exposes to the API. Actions should be used to constrain Sensor tasks to the valid operational ranges of hardware components (e.g., frequency range of antenna, preselector, and signal analyzer).
· Execute Schedule Entries, defined in Table 7, that specify Action, start/stop times, interval, and/or priority.
· Describe schedule and task status as defined in Table 12 in response to the status request defined in Table 11.
· Record and distribute Acquisitions including metadata describing the measurement and security categorization of the data.
5.2.2 Messages
The following subsections describe the sensor messages used to provide the core functionality across five key system interactions: association, capabilities, subscription, schedule, and data distribution. Each of the message descriptions below include a column titled R/O/C that indicates whether each property is Required (R), Optional (O), or Conditional (C). Required properties shall be included in the message. Optional properties may be included in the message, and Conditional properties shall be included in the message under specified conditions. In addition, many of the messages below utilize Conditional properties and indicate that the properties shall be used when the underlying protocol does not inherently define the property. The SCOS system remains protocol agnostic and in some protocols it makes more sense to rely on the built in features of the protocol than to rely on custom properties within the messages themselves. For example, HTTP defines verbs that define common operations like create, read, update, and delete and also includes status codes that are useful to indicate common status conditions.
5.2.2.1 Association
Association messages allow Sensors to register with a Manager. Table 1 and Table 2 describe the association request and response messages.
Table 1 — Sensor Association Request
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The id of the Manager with which the sensor is registering. The manager_id shall be included when it is not inherently defined by the underlying protocols.

	sensor_id
	R
	string
	The unique id of the sensor.

	owner
	O
	string
	The id of the sensor owner.

	name
	R
	string
	The name of the sensor.

	sensor_type
	O
	string
	The type of the sensor. When used, the sensor_type shall equal either sensor or proxy.If the sensor_type is not included it shall be assumed that it is of type sensor.

	protocol
	O
	string
	The protocol to use to communicate with the sensor.

	message_type
	C
	string
	The type of the request. The message_type shall be included when it is not inherently defined by the underlying protocols. The message_type shall equal add_sensor when used to add a sensor to a Manager, or remove_sensor when removing a sensor from a Manager.

Table 2 —Sensor Association Response

	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique id of the Manager. The manager_id shall be included when it is not inherently defined by the underlying protocols.

	sensor_id
	C
	string
	The unique id of the sensor. The sensor_id shall be included when it is not inherently defined by the underlying protocols.

	status
	C
	integer
	The status response code. The status shall be included when it is not inherently defined by the underlying protocols.

	detail
	O
	string
	A message providing any extra details that explain the status.

	message_type
	C
	string
	The type of the message. The message_type shall be included when it is not inherently defined by the underlying protocols. The message_type shall equal sensor_association_response when used in the Sensor association response.

5.2.2.2 Sensor Status

Status messages support the discovery of Sensor status. Managers request status from a Sensor and Data Clients may request Sensor status from the Manager. Table 3 and Table 4 describe the status request and response messages.
Table 3 —Status Request
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager. The manager_id may function as the source or the destination of the message. The manager_id field shall be included when the underlying transfer protocol does not inherently define it.

	sensor_id
	C
	string
	The unique ID of the sensor. The sensor_id shall be included when the underlying transfer protocol does not inherently define it.

	client_id
	C
	string
	The unique ID of the Data Client making the request. The client_id shall be included when the underlying protocols do not inherently define it and the request originates from a Data Client.

	message_type
	C
	string
	The type of the request (status, capabilities…). The message_type is required when the underlying communication protocols do not inherently define the message type. The message_type shall equal status_request for status request messages.

Table 4 —Status Response
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager making the request. The manager_id is required when it is not inherently defined by the underlying communication protocols and the status request originated from a Manager.

	sensor_id
	C
	string
	The unique ID of the sensor. The sensor_id is required when is it not inherently defined by the underlying communication protocols.

	client_id
	C
	string
	The unique ID of the Data Client making the request. The client_id shall be included when it is not inherently defined by the underlying communication protocols and the response is being returned to a Data Client.

	scheduler
	O
	string
	The scheduler status (idle, running, dead)

	location
	O
	Location (see Table 21)
	Sensor location information.

	system_time
	R
	datetime
	The current system time on the sensor

	calibration_datetime
	O
	datetime
	The last date/time that the sensor was calibrated.

	message_type
	C
	string
	The message type. The message_type is required when the message type is not inherently defined by the underlying communication protocols. The message_type shall equal status for status response messages.

5.2.2.3 Sensor Capabilities

Capabilities messages enable the discovery of a Sensor’s Capabilities. The Capabilities include a description of the physical Sensor as well as the Actions it provides. Capabilities request and response messages are described in Table 5 and Table 6.
Table 5 —Capabilities Request
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager. The manager_id may act as the source or the destination of the message. The manager_id is required when it is not inherently defined by the underlying communication protocols.

	sensor_id
	C
	string
	The unique ID of the sensor. The sensor_id is required when the sensor id is not inherently defined by the underlying communication protocols.

	client_id
	C
	string
	The unique ID of the Data Client. The client_id shall be included when it is not inherently defined by the underlying communication protocols and the request originated from a Data Client.

	message_type
	C
	string
	The type of the request. The message_type is required when it is not inherently defined by the underlying communication protocols. When the message_type is used within a capabilities request message it shall have a value of capabilities_request.

Table 6 —Capabilities Response
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager that requested the capabilities description. The manager_id is required when it is not inherently defined by the underlying communication protocols.

	sensor_id
	C
	string
	The unique ID of the sensor for which the capabilities are being described. The sensor_id is required when it is not inherently defined by the underlying communication protocols

	client_id
	C
	string
	The unique ID of the Data Client that initiated the capabilities request. The client_id is required when it is not inherently defined by the underlying communication protocols and the response is to a Data Client.

	sensor
	R
	Sensor
	A description of the sensor. See Table 37.

	actions
	R
	Action[] (see Table 22)
	An array of Action objects describing each Action the sensor can perform

	message_type
	C
	string
	The message type. The message_type is required when it is not inherently defined by the underlying communication protocols. When the message_type is used within a capabilities response message it shall have a value of capabilities_response.

5.2.2.4 Schedule
Schedule messages allow Actions to be scheduled on one or more Sensors and support basic Schedule querying. Scheduling should be performed by the Manager, however schedule requests may be sent from Data Clients to a Manager. Schedule entry request messages, defined in Table 7, may be sent from the Manager to one or more Sensors and/or from a Data Client to a Manager. Individual Sensors may accept or reject schedule entry requests and respond with the Schedule entry response message defined in Table 8. Schedule overview request messages allow the Manage or Data Client to request an overview of all schedule entries (past and present). The schedule overview request and response messages are defined in Table 9 and Table 10.
Table 7 —Schedule Entry Request
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager. The manager_id shall be included when it is not defined by the underlying protocols. The manager_id may be the ID of the Manager making a request or receiving a request depending on the context of the message.

	sensor_ids
	C
	string[]
	The unique IDs of the sensors. The sensor_ids shall be included when not defined by the underlying protocols.

	client_id
	C
	string
	The unique ID of the Data Client. The client_id shall be included when it is not defined by the underlying protocols and the request originates from a Data Client.

	name
	R
	string
	The name for the schedule entry.

	schedule_id
	R
	string
	The unique ID for the schedule entry.

	action
	R
	string
	The name of the action that will be executed

	start
	O
	datetime
	Requested time to schedule the first task. If unspecified, the task will start as soon as possible

	stop
	O
	datetime
	Requested time to end execution of tasks under this schedule. If unspecified, and no relative_stop is specified then one task will execute and then the schedule will become inactive.

	relative_stop
	O
	Integer
	Seconds after start when the schedule will end. If unspecified, and no stop is specified, one task will execute and then the schedule will become inactive.

	interval
	O
	integer
	Seconds between tasks. If unspecified, a task will run once and then the schedule will become inactive

	is_active
	R
	boolean
	Indicates if tasks will continue to be executed for the schedule

	priority
	O
	integer
	Priority of the entry. Lower numbers indicate higher priority

	validate_only
	O
	boolean
	If true the input will only be validated and no schedule entry will be created

	message_type
	C
	string
	The message_type is required when it is not inherently defined by the underlying protocols. When used within a schedule entry request message, the message_type shall equal create_schedule, update_schedule, get_schedule, or delete_schedule.

