IEEE P802.15
Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	<ULI Mandatory Elements Operation>

	Date Submitted
	[16 January 2018]

	Source
	[Pat Kinney]
[<company>]
[address]
	Voice:	[]
Fax:	[]
E-mail:	[]

	Re:
	TG12 Architecture: PDE, MMI, MPM, and PTM operation

	Abstract
	[Work in Progress –]

	Purpose
	[Description of what the author wants P802.15 to do with the information in the document.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Operation Details of ULI Mandatory Elements
As shown in Figure 0.1, the mandatory elements of the ULI are the Protocol Discrimination Entity (PDE), Multiplexed MAC Interface (MMI), Management Protocols Module (MPM), and the Passthru Module (PTM).

[image: 802.15.12-multi-mode-r7.emf]
Figure 0‑1
PDE Description Protocol Discrimination Entity
Purpose:
For information received via the 802.15.4 device; the PDE directs that information from the protocol module SAP to the appropriate higher layer SAP or to another protocol module SAP.
For information from a higher layer SAP; the PDE will direct that information to the designated protocol module.
Overview
The PDE is responsible for determining if the higher layer entity’s SAP is a legacy SAP (i.e. intended to directly interface to the 802.15.4 MAC SAPs) or a ULI capable SAP. This allows the ULI to work with higher layer entities that were designed to interface directly to 802.15.4 MAC SAPs as well as higher layer entities designed to interface to the ULI.
For data from higher layer entity to be transmitted to a remote device via the 802.15.4 local device:
· If the higher layer entity’s SAP is a legacy SAP, the PDE will attach origination EtherType/Dispatch information to the data and then send the data to the protocol module dictated by a prior configuration by the MPM or the PTM.
· If the higher layer entity’s SAP is a ULI capable SAP, the PDE will attach origination EtherType/Dispatch information and Profile information to the data and then send that data to the protocol module designated by the EtherType/Dispatch code.
For data received from a remote device via 802.15.4 local device:
· From PTM – send frame payload to the application designated by the EtherType/Dispatch code or the default application as configured by the MPM
· From non-PTM– send frame payload to designated higher layer SAP as dictated by EtherType/Dispatch code attached by the protocol module

Protocol Discrimination
Protocol discrimination is based on either EtherTypes or dispatch codes.
EtherType
EtherType protocol identification values are assigned by the IEEE RA and are used to identify the protocol that is to be invoked to process the user data in the frame. An EtherType is a sequence of 2 octets, interpreted as a 16-bit numeric value with the first octet containing the most significant 8 bits and the second octet containing the least significant 8 bits.

	EtherType
	Organization/
Address
	Protocol

	0800
	Xerox
	IPv4 Internet Protocol Version
A Standard for the Transmission of IP Datagrams over Ethernet Networks, RFC-Internet Society, Apr. 1984. http://www.ietf.org/rfc/rfc894.txt

	86DD
	USC/ISI 4676 Admiralty Way, Marina del Rey, CA
	IPv6 Internet Protocol Version 6
Transmission of Packets over Ethernet Networks, RFC-2464, Internet Society, Dec. 1998. http://www.ietf.org/rfc/rfc2464.txt

	888E
	IEEE 802.1
802.1 Chair
c/o IEEE
Piscataway, NJ
	IEEE Std 802.1X - Port-based network access control

	88B7
	IEEE 802.1 IEEE 802.1 Chair c/o IEEE Piscataway, NJ
	802 - OUI Extended Ethertype. This Ethertype value is available for public use and for prototype and vendor-specific protocol development, as defined in Amendment 802a to IEEE Std 802.

