Submission Title: [IG DEP MAC Protocol with Interference Mitigation Using Negotiation among Coordinators in Multiple Wireless Body Area Networks(BANs)]

Date Submitted: [11 March 2019]

Source: [Shunya Ogawa1, Ryuji Kohno1,2,3] [1;Yokohama National University, 2;Centre for Wireless Communications(CWC), University of Oulu, 3;University of Oulu Research Institute Japan CWC-Nippon] Address [1; 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan 240-8501

- 2; Linnanmaa, P.O. Box 4500, FIN-90570 Oulu, Finland FI-90014
- 3; Yokohama Mitsui Bldg. 15F, 1-1-2 Takashima, Nishi-ku, Yokohama, Japan 220-0011]

Voice:[1; +81-45-339-4115, 2:+358-8-553-2849], FAX: [+81-45-338-1157],

Email:[1: ogawa-shunya-md@ynu.jp, kohno@ynu.ac.jp, 2: Ryuji.Kohno@oulu.fi, 3: ryuji.kohno@cwc-nippon.co.jp] Re: []

Abstract: [A dependable MAC protocol for wireless body area network(WBAN) in presence of multiple overlaid BANS is introduced, A scheme of negotiation among coordinators could improve overall performance.]

Purpose: [information]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

MAC Protocol with Interference Mitigation Using Negotiation among Coordinators in Multiple Wireless Body Area Networks(BANs)

Shunya Ogawa*, Ryuji Kohno*†

* Graduate School of Engineering Yokohama National University † University of Oulu Research Institute Japan – CWC-Nippon, Co. Ltd.

1. Introduction

1.1 Introduction

 From the development of an aging society and wireless communication technology, researches on medical information communication technology are thriving

WBAN ution is a WBAN (Wireless Body Area Network) IEEE802.15.6

A network consisting of sensor nodes and coordinators installed around the human body

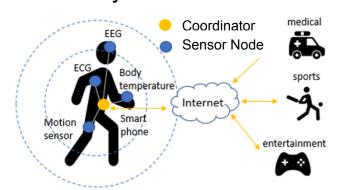


Fig1. Overall picture of WBAN network

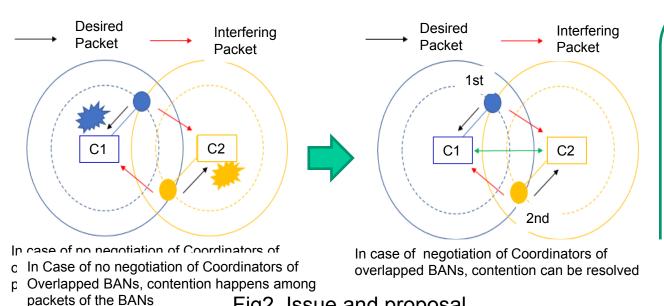
International standard of WBAN
Defined for physical layer and MAC
layer

This study changes the MAC layer

Hardware already sold MAC layer can be changed by software

WBAN can control priority according to importance of data packet

◆ In this research, we focus on the MAC layer of IEEE 802.15.6 and propose a MAC protocol that reduces inter-BAN interference


Issue

1.2 Issues in the standard

- Interference problem in the case where multiple BANs overlap (specifically, situations where people with BAN approaching)
- Because the schedule adjustment between the coordinators has not been done

Proposal

 Negotiation between coordinators, scheduling between different BANs, to prevent deterioration due to inter-BAN interference

- What is interference at the MAC layer
- Sensor nodes within the communication range try to transmit packets at the same timing, causing collisions, making it impossible to communicate correctly