Table 8 — Schedule Entry Response

	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager making the request. The manager_id shall be included when it is not inherently defined by the underlying protocols.

	sensor_id
	C
	string
	The unique ID of the sensor. The sensor_id shall be included when it is not inherently defined by the underlying protocols.

	client_id
	C
	string
	The unique ID of the Data Client that performed the schedule entry request. The client_id shall be included when it not inherently defined by the underlying protocols and the schedule entry request originated from a Data Client.

	schedule_id
	R
	string
	The unique ID of the schedule.

	name
	R
	string
	The name for the schedule

	action
	R
	string
	The name of the action that will be executed

	priority
	O
	integer
	Priority of the entry. Lower numbers indicate higher priority

	start
	O
	datetime
	Requested time to schedule the first task. If unspecified, the task will start as soon as possible

	stop
	O
	datetime
	Requested time to end execution of tasks under this schedule.

	Interval
	O
	integer
	Interval between tasks. If unspecified, the task will run once and then become inactive

	is_active
	R
	boolean
	Indicates if tasks will continue to be executed for the schedule

	validate_only
	O
	boolean
	If true the input will only be validated and no ScheduleEntry will be created

	next_task_time
	O
	datetime
	The time at which the next task will execute.

	next_task_id
	O
	integer
	The id of the next task.

	created
	O
	datetime
	The datetime of the original schedule entry request.

	modified
	O
	datetime
	The datetime at which the schedule entry was last modified.

	user_id
	O
	string
	The id of the user that requested the schedule entry.

	status
	C
	string
	Indicates if the request was accepted or rejected. The status is required when the underlying communication protocols do not define a request status.

	message_type
	C
	string
	The type of the message. The message_type shall be included when it is not inherently defined by the underlying protocols. When the message_type is used within a schedule entry response it shall be equal to schedule_response.

Table 9 —Schedule Overview Request
	Property
	Required
	Type
	Description

	manager_id
	C
	string
	The unique ID of the sensor Manager making the request. The manager_id is required when it is not inherently defined by the underlying communication protocols.

	sensor_id
	C
	string
	The unique ID of the sensor. The sensor_id is required when it is not inherently defined by the underlying communication protocols.

	client_id
	C
	string
	The unique ID of the Data Client making the request. The client_id shall be included when it is not defined by the underlying communication protocols and the request originates from a Data Client.

	offset
	O
	integer
	The schedule index at which to start the list of results.

	limit
	O
	integer
	The number of schedule entries to return.

	is_active
	O
	boolean
	Indicates whether or not to only include active Schedule Entries.

	message_type
	C
	string
	The message_type is required when it is not inherently defined by the underlying communication protocols. Schedule request messages support getting an overview of all schedule entries on the Sensor as well as obtaining information on the upcoming tasks that will be executed on the Sensor. When the message_type is used to request an overview of all schedule entries it shall equal get_schedule_overview.

Table 10 —Schedule Overview Response
	Property
	R/O/C
	Type
	Description

	count
	R
	integer
	The total number of schedule entries on the sensor.

	results
	R
	ScheduleEntry[] (see Table 23)
	An array of SheduleEntry objects.

	message_type
	C
	string
	The type of the message. The message_type shall be included when it is not inherently defined by the underlying communication protocols. When the message_type is used within a schedule overview response it shall equal schedule_overview_response.

5.2.2.5 Task Status
Task status messages support basic querying of task status. A Manager may query a Sensor using a task status request, or a Data Client may query a Manager with a task status request. A task status request may be done at the schedule entry level or at the task level. Task status request and response messages are defined in Table 11 and Table 12.
Table 11 —Task Status Request

	Property
	Required
	Type
	Description

	manager_id
	C
	string
	The unique ID of the sensor Manager making the request. The manager_id shall be included when it is not inherently defined by the underlying protocols.

	sensor_id
	C
	string
	The unique ID of the sensor. The sensor_id shall be included when it is not inherently defined by the underlying protocols.

	client_id
	C
	string
	The unique ID of the Data Client making the request. The client_id shall be included when it is not defined by the underlying protocols and the request originates from a Data Client.

	schedule_id
	C
	string
	The unique id of the schedule. The schedule_id shall be included when it is not defined by the underlying protocol.

	task_id
	O
	integer
	The id of the task in the schedule. The task_id is an optional parameter and may be specified in an alternative way depending on the underlying protocols.

	offset
	O
	integer
	The index at which to start the list of results. The offset is an option parameter and it may also be specified in an alternative way depending on the underlying protocols.

	limit
	O
	integer
	The maximum number or results requested. The limit is an optional parameter and it may be specified in an alternative way depending on the underlying protocols.

	message_type
	C
	string
	The message type shall be included when it is not inherently defined by the underlying protocol. When used within a task status request the message_type shall equal get_task_status.

Table 12 —Task Status Response

	Property
	R/O/C
	Type
	 Description

	manager_id
	C
	string
	The unique ID of the sensor Manager making the request. The manager_id shall be included if it not defined by the underlying protocols.

	sensor_id
	C
	string
	The unique ID of the sensor. The sensor_id shall be included if it is not defined by the underlying protocols.

	client_id
	C
	string
	The unique ID of the Data Client if the response is in reply to a request that originated from a Data Client. The client_id shall be include when it is not defined by the underlying protocols and the response is in reply to a request that originated from a Data Client.

	tasks
	R
	Task[] (see Table 24)
	AcquisitionOverview for each schedule entry dictated by the limit and offset parameters

	message_type
	C
	string
	The type of the message. The message_type shall be included when it is not defined by the underlying communication protocols. When the message_type is included within an acquisitions overview response it shall equal task_status_response.