	88F0
	IEEE P1451.0
700 King Farm Blvd., Rockville, MD
	IEEE P1451.0 Smart Transducer Interface for Sensors and Actuators http://grouper.ieee.org/groups/1451/0/private/

	A0ED
	IETF 6lo working group c/o Internet Society, Reston, VA
	When carried over layer 2 technologies such as Ethernet, this EtherType will be used to identify IPv6 datagrams using LoWPAN encapsulation as defined in IETF RFC 4944 Transmission of IPv6 Packets over IEEE 802.15.4 Networks

Dispatch code
Values in the 0–1535 range are not available for use as EtherTypes, rather they designate dispatch codes. Dispatch codes are assigned by the 802.15 ANA.
Multiplex ID field
The Multiplex ID field used in the MPX IE, is used to multiplex different upper-layer protocols. The Multiplex ID field takes one of two meanings, depending on its numeric value as follows:
a. If the value of this field is less than or equal to 1500, the Multiplex ID field takes Dispatch code values.
b. If the value of this field is greater than 1500, the Multiplex ID field indicates the Ethertype of the MAC client protocol.

	Multiplex ID (decimal)
	Multiplex ID (hex)
	Description

	1
	0x0001
	KMP

	2
	0x0002
	WiSUN

	3–1279
	0x0003–0x04ff
	Reserved

	1381
	0x0565
	Vendor specific, OUI extended

	1280–1380, 1382–1500
	0x0500–0x0564, 0x0566–0x05dc
	Reserved

The Multiplex ID field is present if the Frame number is 0x00 and the Transfer type is 0b010, or if the Transfer type is 0b000. If the Transfer type is 0b001, the Multiplex ID is stored inside the Transaction ID field and the Multiplex ID field is omitted.
PDE Primitives
The PDE service consists of four primitives as shown in Table 1
Table 1—Summary of PDE primitives
	Name
	Request
	Indication
	Response
	Confirm

	PDE-DATA

	X

	X
	
	X

	PDE-MGMT-CREATE

	X
	
	
	X

	PDE-MGMT-COMBINEPDE-OP
	XX
	X
	X
	XX

	PDE-MGMT-DELETEPDE-PURGE
	XX
	
	
	XX

	PDE-MGMT-RCVEXEC
	X
	
	
	X

	PDE-MGMT-GET
	X
	
	
	X

	PDE-PURGE
	X
	
	
	X

	PDE-OP
	
	
	
	

PM-DATA.request
Next Higher Layer

PDE-DATA.request
MMI-DATA.request
Protocol Module

MAC
MMI

MCPS-DATA.request
PDE

PM-DATA.confirm
PDE-DATA.confirm
MMI-DATA.confirm
MCPS-DATA.confirm
IEEE802.15.12

IEEE802.15.4

The PDE-DATA primitive supports the transport of data from the higher layer or to the higher layer.

PDE-DATA.request
The PDE-DATA.request primitive is a request from a higher layer SAP to transport a data payload to a remote device. Specifically, the PDE-DATA.request primitive requests the transfer of a PDE payload (PdeData) to the designated protocol module (DstProtocolModuleId). The semantics of this primitive are as follows:	
(
DstAddr,
DstProtocolId,
UliProfileId,
PdeData,
PdeHandle
)

The primitive parameters are described in Table 3.
	Name
	Type
	Valid range
	Description

	DstAddr
	—
	Any valid extended address
	The extended address of the receiving (destination) device.

	DstProtocolId
	Integer
	0x0000–0xffff
	The destination protocol module’s ID, i.e. either the protocol module’s EtherType or Dispatch code

	UliProfileId
	Integer
	0x0000–0xffff
	The ULI Profile ID identifying the desired configuration parameters for ULI protocol modules and MAC/PHY

	PdeData
	Set of octets
	—
	The set of octets forming the PDE data payload.

	PdeHandle
	Integer
	0x00–0xff
	An identifier that can be used to refer to the particular primitive transaction; used to match a confirm primitive with the corresponding request.