2. Proposed method

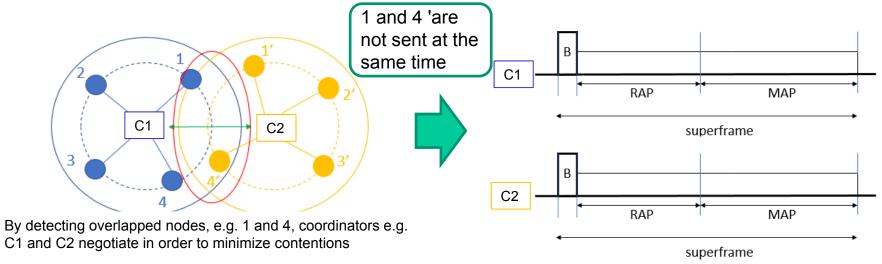
Purpose

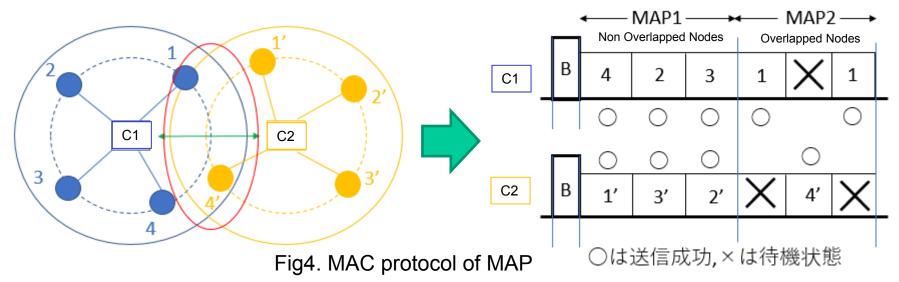
2.1 Outline of proposed method

- Increase the throughput of each BAN in case of interference
- Communication should be guaranteed in descending order of User Priority

Proposal

- Negotiate between coordinators, share the overlap situation of the sensor nodes, and identify the sensor nodes that will cause contention
- Do not send them at the same time




Fig3. Outline of proposed method

2.2 MAC protocol of MAP(Managed access period)

Proposal

(Adopt polling for MAP)

- Divide Superframe's MAP structure into two parts, MAP 1 and MAP 2
- 1. In MAP 1, sensor nodes not related to interference are allocated
- Send at the same time
- In MAP 2, sensor nodes related to interference are allocated
- When one BAN attempts to transmit at MAP 2, the other BAN is placed in a standby state

 By separating by interference and non-interference, packet collision does not occur and efficient transmission can be done

2.3 MAC protocol of RAP(Random Access Period)

Proposal

(Adopt CSMA / CA for RAP)

- The Superframe's RAP protocol is as follows
- 1. If the interfering node is low UP (4 or less), do not conflict transmission rights (those with lower UP than competing nodes do not compete)
- 2. If the interference node is high UP (5 or more), compete transmission rights of normal CSMA/CA

Although contention will occur, it will guarantee in descending order of UP

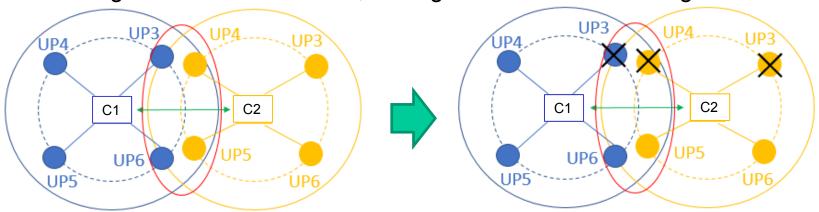


Fig5. MAC protocol of RAP

 It is possible to reduce the contention of packets while guaranteeing in descending order of UP

2.4 Drawback of proposed method

- 1. MAC protocol of MAP
- Depending on the number of interfering nodes, the characteristics are degraded
- The number of slots of MAP 1 and MAP 2 of Superframe becomes extra
- 2. MAC protocol of RAP
- When offeredload is low, the delay characteristic deteriorates
- When packet occurrence interval is large, deterioration due to not competing transmission right is large
- Even if these two combinations are used, only the average UP as a whole improves, high UP is particularly guaranteed, and low UP is sacrificed can not be controlled for each purpose
- We aim to respond by changing parameters according to design policy

3. Measures against drawback

3.1 Measures to drawback MAP

Measures

- Change the ratio of the number of slots of MAP 1 and MAP 2 of Superframe
- MAP 1 : MAP 2 = number of non-interfering nodes ÷ 2 : to be the number of interference nodes