5.2.2.6 Data Distribution
Data distribution messages support the distribution of Acquisitions from a Sensor to a Manager and from a Manager to a Data Client. Sensors send and Acquisition notification message, defined in Table 13, to the Manager upon task completion. The message may or may not contain the measured data regardless of whether or not the task generated any measured data. If the task generated measured data and the data is not included in the Acquisition notification message, an id or locator shall be included in the metadata that allows the Manager or Data Client to retrieve the archive via an archive request.
Table 13 —Acquisition Notification
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the sensor Manager being notified of a new Acquisition. The manager_id shall be included when it is not defined by the underlying protocols.

	sensor_id
	C
	string
	The unique ID of the sensor that generated the acquisition. The sensor_id shall be included when it is not defined by the underlying protocols.

	client_id
	C
	string
	The unique ID of the Data Client being notified of a new Acquisition. The client_id shall be included when it is not defined by the underlying protocols and the message is destined for a Data Client.

	task_id
	R
	integer
	The id of the task that generated the acquisition.

	started
	R
	datetime
	The datetime stamp for when the task started

	finished
	R
	datetime
	The datetime stamp for when the task finished

	duration
	O
	time
	The duration of the action

	status
	R
	string
	success, fail, in-progress

	recordings
	O
	Recording[] (see Table 25)
	The recordings generated from the task.

	schedule_id
	R
	string
	The ScheduleEntry id

	detail
	O
	string
	Any additional details regarding the task execution.

	message_type
	C
	string
	The message_type shall be included when it is not inherently defined by the underlying protocols. When the message type is included in an acquisition notification it shall equal acquisition_notification.

Table 14 —Archive Request
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager requesting the archive or the unique ID of the Manager receiving the request. The manager_id shall be included when it is not defined by the underlying protocols.

	sensor_id
	C
	string
	The unique ID of the sensor that generated the acquisition. The sensor_id shall be included when it is not defined by the underlying protocols.

	client_id
	C
	string
	The unique ID of the Data Client requesting the archive. The client_id shall be included when it is not defined by the underlying protocols and the message is destined for a Data Client.

	schedule_entry
	C
	string
	The unique ID of the schedule entry that generated the archive. The schedule_entry shall be included when it is not defined by the underlying protocols.

	archive_id
	C
	string
	The ID of the archive. The archive_id shall be included when it is not defined by the underlying protocols.

	message_type
	C
	string
	The message_type shall be included if it is not defined by the underlying protocols. When used in an archive request the message_type shall equal get_archive.

6. Manager

6.1 Hardware
Manager is hosted on a server or virtual machine. Resources and configuration can be customized to meet design and SLA requirements.
6.2 Software
Manager is a web application/s that simplifies the management and tasking of a network of sensors.
6.2.1 Functional Requirements

The following are software requirements for the Manager software:

· Operations: Sensor locations, status, and other diagnostics are displayed in operations view to allow for early detection of problems.

· Association: Managers shall allow Data Clients and Sensors to associate themselves with the Manager.

· Distributed sensing actions: Managers shall support the scheduling of Actions on single or multiple distributed sensors.
· Subscription: Managers shall allow Data Clients to subscribe to receive newly acquired Acquisitions based on specified subscription criteria.

· Data Distribution: Managers shall notify Data Clients of newly acquired Acquisitions that match specified subscription criteria. In addition, with appropriate permissions, Users and Data Clients may download acquisition archives.

6.2.2 Messages
The following subsections describe the messages used by the Manager to provide the core functionality across five key areas: associating Sensors and Data Clients with a Manager, providing Sensor status, providing Sensor capabilities, scheduling actions on a sensor, subscribing Data Clients, and receiving, requesting and distributing Sensor Acquisitions. Each of the message descriptions below include a column titled R/O/C that indicates whether each property is Required (R), Optional (O), or Conditional (C). Required properties shall be included in the message. Optional properties may be included in the message, and Conditional properties shall be included in the message under specified conditions. In addition, many of the messages below utilize Conditional properties and indicate that the properties shall be used when the underlying protocol does not inherently define the property. The SCOS system remains protocol agnostic and in some protocols it makes more sense to rely on the built in features of the protocol than to rely on custom properties within the messages themselves. For example, HTTP defines verbs that define common operations like create, read, update, and delete; and also includes status codes that are useful to indicate common status conditions.
6.2.2.1 Association
Association messages allow Sensors and Data Clients to associate themselves with a Manager. For sensor association, the Manager consumes the association request message defined in Table 1 and responds with the association response message in Table 2. Data Clients associate with a Manager by sending the association request message in Table 15 and the Manager responds with association response message in Table 16.
Table 15 —Data Client Association Request

	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The id of the sensor Manager with which the sensor is registering. The manager_id shall be included when it is not inherently defined by the underlying protocols.

	client_id
	C
	string
	The unique id of the Data Client. The client_id shall be included when it is not inherently defined by the underlying protocol.

	owner
	O
	string
	The id of the Data Client owner.

	name
	R
	string
	The name of the Data Client.

	protocol
	O
	string
	The protocol to use to communicate with the Data Client.

	message_type
	C
	string
	The type of the request. The message_type shall be included when it is not inherently defined by the underlying protocols. The message_type shall equal add_client when used to add a Data Client to a Manager, or remove_client when removing a data_client from a Manager.

Table 16 —Data Client Association Response

	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique id of the Manager. The manager_id shall be included when it is not inherently defined by the underlying protocols.

	client_id
	C
	string
	The unique id of the sensor. The client_id shall be included when it is not inherently defined by the underlying protocols.

	status
	C
	integer
	The status response code. The status shall be included when it is not inherently defined by the underlying protocols.

	message
	O
	string
	A message providing any extra details that explain the status.

6.2.2.2 Sensor Status
Status request messages, defined in Table 17, allow Data Clients to identify the sensors that are available from the Manager and to discover the status of individual sensors. The Manager shall return the Sensors response message defined in Table 18 in response to a get_sensors status request. In addition, the Manager shall return the status response message defined in Table 4 in response to a get_status status request.
Table 17 —Status Request
	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the sensor Manager making or receiving the request. The manager_id shall be included when it is not defined by the underlying protocols.

	sensor_id
	C
	string
	The unique ID of the sensor for which the status is being requested. The sensor_id property shall be included in sensor_status requests when it is not defined by the underlying protocol.

	client_id
	C
	string
	The unique ID of the Data Client making the request when the request originates from a Data Client. The client_id shall be included when it is not defined by the underlying protocols.

	message_type
	C
	string
	The type of the request. The message_type shall be included when it is not inherently defined by the underlying protocols. When the message_type is used within a Manager status request to identify the sensors that are available the message_type shall equal get_sensors. When the message_type is used within a request to obtain the status of an individual sensor the message_type shall equal get_status.

Table 18 —Sensors Response
	Property
	R/O/C
	Type
	Description

	manager_id
	R
	String
	The unique ID of the sensor Manager making the request.

	client_id
	R
	String
	The unique ID of the Data Client making the request.

	sensors
	R
	Sensor[] (see Table 37)
	An array of Sensors.

	message_type
	C
	String
	The message_type shall be included when it is not inherently defined by the underlying protocols. When message_type is used within the sensors response message it shall equal sesnors_response.

6.2.2.3 Sensor Capabilities
Data Clients may send a Manager the capabilities request defined in Table 5 and Manager may send the request to Sensors. Sensors and Managers respond with the capabilities response message defined in Table 6.
6.2.2.4 Schedule
Data Clients may send a ScheduleEntry request, defined in Table 7, and Manager may send ScheduleEntry requests to Sensors. Sensors and Managers respond with the ScheduleEntry response message defined in Table 8. The ScheduleOverview request and response defined in Table 9 and Table 10 may be used in a similar manner.
6.2.2.5 Subscription

Subscription messages allow Data Clients to subscribe to receive the acquisitions that result from the tasks performed by sensors. Data Clients may subscribe by Sensor, and or Action as described in Table 19. Subscription response messages are returned from the manger to indicate the status of the subscription request. Once subscriptions have been established, the Data Clients will receive the acquisition notification messages defined in Table 13 for any acquisitions that satisfy the subscription criteria.