	
	
	
	

PDE-DATA.confirm
The PDE-DATA.confirm primitive reports the results of a request to transport data from a higher layer SAP to a remote device. The semantics of this primitive are as follows:
 (
PdeHandle,
MaxTransferSize,
Status
)

The primitive parameters are described in Table 4. If there is no capacity to store the transaction, the Status will be set to TRANSACTION_OVERFLOW. In case the remote device aborts the transaction then the status will be set to TRANSACTION_ABORTED and the MaxTransferSize is set to the value returned from the remote device.
Table 4—PDE-DATA.confirm parameters
	Name
	Type
	Valid range
	Description

	PdeHandle
	Integer
	0x00–0xff
	An identifier that can be used to refer to a particular primitive transaction; used to match a confirm primitive with the corresponding request.

	MaxTransfer- Size
	Integer
	0x0000–0xffff
	In case of an aborted transaction this parameter can be returned from the remote device to indicate the maximum size of transaction it can handle. In case the remote device did not give a maximum size, this is set to zero.

	Status
	Enumeration
	SUCCESS,
TRANSACTION_
OVERFLOW, TRANSACTION_
EXPIRED,
CHANNEL_ACCESS_
FAILURE, INVALID_ADDRESS,
NO_ACK,
COUNTER_ERROR, FRAME_TOO_LONG,
UNAVAILABLE_KEY,
UNSUPPORTED_
SECURITY, INVALID_PARAMETER. TRANSACTION_
ABORTED
	The status of the last PDE data transmission.

PDE-DATA.indication
The PDE-DATA.indication primitive is invoked from a protocol module to deliver a payload to a higher layer SAP. The semantics of this primitive are as follows:	
(
SrcAddr,
DstAddr,
DstSapId,

PdeData,
PdeHandle
)
The primitive parameters are described in Table 5.
Table 5—PDE-DATA.indication parameters
	Name
	Type
	Valid range
	Description

	SrcAddr
	—
	Any valid extended address
	The extended address of the transmitting (source) device.

	DstAddr
	—
	Any valid extended address
	The extended address of the receiving (destination) device.

	DstSapId
	Integer
	0x0000–0xffff
	The destination’s higher-layer SAP ID, i.e. either its EtherType or Dispatch code

	PdeDataSrcProtocolModuleId
	Set of octetsInteger
	—0x0000–0xffff
	The set of octets forming the PDE data payload.The source protocol module’s ID, i.e. either the protocol module’s EtherType or Dispatch code

	PdeHandle
	Integer
	0x00–0xff
	An identifier that can be used to refer to a particular primitive transaction; used to match a confirm primitive with the corresponding request.

	PdeData
	Set of octets
	—
	The set of octets forming the PDE data payload.

	PdeHandle
	Integer
	0x00–0xff
	An identifier that can be used to refer to a particular primitive transaction; used to match a confirm primitive with the corresponding request.

PDE-MGMT
The PDE-MGMT primitives support the transport of configuration information and profiles for the protocol modules or 802.15.4 MAC/PHY to the MPM.

PDE-MGMT-CREATE.request
This request transports from a higher layer to the MPM, the configuration information (PdeMgmtData) for protocol modules or an 802.15.4 MAC/PHY. The MPM creates a profile with the ID value stated in ProfileId and stores this information in its MIB. The identification of the Profile created will be returned in the .confirm primitive. The semantics of this primitive are as follows:
(
SrcSapId,
ProfileId,
PdeMgmtData,
Handle
)
PDE-MGMT-CREATE.confirm
This primitive reports the results of the PDE-MGMT-CREATE.request to the higher layer SAP. The semantics of this primitive are as follows:
(
ProfileId,
Handle,
Status
)
PDE-MGMT-GET.request
This primitive requests the configuration information stored in ProfileId. The semantics of this primitive are as follows:
 (
SrcSapId,
ProfileId,
Handle
)
PDE-MGMT-GET.confirm
This primitive reports the results of the PDE-MGMT-GET.request to the higher layer SAP. The semantics of this primitive are as follows:
 (
PdeMgmtData,
Handle,
Status
)