(It is known from the simulation that this is the optimal solution)

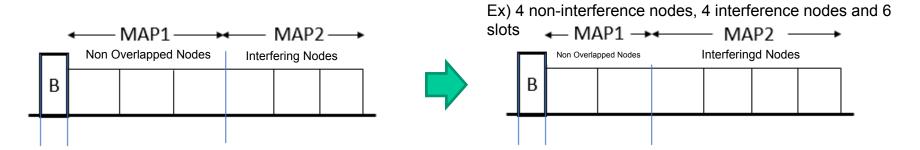


Fig6. Measures to draw back MAP

◆ By changing the ratio of the number of slots of MAP 1 and MAP 2 according to the number of interfering nodes, there is no extra

3.2 Measures to drawback MAP

Measures

- Switch on whether to use the proposed method for each offeredload
- When offeredload is low, competing transmission rights of normal CSMA / CA
- When the offer load becomes such that packets conflict, countermeasures against interference are made using the proposed method

 Low offeredload

 High offeredload

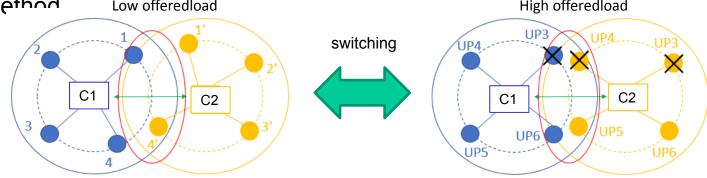
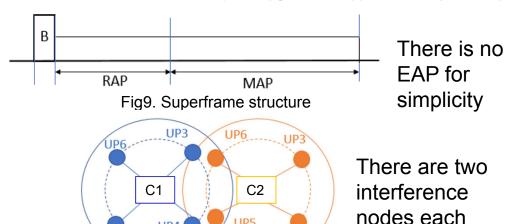


Fig7. Measures to drawback MAP

 Due to the switching of the proposed scheme, the deterioration at the time of low offeredload decreases

3.3 Control to make the priority higher

 We propose a MAC protocol not only giving average performance as a whole, but also differentiating between high UP and low UP


RAP 1. If it is low UP (4 or less) irrespective of interference or non-interference, do not compete transmission right 2. If it is high UP (5 or more) irrespective of interference or noninterference, compete transmission right C2 C1 Fig8. RAP

MAP How to assign transmission rights The one with the largest UP value × elapsed time We changed the weighting value called UP value As an example this time we doubled the value of UP if it is high UP (5 or more) Weighting to make the priority more dominant

 By changing parameters, we can cope with each design policy (giving average performance, differentiating between high UP and low UP)

4. Performance evaluation by simulation

4.1 Simulation characteristics

UP5

Fig10. Assumed scenario

Table 1 simulation characteristics

Table 1. Simulation characteristics	
Number of nodes	4(UP高2,低2)
Data rate	242.9 [kbps]
Payload length	128 [octets]
Number of BANs	2
Superframe length	115 [ms]
Number of slots	RAP=5,MAP=12
Simulation time	30 [s]
Number of trials	100

- Determining parameters based on the standard (IEEE 802.15.6)
- The probability of occurrence for each UP is the same
- One type of packet is generated from one node
- RAP, MAP handle all packets
- The difference between the two BANs is that only interfering UP
- The condition for discarding the packet is the case where the number of retransmissions is 4 or more and the case where the number of packets to be crowded becomes 3 or more

Content of evaluation

- Overall network throughput characteristics
- Throughput characteristics per UP
- Delay characteristics per UP

Evaluation is made in two ways such as average performance, differentiating between high UP and low UP