Table 19 —Subscription Request

	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique ID of the Manager.

	client_id
	C
	string
	The unique ID of the Data Client.

	actions
	R
	string[]
	A list of action names indicating the actions for which the Data Client will receive TaskData messages when executed by a sensor included in the sensors property. The list may have the value any to indicate the Data Client would like to subscribe to any action from the specified sensors.

	sensor_ids
	R
	string[]
	A list of sensor ids indicating the sensors from which the Data Client will receive TaskData messages when an action included in the actions property is executed by one of the sensors. The list may include the value any to indicate the Data Client would like to subscribe to the specified actions on any sensor.

Table 20 —Subscription Response

	Property
	R/O/C
	Type
	Description

	manager_id
	C
	string
	The unique id of the Manager. The manager_id shall be included when it is not inherently defined by the underlying protocols.

	client_id
	C
	string
	The unique id of the Sensor. The client_id shall be included when it is not inherently defined by the underlying protocols.

	status
	C
	integer
	The status code indicating whether the subscription was accepted, or refused.

	message
	O
	string
	A message explaining the status of the request.

6.2.2.6 Data Distribution
The Manager consumes the acquisition notification message defined in Table 13 and sends acquisition notification messages to Data Clients when it has received an acquisition that matches the Data Client’s subscription constraints. The acquisition notification messages use the Recording object defined in Table 25. The Recording defines an optional data field to hold the measured data resulting from the execution of an action. The data field is optional to allow the recipient to utilize an archive request defined in Table 14 to request the data. When the Manager receives an acquisition notification without data and with an archive id\locator in the acquisition notification it performs an archive request. Data Clients may also send a Manager an archive request, defined in Table 14.
7. Metadata and Data Specification

7.1 Overview

This section describes the normative metadata used within messages within the SCOS system as well as the SigMF metadata files and datasets produced by a Sensor. To satisfy the requirements of extensibility and data standardization, Sensors shall use the SigMF specification to record and package recorded measurement data and metadata. SigMF specifies that metadata shall be written in JSON and that the entire contents of the metadata shall be contained within a single JSON object that contains three objects named global, captures, and annotations. SigMF allows extension namespaces to define new top-level SigMF objects, name/value pairs, new files, new dataset formats, or new datatypes. SCOS defines normative metadata objects used within control plane messages as well as informative SigMF extensions that should be used within the metadata files. Each of the object descriptions below includes a column titled R/O/C that indicates whether each property is Required (R), Optional (O), or Conditional (C). Required properties shall be included in the object. Optional properties may be included in the object, and Conditional properties shall be included in the object under specified conditions.
7.1.1 Message Metadata

This section describes the JSON objects used within the messages in 5.2.2 and 6.2.2. The
7.1.1.1 Status

This section describes the JSON objects used within status messages.
7.1.1.1.1 Location

The Location object in Table 21 is used within the status response message to convey the location of the Sensor.
Table 21 —Location Object

	Property
	R/O/C
	Type
	Unit
	Description

	gps
	O
	boolean
	N/A
	Indicates whether the location information was pulled from GPS

	modified
	O
	datetime
	ISO-8601 (ISO 8601-1:2019)
	Time of the last location update

	description
	O
	string
	N/A
	A textual description of the Sensor’s location

	latitude
	O
	number
	decimal degrees
	The Sensor’s latitude

	longitude
	O
	number
	decimal degrees
	The Sensor’s longitude

7.1.1.1.2 Sensor

The Sensor object, defined in Table 37, provided by the scos-sensor extension in A.3 is used within the Sensors response message defined in Table 18.
7.1.1.2 Capabilities

This section describes the objects used within the capabilities messages.

7.1.1.2.1 Sensor

The capabilities messages use the Sensor, Preselector, RFPath, and SignalAnalyzer objects provided by the scos-sensor SigMF extension. These objects are defined in Table 37, Table 38, Table 42, and Table 43.
7.1.1.2.2 Action

The Action object is used within the capabilities response message, defined in Table 6, to describe the operations a Sensor may perform. Actions will typically represent RF sensing operations, but may also encapsulate maintenance, administrative, or other utility functionality.
Table 22 —Action Object

	Property
	R/O/C
	Type
	Description

	name
	R
	string
	The name of the action

	summary
	R
	string
	A short description of the action

	description
	O
	string
	A detailed description of the action

7.1.1.3 Schedule
This section describes the objects used within scheduling messages.
7.1.1.3.1 ScheduleEntry

The ScheduleEntry object is used within the ScheduleOverview response defined in Table 10.
Table 23 —ScheduleEntry

	Property
	R/O/C
	Type
	Description

	id
	R
	string
	The unique id for the ScheduleEntry.

	name
	R
	string
	The name for the ScheduleEntry.

	sensor_ids
	C
	string[]
	The ids of the sensors tasked by the ScheduleEntry.

	action
	R
	string
	The name of the action that will be executed.

	start
	C
	datetime
	Requested time to schedule the first task. If unspecified, the task will execute as soon as possible.

	stop
	C
	datetime
	Requested time to stop scheduling tasks

	interval
	O
	integer
	Number of seconds between tasks. If unspecified, the task will run exactly once and the schedule will become inactive.

	is_active
	C
	boolean
	Indicates if tasks will continue to be executed for the schedule.

	priority
	O
	integer
	Priority of the entry. Lower numbers indicate higher priority.

	next_task_time
	O
	datetime
	The time at which this task will execute the under this schedule.

	next_task_id
	O
	integer
	The id for the task that will be executed under this schedule.

	created
	R
	datetime
	The datetime stamp when the schedule was created.

	modified
	R
	datetime
	The datetime stamp when the schedule was last modified.

	owner
	O
	string
	The unique ID of the User that created the ScheduleEntry.

7.1.1.4 Task Status
This section describes the objects used within Task status messages.
7.1.1.4.1 Task Status
The Task object is used in the Task response message defined in Table 12.
Table 24 —Task Object

	Property
	R/O/C
	Type
	Description

	schedule_id
	R
	string
	The unique ID or locator for the ScheduleEntry.

	schedule_name
	R
	string
	The name of the ScheduleEntry.

	sensor_id
	O
	string
	The id of the sensor executing the task.

	task_id
	C
	integer
	The id of the task that generated\or will generate the acquisition. The task_id shall be included when the request includes a schedule_id parameter.

	started
	R
	datetime
	The datetime stamp for when the schedule or task started, or will be started.

	finished
	C
	datetime
	The datetime stamp for when the schedule or task finished. The finished property shall be included when the schedule or task has finished.

	duration
	O
	time
	The duration of the action

	status
	R
	string
	The status of the acquisition(s). The status shall equal success, fail, in-progress, or scheduled.

	archive_id
	C
	string
	The unique id or locator for the archive of the acquisition. The archive_id shall be included when the object is describing an acquisition from a task that successfully completed.

7.1.1.4.2 Recording
The Recording object is used within the Acquisition notification message defined in Table 13.
Table 25 —Recording Object
	Property
	R/O/C
	Type
	Description

	metadata
	R
	JSON object containing SigMF Metadata
	The SigMF metadata associated with the action.

	data
	O
	byte[]
	The binary sensed data.