PDE-MGMT-COMBINE.request
This primitive creates a new ProfileId that is a combination of two or more existing ProfileIds. Changes to any of the ProfileIds used to create the new ProfileId will also change the new ProfileId. The semantics of this primitive are as follows:
 (
ProfileIdList,
Handle
)
PDE-MGMT-COMBINE.confirm
This primitive reports the results of the PDE-MGMT-COMBINE.request to the higher layer SAP. The semantics of this primitive are as follows:
 (
ProfileId,
Handle,
Status
)

PDE-MGMT-CHANGE.request
This primitive changes the configuration information stored in ProfileId. If the value of ProfileElement is nonzero, only the value of that specific element will be changed to the value of ElementValue. The semantics of this primitive are as follows:
 (
SrcSapId,
ProfileId,
ProfileElement,
ElementValue(s),
Handle
)
PDE-MGMT-CHANGE.confirm
This primitive reports the results of the PDE-MGMT-CHANGE.request to the higher layer SAP. The semantics of this primitive are as follows:
 (
Handle,
Status
)

PDE-MGMT-RCVEXEC.request
This primitive loads the configuration information stored in ProfileId into the 802.15.4 MAC & PHY and other modules.. This primitive is typically followed by the 802.15.4 primitive: MLME-RX-ENABLE.request. After the configuration information has been loaded into the 802.15.4 MAC & PHY and other modules, the primitive enables the operation using the configuration information The semantics of this primitive are as follows:
 (
SrcSapId,
ProfileId,
Handle
)
PDE-MGMT-RCVEXEC.confirm
This primitive reports the results of the PDE-MGMT-RCVEXEC.request to the higher layer SAP. The semantics of this primitive are as follows:
 (
Handle,
Status
)

PDE-MGMT-DELETE.request
This primitive deletes the configuration information stored in UliProfileId. ProfileIds that are in use (either being used in a module or 802.15.4 MAC&PHY, or in use for other ProfileId) shall not be deleted. The semantics of this primitive are as follows:
(
SrcSapId,
ProfileId,
Handle
)
PDE-MGMT-DELETE.confirm
This primitive reports the results of the PDE-MGMT-DELETE.request to the higher layer SAP. The semantics of this primitive are as follows:
 (
Handle,
Status
)

The parameters for the PDE-MGMT primitives are described in Table 3.
	Name
	Type
	Valid range
	Description

	SrcSapId
	Integer
	0x0000–0xffff
	The higher-layer SAP ID, i.e. either its EtherType or Dispatch code

	ProfileId
	Integer
	0x0000–0xffff
	The Profile ID for the configuration parameters stored in the MPM

	ProfileIdList
	List of integers
	0x0000-0xffff
	List of ProfileIds to be combined

	PdeMgmtData
	Set of octets

	Configuration information for the 802.15.4 MAC and PHY and/or module(s) to be configured

	HandleProfileElementId
	IntegerInteger
	0x00–0xff0x00–0xff
	An identifier that can be used to refer to the particular primitive transaction; used to match a confirm primitive with the corresponding request.The ID of the element of the given ProfileId

	StatusElementValue
	EnumerationSet of octets
	SUCCESS,
TRANSACTION_
OVERFLOW,
INVALID_PARAMETER, TRANSACTION_
ABORTED—
	The status of the last primitive.The set of octets forming the ElementValue(s) specified by ProfileElementId.

	Handle
	Integer
	0x00–0xff
	An identifier that can be used to refer to the particular primitive transaction; used to match a confirm primitive with the corresponding request.

	Status
	Enumeration
	SUCCESS,
TRANSACTION_
OVERFLOW,
INVALID_PARAMETER, TRANSACTION_
ABORTED
	The status of the last primitive.

PDE-PURGE
The PDE-PURGE primitives provide a means to remove or abort pending transfers and operations from the PDE transaction queue of the originator.