4.2 Simulation result

Average performance

Differentiating between low UP and high UP

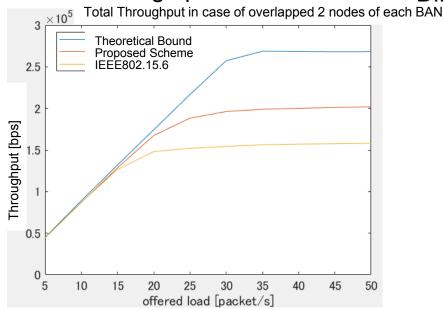


Fig11. Overall network throughput

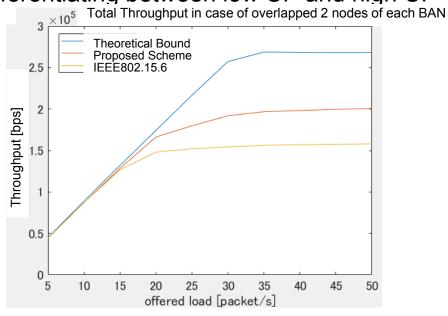


Fig12. Overall network throughput

- The limit value is the throughput of the entire network in the absence of interference
- Compared to the standard, the throughput of the whole network is improved in the proposed method
- Since there is no difference in overall throughput by design policy, both are valid

4.2 Simulation result

Average performance

Differentiating between low UP and high UP

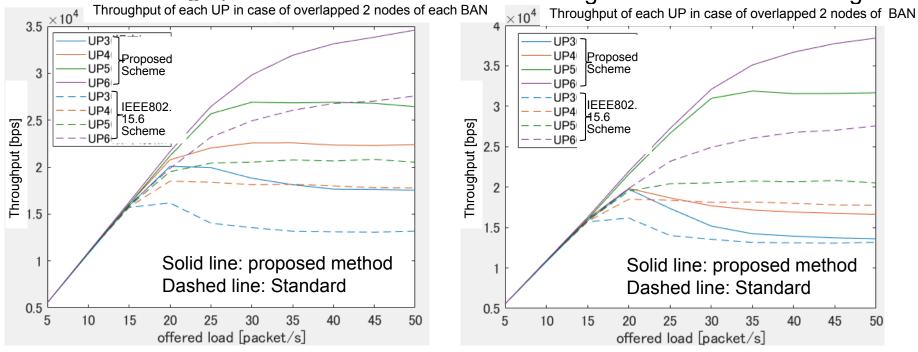


Fig13. Throughput characteristics per UP

Fig14. Throughput characteristics per UP

- Similarly, the proposed method is superior to the throughput for each UP
- We can cope with the case where average performance is given and the case where difference is given for each UP

4.2 Simulation result

Average performance

Delay of each UP in case of overlapped 2 nodes of each BAN 80 Proposed UP4 Scheme 70 IEEE802. 60 UP5(15.6 UP6(Scheme Delay Time [msec] 50 20 Solid line: proposed method Dashed line: Standard 10 15 45 50 30 40 offered load [packet/s]

Fig15. Delay characteristics per UP

Differentiating between low UP and high UP

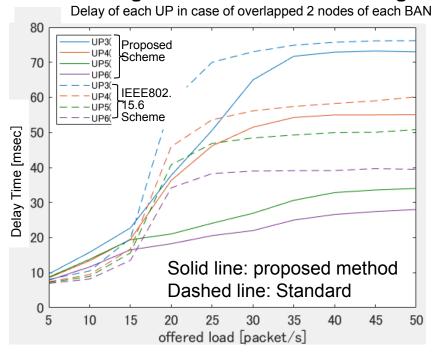


Fig16. Delay characteristics per UP

- Similarly, the proposed method is superior to the delay time for each UP
- We can cope with the case where average performance is given and the case where difference is given for each UP

5. Conclusion

5.1 Conclusion and Future works

Conclusion

- We conducted research to mitigate interference against the international standard MAC protocol
- In order to reduce interference in multiple BAN environments, we propose to communicate between coordinators to identify and share interfering nodes, and the proposed protocol has improved throughput and delay characteristics over international standards
- We showed that we can deal with by changing parameters according to design policy

Future works

- Consideration when the number of BAN becomes 3 or more
- Consideration when packet occurrence probability changes for each UP
- Theoretical analysis on optimum values of various parameters
- MAP 1 and MAP 2 ratio, UP weighting etc.

Thank you for your attention