8. Protocol Specific Details
8.1 Overview

The SCOS standard is protocol agnostic. However, normative specifications may be adopted as they mature. This section details the normative specifications for the HTTP and MQTT implementations of the SCOS standard.
8.2 HTTP

This section details the normative HTTP based implementation of the standard. The HTTP implementation utilizes the messages defined in 5.2.2 and 6.2.2, however many Conditional properties of the request are instead handled as path parameters and HTTP response codes. All URLs in the HTTP implementation begin with /api/{version}.
8.2.1 Sensor

This section describes the HTTP URLs used to request and provide Sensor status and Capabilities, perform scheduling, provide task status, and provide Data Distribution. Rather than describing the URLs according to aforementioned functions, they are organized by endpoint.

8.2.1.1 Status
Table 26 describes the status endpoint. The status endpoint provides the Sensor status functionality specified in 5.2.2.2.
Table 26 —Status Endpoints
	URL
	Method
	Response Body
	Description/Notes

	/status
	GET
	status response (see Table 4)
	Request Sensor Status

8.2.1.2 Capabilities

Table 27 describes the capabilities endpoint. The capabilities endpoint provides the Sensor capabilities functionality specified in 5.2.2.3.
Table 27 —Capabilities Endpoint
	URL
	Method
	Response Body
	Description/Notes

	/capabilities
	GET
	capabilities response (see Table 6)
	Request Sensor Capabilities

8.2.1.3 Schedule
Table 28 describes the schedule endpoint. The schedule endpoint provides the schedule, task status, and archive request functionality described in 5.2.2.4, 5.2.2.5, 5.2.2.6.
Table 28 —Schedule Endpoint
	Request
	Methods
	Request Body
	Response Body
	Description/Notes

	/schedule
	POST, GET
	Schedule entry request (See Table 7) with POST
	Schedule overview response (see Table 10)
	Create Schedule Entry or view Schedule Entries. Get requests allow option limit and offset URL parameters.

	/schedule/{schedule_id}
	GET, PUT, PATCH, DELETE
	Schedule entry request (See Table 7) with PUT,PATCH
	Schedule overview response (see Table 10)
	View, Update, or Delete Schedule Entry

	/schedule /{schedule_id}/tasks
	GET, DELETE
	N/A
	Task Status Response (Table 12) or HTTP Response Code
	View the task status of the schedule’s tasks or delete the schedule’s tasks.

	/schedule/{schedule_id}/tasks/{task_id}
	DELETE, GET
	N/A
	Task Status Response (Table 12) or HTTP Response Code
	Delete acquisition for a task or view the acquisition status for a task.

	/schedule/{schedule_id}/tasks/{task_id}/archive
	GET
	N/A
	SigMF TAR archive or HTTP Response Code
	Retrieve the acquisition archive for a specific task

8.2.2 Manager
This section describes the Manager’s HTTP URLs used to request and provide Sensor status and Capabilities, perform scheduling, provide Task status, and provide data distribution. Rather than describing the URLs according to aforementioned functions, they are organized by endpoint.
8.2.2.1 Sensors
Table 29 —Sensors Endpoints
	URL
	Method
	Request Body
	Response Body

	/sensors
	POST
	Sensor association request (see Table 1)
	Sensor association response (see Table 2)

	/sensors
	GET
	NA
	Sensors response (see Table 18)

	/sensors/{sensor_id}/status
	GET
	NA
	status response (see Table 4)

	/sensors/{sensor_id}/capabilities
	GET
	NA
	capabilities response (see Table 6)

8.2.2.2 Clients
Table 30 —Client Endpoint
	URL
	Method
	Request Body
	Response Body
	Description/Notes

	/clients
	POST, DELETE
	client association request (see Table 15
	client association response (see Table 16)
	Associate or delete a Data Client

8.2.2.3 Schedule
Table 31 —Schedule Endpoint
	Request
	Methods
	Request Body
	Response Body
	Description/Notes

	/schedule
	POST, GET
	Schedule entry request (See Table 7) with POST
	Schedule overview response (see Table 10)
	Create Schedule Entry or view Schedule Entries. Get requests allow option limit and offset URL parameters.

	/schedule/{schedule_id}
	GET, PUT, PATCH, DELETE, POST
	Schedule entry request (See Table 7) with PUT, PATCH. Acquisition notification (see Table 13) in POST.
	Schedule overview response (see Table 10)
	View, Update, or Delete Schedule Entry

	/schedule /{schedule_id}/tasks
	GET, DELETE
	N/A
	Task Status Response (Table 12) or HTTP Response Code
	View or delete the tasks that have completed in a schedule. Deleting the tasks will delete the acquisitions generated by the task.

	/schedule/{schedule_id}/tasks/{task_id}
	GET, DELETE
	N/A
	Task Status Response (Table 12) or HTTP Response Code
	View or delete a single completed task. Deleting the task will delete the acquisition generated by the task.

	schedule/{schedule_id}/acquisitions/{task_id}/archive
	GET
	N/A
	SigMF TAR archive or HTTP Response Code
	Download the archive of the SigMF metadata and data file generated by the task.

Annex A SigMF Metadata Extensions

A.1 Overview

This section defines the informative SigMF metadata extensions that should be included within the metadata files produced by a Sensor. Some of the objects defined in these extensions are also used within the messages.
A.2 scos-core

The scos-core extension provides generally useful metadata extensions that may be referenced in other namespace extensions.

A.2.1 Global

The scos-core namespace does not extend the global object, but defines additional objects that may be used in other global object extensions. The Antenna object is utilized within the Sensor object and contains the following name/value pairs.

Table 32 —Antenna Object

	Property
	R/O/C
	Type
	Unit
	Description

	antenna_spec
	R
	HardwareSpec (see Table 33)
	N/A
	Metadata describing the physical hardware of the antenna.

	type
	O
	string
	N/A
	Antenna type. E.g. "dipole", "biconical", "monopole", "conical monopole".

	low_frequency
	O
	number
	Hz
	Low frequency of operational range.

	high_frequency
	O
	number
	Hz
	High frequency of operational range.

	polarization
	O
	number
	string
	Antenna polarization. E.g. "vertical", "horizontal", "slant-45", "left-hand circular", "right-hand circular".

	cross_polar_discrimination
	O
	number
	N/A
	Cross-polar discrimination.

	gain
	O
	number
	dBi
	Antenna gain in direction of maximum radiation or reception.

	horizontal_gain_pattern
	O
	number[]
	dBi
	Antenna gain pattern in horizontal plane from 0 to 359 degrees in 1 degree steps.

	vertical_gain_pattern
	O
	number[]
	dBi
	Antenna gain pattern in vertical plane from -90 to +90 degrees in 1 degree steps.

	horizontal_beam_width
	O
	number
	degrees
	Horizontal 3-dB beamwidth.

	vertical_beam_width
	O
	number
	degrees
	Vertical 3-dB beamwidth.

	voltage_standing_wave_ratio
	O
	number
	volts
	Voltage standing wave ratio.

	cable_loss
	O
	number
	dB
	Cable loss for cable connecting antenna and preselector.

	steerable
	O
	boolean
	N/A
	Defines if the antenna is steerable or not.