The PDE-PURGE.request primitive allows the next higher layer to purge a PDE payload from the transaction queue.
The semantics of the PDE-PURGE.request are as follows:
 (
Handle,
SendAbort
)
The primitive parameters are described in Table 6.
Table 6—PDE-PURGE.request parameters
	Name
	Type
	Valid range
	Description

	Handle
	Integer
	0x00–0xff
	An identifier that can be used to refer to a particular primitive transaction; used to match a PDE-PURGE.request primitive with the corresponding PDE-DATA.confirm primitive.

	SendAbort
	Boolean
	TRUE, FALSE
	If this parameter is TRUE and the transaction is still active, the PDE data service requests that an abort code be sent to the remote device indicating that the transaction was aborted. If this parameter is FALSE, the transaction is just purged locally, and no information is sent to the remote device.

On receipt of the PDE-PURGE.request primitive, the PDE data service attempts to find in the transaction queue the payload indicated by the Handle parameter. If a PDE payload has left the transaction queue, the handle will not be found, and the PDE payload can no longer be purged. If a PDE payload matching the given handle is found, the payload is discarded from the transaction queue, and optionally an abort message is sent to the other end, if the SendAbort parameter is TRUE. If an abort message is sent to the other end that will allow the other end to clear out its state immediately without waiting for the timeout.
The PDE-PURGE.request will also cause a corresponding MCPS-PURGE.request to be issued to the MAC data service, provided it has an MCPS-DATA.request in process when the PDE-PURGE.request is called.
PDE-PURGE.confirm
The PDE-PURGE.confirm primitive allows the PDE service to notify the next higher layer of the success of its request to purge a PDE payload from the transaction queue of the PDE.
The semantics of this primitive are as follows:
(
Handle,
Status
)
The primitive parameters are described in Table 7.
Table 7—PDE-PURGE.confirm parameters
	Name
	Type
	Valid range
	Description

	Handle
	Integer
	0x00–0xff
	An identifier which can be used to refer to a particular primitive transaction; used to match a confirm primitive with the corresponding request.

	Status
	Enumeration
	SUCCESS, INVALID_HANDLE
	The status of the request to purge PDE data from the transaction queue.

March, 1994	 DOC: IEEE P802.11-94/xxx
May, 2018March, 2018	IEEE P802.15-<15-16-0656-10>

Submission	Page 	D. Kawaguchi, Symbol Technologies

Submission	Page 	Pat Kinney, <Kinney Consulting>

PDE-OP
The PDE-OP primitives specify operations such as commands to be done to specified protocol modules.

PDE-OP-LIST.request
This primitive requests a list of the modules’ IDs present in the ULI. The primitive is directed to the MPM which keeps the list of protocol modules present in the ULI.
PDE-OP-LIST.confirm
This primitive returns a list of the modules present in the ULI.

PDE-OP-GETSTATUS.request
This primitive requests the status of the protocol module indicated by ModuleId
PDE-OP-GETSTATUS.confirm
This primitive returns with the status of the protocol module indicated by ModuleId

PDE-OP-SETSTATUS.request
This primitive sets the status of the protocol module indicated by ModuleId
PDE-OP-SETSTATUS.confirm
This primitive reports the results of the request to set the status of the protocol module indicated by ModuleId

PDE-OP.indication
The PDE-OP.indication primitive indicates the presence of data from a designated protocol module that is to be sent to a higher layer. The semantics of this primitive are as follows:
 (
DstSapId,
ModuleId,
PdeOpData,
Status
)
PDE-OP.response
The PDE-OP.response primitive allows the next higher layer of a device to respond to the PDE-OP.indication primitive.

PDE-PURGE
The PDE-PURGE primitives provide a means to remove or abort pending transfers and operations from the PDE transaction queue of the originator.

The PDE-PURGE.request primitive allows the next higher layer to purge a PDE payload from the transaction queue.
The semantics of the PDE-PURGE.request are as follows:
 (
Handle,
SendAbort
)
The primitive parameters are described in Table 6.
Table 6—PDE-PURGE.request parameters
	Name
	Type
	Valid range
	Description

	Handle
	Integer
	0x00–0xff
	An identifier that can be used to refer to a particular primitive transaction; used to match a PDE-PURGE.request primitive with the corresponding PDE-DATA.confirm primitive.

	SendAbort
	Boolean
	TRUE, FALSE
	If this parameter is TRUE and the transaction is still active, the PDE data service requests that an abort code be sent to the remote device indicating that the transaction was aborted. If this parameter is FALSE, the transaction is just purged locally, and no information is sent to the remote device.

On receipt of the PDE-PURGE.request primitive, the PDE data service attempts to find in the transaction queue the payload indicated by the Handle parameter. If a PDE payload has left the transaction queue, the handle will not be found, and the PDE payload can no longer be purged. If a PDE payload matching the given handle is found, the payload is discarded from the transaction queue, and optionally an abort message is sent to the other end, if the SendAbort parameter is TRUE. If an abort message is sent to the other end that will allow the other end to clear out its state immediately without waiting for the timeout.
The PDE-PURGE.request will also cause a corresponding MCPS-PURGE.request to be issued to the MAC data service, provided it has an MCPS-DATA.request in process when the PDE-PURGE.request is called.
PDE-PURGE.confirm
The PDE-PURGE.confirm primitive allows the PDE service to notify the next higher layer of the success of its request to purge a PDE payload from the transaction queue of the PDE.
The semantics of this primitive are as follows:
(
Handle,
Status
)
The primitive parameters are described in Table 7.
Table 7—PDE-PURGE.confirm parameters
	Name
	Type
	Valid range
	Description

	Handle
	Integer
	0x00–0xff
	An identifier which can be used to refer to a particular primitive transaction; used to match a confirm primitive with the corresponding request.

	Status
	Enumeration
	SUCCESS, INVALID_HANDLE
	The status of the request to purge PDE data from the transaction queue.

Multiplexed MAC Interface
MMI Description
Purpose
· Directs and may modify information from a protocol module SAP to the appropriate MAC SAP or another protocol module SAP
· [bookmark: _GoBack]Directs and may modify information from a MAC SAP to a protocol module SAP
· Provides a fragmentation/defragmentation service to the data sent to or from the MCPS-SAP, the MLME-SAP, or another protocol module SAP.
Overview
· The mechanism for the MMI, i.e. the ability to send the data to the proper SAP and fragmentation/defragmentation is similar to the mechanism defined in IEEE 802.15.9 for the multiplexed data service.
· The MMI is responsible for determining the Remote Node’s capability, i.e. whether it supports ULI IEs.
· The process of sending the data to the MCPS-SAP includes possibly fragmenting the data and formatting the ULI IE i.e. inserting the appropriate headers into the payload of the frame for transmission.
· The process of receiving the data from the MCPS-SAP includes possibly defragmenting that data, removing the ULI IE headers, and passing the data to the appropriate protocol module SAP.
· The interface between the MMI and the ULI protocol modules includes the EtherType/Dispatch code and the payload.

The MMI service consists of four primitives as shown in Table 2.

Table 2—Summary of MMI primitives
	Name
	Request
	Indication
	Response
	Confirm

	MMI-DATA
	X
	X
	
	X

	MMI-MGMT
	X
	X
	
	X

	MMI-CONFIG
	X
	X
	
	X

	MMI-PURGE
	X
	
	
	X

The MMI data service delivers an MMI data payload from the protocol blocks to the MCPS-SAP after it packages them into a ULI IE or an MPX IE using the formats shown in Table 2 and Table 2a. The dispatch or EtherType ID indicates the ULI destination of the data payload.