Table 33 —HardwareSpec Object

	Property
	R/O/C
	Type
	Description

	id
	R
	string
	Unique id of hardware. E.g., serial number.

	model
	O
	string
	Hardware make and model.

	version
	O
	string
	Hardware version.

	description
	O
	string
	Description of the hardware.

	supplemental_information
	O
	string
	Information about hardware, e.g., URL to on-line data sheets.

A.2.2 Captures

The scos-core namespace does not extend the captures object.
A.2.3 Annotations

The scos-core namespace extends the annotations segment object with the annotation_type key defined in Table 34. In addition, scos-core defines a new antenna annotation segment type, defined in Table 35, which extends the top level annotation segment object.

Table 34 —Annotation Extension
	Property
	R/O/C
	Type
	Description

	annotation_type
	O
	string
	The annotation type.

Table 35 —Antenna Annotation Segment

	Property
	R/O/C
	Type
	Unit
	Description

	id
	R
	string
	N/A
	Unique id of an antenna object defined in the global object.

	azimuth_angle
	O
	number
	degrees
	Angle of main beam in azimuthal plane from North.

	elevation_angle
	O
	number
	degrees
	Angle of main beam in elevation plane from horizontal.

	scos-core:annotation_type
	R
	string
	N/A
	AntennaAnnotation

A.3 scos-sensor

The scos-sensor namespace provides metadata to describe RF sensors.

A.3.1 Global

The scos-sensor namespace extends the global object with the kev/value pairs defined in Table 36. The sensor extension to the global objects utilizes the Sensor object defined in Table 37, which uses the HardwareSpec (Table 33), Preselector (Table 38), RFPath (Table 42), and SignalAnalyzer (Table 43) objects. These objects are also used in the Sensor capabilities messages defined in 5.2.2.3, which are also used by the Manager as specified in 6.2.2.3.

Table 36 —Global Extensions

	Property
	R/O/C
	Type
	Unit
	Description

	sensor
	O
	Sensor (see Table 37)
	N/A
	JSON object describing the Sensor.

	calibration_datetime
	O
	datetime
	ISO-8601 (ISO 8601-1:2019)
	Time of last calibration.

Table 37 —Sensor Object

	Property
	R/O/C
	Type
	Description

	sensor_spec
	R
	HardwareSpec (see Table 33)
	Metadata describing the Sensor hardware.

	antenna
	R
	Antenna (see Table 32.
)
	Metadata describing the physical antenna.

	preselector
	O
	Preselector (see Table 38)
	Metadata describing the preselector.

	signal_analyzer
	R
	SignalAnalyzer (see Table 43)
	Metadata describing the signal analyzer.

	computer_spec
	O
	HardwareSpec (see Table 33)
	Description of host compute. E.g. Make, model, and configuration.

	mobile
	O
	boolean
	Indicates if the Sensor is mobile

Table 38 —Preselector Object

	Property
	R/O/C
	Type
	Description

	preselector_spec
	O
	HardwareSpec (see Table 33)
	Metadata to describe the physical preselector component.

	cal_source
	O
	CalSource (see Table 41)
	Metadata to describe/specify the preselector calibration source.

	amplifiers
	O
	Amplifier[] (see Table 39)
	Metadata to describe/specify the preselector low noise amplifier.

	filters
	O
	Filter[] (see Table 33)
	Metadata to describe/specify the preselector RF bandpass filters.

	rf_paths
	O
	RFPath[] (see Table 42)
	Metadata that describes preselector RF paths.

Table 39 —Amplifier Object

	Property
	R/O/C
	Type
	Unit
	Description

	amplifier_spec
	O
	HardwareSpec (see Table 33)
	N/A
	Metadata to describe the amplifier specification.

	gain
	O
	number
	dB
	Gain of the low noise amplifier.

	noise_figure
	O
	number
	dB
	Noise figure of the low noise amplifier.

	max_power
	O
	number
	dB
	The maximum power of the low noise amplifier.

Table 40 —Filter Object

	Property
	R/O/C
	Type
	Unit
	Description

	filter_spec
	O
	HardwareSpec (see Table 33)
	N/A
	Metadata to describe/specify the filter specification.

	low_frequency_passband
	O
	number
	Hz
	Low frequency of filter 1-dB passband.

	high_frequency_passband
	O
	number
	Hz
	High frequency of filter 1-dB passband.

	low_frequency_stopband
	O
	number
	Hz
	Low frequency of filter 60-dB stopband.

	high_frequency_stopband
	O
	number
	Hz
	High frequency of filter 60-dB stopband.

Table 41 —CalSource Object

	Property
	R/O/C
	Type
	Unit
	Description

	cal_source_spec
	O
	HardwareSpec (see Table 33)
	N/A
	Metadata to describe the calibration source.

	type
	O
	string
	N/A
	The type of the calibration source.

	enr
	O
	number
	dB
	The excess noise ration of the calibration source.

Table 42 —RFPath Object

	Property
	R/O/C
	Type
	Unit
	Description

	low_frequency_passband_filter
	O
	number
	Hz
	Low frequency of filter 1-dB passband.

	high_frequency_passband_filter
	O
	number
	Hz
	High frequency of filter 1-dB passband.

	low_frequency_stopband_filter
	O
	number
	Hz
	Low frequency of filter 60-dB stopband.

	high_frequency_stopband_filter
	O
	number
	Hz
	High frequency of filter 60-dB stopband.

	gain_lna
	O
	number
	dB
	Gain of low noise amplifier.

	noise_figure_lna
	O
	number
	dB
	Noise figure of low noise amplifier.

	type_cal_source
	O
	string
	N/A
	E.g., "calibrated noise source".

Table 43 —SignalAnalyzer Object

	Property
	R/O/C
	Type
	Unit
	Description

	sigan_spec
	O
	HardwareSpec (see Table 33)
	N/A
	Metadata to describe/specify the signal analyzer.

	low_frequency
	O
	number
	Hz
	Low frequency of operational range of the signal analyzer.

	high_frequency
	O
	number
	Hz
	High frequency of operational range of the signal analyzer.

	noise_figure
	O
	number
	dB
	Noise figure of the signal analyzer.

	max_power
	O
	number
	dBm
	Maximum input power of the signal analyzer.

	a2d_bits
	O
	integer
	bits
	Number of bits in A/D converter.

A.3.2 Captures

The scos-sensor namespace does not extend the captures object.

A.3.3 Annotations

The scos-sensor namespace provides the SensorAnnotation object, defined in Table 44, to record changes that may have occurred in the sensor while the dataset was being recorded. The Calibration annotation, defined in Table 45, details the calibration settings that were used during the recording.

Table 44 —SensorAnnotation Object
	Property
	R/O/C
	Type
	Unit
	Description

	rf_path_index
	O
	integer
	N/A
	Index of the RFPath object.

	overload_sensor
	O
	boolean
	N/A
	Indicator of Sensor overload.

	overload_sigan
	O
	boolean
	N/A
	Indicator of signal analyzer overload.

	attenuation_setting_sigan
	O
	number
	dB
	Attenuation setting of the signal analyzer.

	gain_setting_sigan
	O
	number
	dB
	Gain setting of the signal analyzer.

	latitude
	O
	number
	decimal degrees
	Latitude.

	longitude
	O
	number
	decimal degrees
	Longitude.

	altitude
	O
	number
	meters
	Height above mean sea level.

	speed
	O
	number
	m/s
	Speed.

	bearing
	O
	number
	degrees
	Direction (angle relative to true North).

	gps_nmea
	O
	string
	NMEA
	NMEA message from gps receiver.

	annotation_type
	R
	string
	N/A
	The annotation_type shall equal SensorAnnotation when used within a Sensor Annotation.