Table 2
	Octets: 1
	Variable

	ULI IE ID
	Payload

Table 2a
	Octets: 1
	2
	Variable

	MPX IE ID
	Dispatch/EtherType ID
	Payload

The formatted ULI IE or MPX IE is sent using the MCPS-DATA primitive via either Data or Multipurpose frames to the recipient device. At the recipient device, the ULI IE or MPX IE is delivered to the MCPS-SAP where the MMI data service delivers the data payload to the SAP of the protocol block or upper layer interface as identified by the dispatch/EtherType ID. Figure 2 illustrates this message sequence.

ULI
MAC This ULI IE is sent using the MCPS-DATA primitive via either Data or Multipurpose frames to the recipient device. At the recipient device, the ULI IE is delivered to the MCPS-SAP where the MMI data service delivers the data payload to the identified protocol block. Figure 2 illustrates this message sequence.
C

Protocol Bock
Protocol Block
MAC
ULI
MMI-DATA.request
MCPS-DATA.request
Data frame
MCPS-DATA.indication
ACK frame
MMI-DATA.indication
MCPS-DATA.confirm
MMI-DATA.confirm

The MMI management service takes an MMI management payload from the protocol modules, packages it into a ULI IE or MPX IE as shown in Figure 1, delivers it to the MLME-SAP, and then using the MLME-IE-NOTIFY primitive it is sent via either Command or the Enhanced Ack frames to the remote device. At the remote device, the ULI IE or MPX IE is delivered to the MLME-SAP, where the MMI management service delivers the management payload to the identified ULI protocol module.

The MMI configuration service delivers an MMI configuration payload from the MPM to the MLME-SAP or other protocol modules. The configuration payload is formatted as per the appropriate IEEE 802.15.4 primitive accessed through the MLME-SAP.

The MMI-PURGE service provides a means to remove or abort pending transfers from the MMI transaction queue of the originator.

[image:]
MMI-DATA.request
The MMI-DATA.request primitive requests the transfer of an MMI payload to a remote device via the IEEE 802.15.4 MAC/PHY. The semantics of this primitive are as follows:	
(
SrcAddrMode,
DstAddrMode,
DstPanId,
DstAddr,
Msdu,
MsduHandle,
HeaderIeList,
PayloadIeList,
HeaderIeIdList,
NestedIeSubIdList,
AckTx,
GtsTx,
IndirectTx,
SecurityLevel,
KeyIdMode,
KeySource,
KeyIndex,
UwbPrf,
Ranging,
UwbPreambleSymbolRepetitions,
DataRate,
LocationEnhancingInformationPostamble,
LocationEnhancingInformationPostambleLength,
PanIdSuppressed,
SeqNumSuppressed,
SendMultipurpose
FrakPolicy,
CriticalEventMessage
)

The primitive parameters are described in Table 3.
Table 3—MMI-DATA.request parameters
	Name
	Type
	Valid range
	Description

	SrcAddrMode
	Enumeration
	NONE, SHORT, EXTENDED
	The source addressing mode for this MMI data.

	DstAddrMode
	Enumeration
	NONE, SHORT, EXTENDED
	The destination addressing mode for this MMI data.

	DstPanId
	Integer
	0x0000–0xffff
	The PAN identifier of the entity to which the MMI data is being transferred.

	DstAddr
	—
	As specified by the DstAddrMode parameter.
	The address of the receiving (destination) device.

	MultiplexId
	Integer
	0x0000–0xffff
	The higher-layer protocol using the MMI data service. ULI IE ID or MPX IE ID and the EtherType/Dispatch code

	MmiData
	Set of octets
	—
	The set of octets forming the IE data payload.

	MmiHandle
	Integer
	0x00–0xff
	An identifier that can be used to refer to the particular primitive transaction; used to match a confirm primitive with the corresponding request.

	SecurityLevel
	Integer
	0–7
	The combination of Message Integrity Check and Encryption to be applied to the payload of the MMI data service. For encoding see Table 9-6 in IEEE Std 802.15.4.

	KeyIdMode
	Integer
	As defined in Table 9-7 of IEEE Std 802.15.4.
	The mode used to identify the key purportedly used by the originator of the received frame. This parameter is invalid if the SecurityLevel parameter is set to 0x00.