Table 45 —CalibrationAnnotation Object
	Property
	R/O/C
	Type
	Unit
	Description

	gain_sigan
	O
	number
	dBm

	Gain of signal analyzer (may differ with signal analyzer gain setting).

	noise_figure_sigan
	O
	number
	dB
	Noise figure of signal analyzer.

	1db_compression_point_sigan
	O
	number
	dBm
	Maximum input of signal analyzer.

	enbw_sigan
	O
	number
	Hz
	Equivalent noise bandwidth of signal analyzer.

	gain_preselector
	O
	number
	dB
	Gain of sensor preselector.

	noise_figure_sensor
	O
	number
	dB
	Noise figure of sensor.

	1db_compression_point_sensor
	O
	number
	dBm
	Maximum input of sensor.

	enbw_sensor
	O
	number
	Hz
	Equivalent noise bandwidth of sensor.

	mean_noise_power_sensor
	O
	number
	dBm/Hz
	Mean noise power density of sensor.

A.4 scos-aglorithm

The scos-algorithm extension describes algorithms applied to measurements.

A.4.1 Global

Thes scos-algorithm namespace extends global with the optional anti_aliasing_filter key that uses the DigitalFilter object defined in Table 47.

Table 46 —Global Extensions

	Property
	R/O/C
	Type
	Unit
	Description

	anti_aliasing_filter
	O
	DigitalFilter
	N/A
	Digital filter applied to data to avoid aliasing

Table 47 —DigitalFilter Object

	Property
	Required
	Type
	Unit
	Description

	filter_type
	O
	string
	N/A
	Description of digital filter, e.g., "FIR", "IIR"

	FIR_coefficients
	O
	number[]
	N/A
	Coefficients that defines FIR filter.

	IIR_numerator_coefficients
	O
	number[]
	N/A
	Coefficients that defines IIR filter.

	IIR_denominator_coefficients
	O
	number[]
	N/A
	Coefficients that defines IIR filter.

	cutoff_attenuation
	O
	number
	dB
	Attenuation that specifies the cutoff_frequency (typically 3 dB).

	cutoff_frequency
	O
	number
	Hz
	Frequency that characterizes boundary between passband and stopband.

	ripple_passband
	O
	number
	dB
	Ripple in passband.

	attenuation_stopband
	O
	number
	dB
	Attenuation of stopband.

	frequency_stopband
	O
	number
	Hz
	Point in filter frequency response where stopband starts.

A.4.2 Captures

The scos-algorithm namespace does not extend the captures object.
A.4.3 Annotations

The scos-algorithm namespace provides the TimeDomainDetection, FrequencyDomainDetection, and the DigitalFilterAnnotation annotation extensions defined in Table 48, Table 49, and Table 50. The TimeDomainDetection annotation describes algorithms applied to gap-free IQ time series data captured at a single frequency. The FrequencyDomainDetection annotation describes discrete Fourier transforms of gap-free IQ time series captured at a single frequency. The DigitalFilterAnnoation annotation extension is used to describe changes that were made to anti-aliasing filter as the recordings were captured.

Table 48 —TimeDomainDetection Object
	Property
	R/O/C
	Type
	Unit
	Description

	detector
	R
	string
	N/A
	E.g. “sample_iq”, "sample_power", "mean_power", "max_power", "min_power", "median_power", "m4s_power".

	detection_domain
	R
	string
	N/A
	Domain in which detector is applied, i.e., "time".

	number_of_samples
	R
	integer
	N/A
	Number of samples to be integrated over by detector.

	units
	R
	string
	N/A
	Data units, e.g., "dBm", "watts", "volts".

	reference
	O
	string
	N/A
	Data reference point, e.g., "receiver input", "antenna output", "output of isotropic antenna".

	time
	O
	number[]
	seconds
	Time array corresponding to detected data.

	time_start
	O
	number
	seconds
	Time of the first data point.

	time_stop
	O
	number
	seconds
	Time of the last data point.

	time_step
	O
	number
	seconds
	Time step between data points.

	scos-core:annotation_type
	R
	string
	N/A
	TimeDomainDetection

Table 49 —FrequencyDomainDetection Object
	Property
	R/O/C
	Type
	Unit
	Description

	detector
	R
	string
	N/A
	E.g. "fft_sample_iq", "fft_sample_power", "fft_mean_power", "fft_max_power", "fft_min_power", "fft_median_power".

	detection_domain
	R
	string
	N/A
	Domain in which detector is applied, i.e., "frequency".

	number_of_ffts
	R
	integer
	N/A
	Number of FFTs to be integrated over by detector.

	number_of_samples_in_fft
	R
	integer
	N/A
	Number of samples in FFT to calcluate delta_f = samplerate/number_of_samples_in_fft.

	window
	R
	string
	N/A
	E.g. "blackman-harris", "flattop", "gaussian_a3.5", "gauss top", "hamming", "hanning", "rectangular".

	equivalent_noise_bandwidth
	O
	number
	Hz
	Bandwidth of brickwall filter that has same integrated noise power as that of the actual filter.

	units
	R
	string
	N/A
	Data units, e.g., "dBm", "watts", "volts".

	reference
	O
	string
	N/A
	Data reference point, e.g., "receiver input", "antenna output", "output of isotropic antenna".

	frequency
	O
	number[]
	Hertz
	Frequency array corresponding to detected data

	frequency_start
	O
	number
	Hertz
	Frequency of the first data point.

	frequency_stop
	O
	number
	Hertz
	Frequency of the last data point.

	frequency_step
	O
	number
	Hertz
	Frequency step between data points.

	scos-core:annotation_type
	R
	string
	N/A
	FrequencyDomainDetection

Table 50 —DigitalFilterAnnotation Object
	Property
	Required
	Type
	Unit
	Description

	filter_type
	O
	string
	N/A
	Description of digital filter, e.g., "FIR", "IIR"

	FIR_coefficients
	O
	number[]
	N/A
	Coefficients that defines FIR filter.

	IIR_numerator_coefficients
	O
	number[]
	N/A
	Coefficients that defines FIR filter.

	IIR_denominator_coefficients
	O
	number[]
	N/A
	Coefficients that defines FIR filter.

	cutoff_attenuation
	O
	number
	dB
	Attenuation that specifies the cutoff_frequency (typically 3 dB).

	cutoff_frequency
	O
	number
	Hz
	Frequency that characterizes boundary between passband and stopband.

	ripple_passband
	O
	number
	dB
	Ripple in passband.

	attenuation_stopband
	O
	number
	dB
	Attenuation of stopband.

	frequency_stopband
	O
	number
	Hz
	Point in filter frequency response where stopband starts.

	scos-core:annotation_type
	R
	string
	N/A
	DigitalFilterAnnotation

A.5 scos-emitter

The scos-emitter namespace provides extensions to describe RF emitters.

A.5.1 Global

The scos-emitter namespace extension extends the global object with an emitter key and defines an Emitter object to describe the properties of an RF emitter.

Table 51 —Global Object Extensions

	Property
	R/O/C
	Type
	Unit
	Description

	emitters
	O
	Emitter[](see Table 52)
	N/A
	Metadata that describe emitters

Table 52 —Emitter Object

	Property
	R/O/C
	Type
	Unit
	Description

	id
	R
	string
	N/A
	Unique id of the emitter.

	description
	O
	string
	N/A
	Description of the emitter.

	power
	O
	number
	dBm
	Power referenced to antenna input.

	antenna
	O
	Antenna (see Table 32)
	N/A
	Metadata that describes the antenna.

	transmitter
	O
	Transmitter (see Table 53)
	N/A
	Metadata that describes the transmitter.

Table 53 —Transmitter Object

	Property
	R/O/C
	Type
	Unit
	Description

	model
	R
	string
	N/A
	Make and model of the transmitter. E.g. "Agilent E4438C"

A.5.2 Captures

ntia-emitter does not extend captures.
A.5.3 Annotations

The ntia-emitter namespace defines an EmitterAnnotation annotation extension to describe the properties of an RF emitter that may change during the course of a recording.

Table 54 —EmitterAnnotation Object
	Property
	R/O/C
	Type
	Unit
	Description

	id
	R
	string
	N/A
	Unique id of the emitter.

	waveform
	O
	Waveform
	N/A
	Metadata that describes transmitted waveform.

	latitude
	O
	number
	decimal degrees
	Latitude.

	longitude
	O
	number
	decimal degrees
	Longitude.

	altitude
	O
	number
	meters
	Height above mean sea level.

	speed
	O
	number
	m/s
	Speed.

	bearing
	O
	number
	degrees
	Direction (angle relative to true North).

	scos-core:annotation_type
	R
	string
	N/A
	EmitterAnnotation

A.6 scos-waveform

The scos-waveform namespace provides models and parameters for textbook and standardized complex-baseband waveforms. The intention is to provide a library of simulated waaveforms for testing and training signal identification algorithms. The waveform library may also be used for signal generation purposes in system level interference tests.

A.6.1 Global

Scos-waveform does not directly extend the Global object. Instead, scos-waveform defines the waveform object and additional extensions of the waveform object like the IEEE80211p object. The waveform objects may be utilized within other objects, like the emitter annotation defined in Table 54.

Table 55 —Waveform Object

	Property
	R/O/C
	Type
	Description

	model
	R
	string
	The type of the waveform. E.g. “IEEE80211p”.

Table 56 —IEEE80211p Object

	Property
	R/O/C
	Type
	Unit
	Description

	info_bit_generation
	O
	string
	N/A
	Model that defines information bit generation. E.g. "PN".

	coding_rate
	O
	array [k, n]
	bits
	For every k bits of useful information the coder generates n bits of data. E.g. [1, 2], [2, 3], [3, 4].

	packet_length
	O
	integer
	bits
	Packet length.

	modulation
	O
	string
	N/A
	Modulation, e.g., "BPSK", "QPSK", "16QAM", "64QAM".

	encoder
	O
	string
	N/A
	Description of encoder. E.g. "Convolutional".

	number_of_subcarriers
	O
	integer
	N/A
	Number of subcarriers.

	number_of_data_subcarriers
	O
	integer
	N/A
	Number of data subcarriers.

	number_of_pilots
	O
	integer
	N/A
	Number of pilots.

	cyclic_prefix
	O
	integer
	bits
	Size of cyclic prefix.

	short_inter_frame_space
	O
	number
	microseconds
	Time required to process a received frame and to respond with a response frame.

	preamble_frame
	O
	array
	N/A
	Preamble of 0's and 1's used for synchronization and id beginning of frame.

	number_of_info_bits
	false
	integer
	N/A
	Number of information bits.

	signal_to_noise_ratio
	false
	float
	dB
	Signal-to-noise ratio. If unspecified, assumed no noise present.

A.7 scos-environment

The scos-environment namespace provides SigMF metadata extensions to characterize the environment factors around a sensor and\or emitter.
A.7.1 Global

The ntia-environment namespace does not extend the global object.
A.7.2 Captures

The scos-environment namespace does not extend captures.
A.7.3 Annotations

The scos-environment namespace provides SensorEnvironment and EmitterEnvironment annotations to describe the environment around Sensors and Emitters.

Table 57 —SensorEnvironment

	Property
	R/O/C
	Type
	Unit
	Description

	category
	O
	string
	N/A
	Categorical description of the environment where sensor is mounted. E.g. "indoor", "outdoor-urban", "outdoor-rural".

	temperature
	O
	number
	Celsius
	Environmental temperature.

	humidity
	O
	number
	%
	Relative humidity.

	weather
	O
	string
	N/A
	Weather around the sensor. E.g. "rain", "snow".)

	scos-core:annotation_type
	R
	string
	N/A
	SensorEnvironment

Table 58 —EmitterEnvironment

	Property
	R/O/C
	Type
	Unit
	Description

	emitter_id
	R
	string
	N/A
	Unique emitter id

	category
	O
	string
	N/A
	Categorical description of the environment where sensor is mounted. E.g. "indoor", "outdoor-urban", "outdoor-rural".

	temperature
	O
	number
	Celsius
	Environmental temperature.

	humidity
	O
	number
	%
	Relative humidity.

	scos-core:annotation_type
	O
	string
	N/A
	EmitterEnvironment

A.8 scos-acquisition

The scos-acquisition namespace provides additional extensions that are useful in maintaining the provenance of acquisitions.

A.8.1 Global

The scos-acquisition namespace extends the global object with the key/value pairs defined in Table 59.

Table 59 —Global Extensions

	Property
	R/O/C
	Type
	Description

	action
	O
	string
	The name of the action the produced the acquisition.

	schedule_entry
	O
	ScheduleEntry (see Table 23)
	The schedule that produced the acquisition.

	task
	O
	integer
	The id of the task.

	start_time
	O
	datetime
	When the action started.

	end_time
	O
	datetime
	When the action finished.

	archive_path
	O
	string
	The location of the archive file.

A.8.2 Captures

The scos-acquisition namespace does not extend captures.
A.8.3 Annotations
The scos-acquisition namespace does not extend annotations.
The Institute of Electrical and Electronics Engineers, Inc.

3 Park Avenue, New York, NY 10016-5997, USA

Copyright © � DOCVARIABLE varCRYear * MERGEFORMAT �2018� by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved. Published � DOCVARIABLE varPublishedDate * MERGEFORMAT �<Date Published>�. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics �Engineers, Incorporated.

PDF:	ISBN � DOCVARIABLE varISBNpdf * MERGEFORMAT �978-0-XXXX-XXXX-X�	� DOCVARIABLE varStdIDpdf * MERGEFORMAT �STDXXXXX�

Print:	ISBN � DOCVARIABLE varISBNprint * MERGEFORMAT �978-0-XXXX-XXXX-X�	� DOCVARIABLE varStdIDprint * MERGEFORMAT �STDPDXXXXX�

IEEE prohibits discrimination, harassment, and bullying.

For more information, visit � HYPERLINK "http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html" ��http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html�.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

� SigMF specification is available at: � HYPERLINK "http://sigmf.org" ��http://sigmf.org�

�IEEE Standards Dictionary Online is available at: � HYPERLINK "http://dictionary.ieee.org" �http://dictionary.ieee.org�

.

�Not sure about this format

�This needs to be verified

PAGE