	KeySource
	Set of octets
	As indicated by the KeyIdMode parameter.
	The originator of the key purportedly used by the originator of the received frame. The KeySource field, when present, indicates the originator of a group key. If the Key Identifier Mode field indicates a 4-octet Key Source field, then the Key Source field shall be the macPanId of the originator of the group key right concatenated with the macShortAddress of the originator of the group key. If the Key Identifier Mode field indicates an 8 octet Key Source field, then the Key Source field shall be set to the macExtendedAddress of the originator of the group key. This parameter is invalid if the KeyIdMode parameter is invalid or set to 0x00 or set to 0x01.

	KeyIndex
	Integer
	0x01–0xff
	The Key Index field allows unique identification of different keys with the same originator. It is the responsibility of each key originator to make sure that the actively used keys that it issues have distinct key indices and that the key indices are all different from 0x00.

	Send-Multipurpose
	Boolean
	TRUE, FALSE
	If TRUE, use the 802.15.4 Multipurpose frame type.
If FALSE, use 802.15.4 Data frame type.

MMI-DATA.confirm
The MMI-DATA.confirm primitive reports the results of a request to transfer data to another device. The semantics of the MMI-DATA.confirm are as follows:
MMI-DATA.confirm	
(
MmiHandle,
MaxTransferSize,
Status
)
The primitive parameters are described in Table 4. If there is no capacity to store the transaction, the Status will be set to TRANSACTION_OVERFLOW. In case the other end aborts the transaction then the status will be set to TRANSACTION_ABORTED and the MaxTransferSize is set to the value returned from the other end.
Table 4—MPX-DATA.confirm parameters
	Name
	Type
	Valid range
	Description

	MmiHandle
	Integer
	0x00–0xff
	An identifier that can be used to refer to a particular primitive transaction; used to match a confirm primitive with the corresponding request.

	MmiTransfer- Size
	Integer
	0x0000–0xffff
	In case of an aborted transaction this parameter can be returned from the other end to indicate the maximum size of transaction it can handle. In case another end did not give a maximum size, this is set to zero.

	Status
	Enumeration
	SUCCESS,
TRANSACTION_
OVERFLOW, TRANSACTION_
EXPIRED,
CHANNEL_ACCESS_
FAILURE, INVALID_ADDRESS,
NO_ACK,
COUNTER_ERROR, FRAME_TOO_LONG,
UNAVAILABLE_KEY,
UNSUPPORTED_
SECURITY, INVALID_PARAMETER. TRANSACTION_
ABORTED
	The status of the last MMI data transmission.

MMI-DATA.indication
The MMI-DATA.indication primitive delivers a MMI payload from a remote device. The semantics of this primitive are as follows:	
(
SrcAddrMode,
SrcPanId,
SrcAddr,
DstAddrMode,
DstPanId,
DstAddr,
MultiplexId,
MmiData,
SecurityLevel,
KeyIdMode,
KeySource,
KeyIndex
)
The primitive parameters are described in Table 5.
Table 5—MMI-DATA.indication parameters
	Name
	Type
	Valid range
	Description

	SrcAddrMode
	Enumeration
	NONE, SHORT, EXTENDED
	The source addressing mode for this MMI data payload.

	SrcPanId
	Integer
	0x0000–0xffff
	The PAN identifier of the entity from which MMI data is being transferred.

	SrcAddr
	—
	As specified by the SrcAddrMode parameter.
	The address of the transmitting (source) device.

	DstAddrMode
	Enumeration
	NONE, SHORT, EXTENDED
	The destination addressing mode for this MMI data payload.

	DstPanId
	Integer
	0x0000–0xffff
	The PAN identifier of the entity to which the MMI data is being transferred.

	DstAddr
	—
	As specified by the DstAddrMode parameter.
	The address of the receiving (destination) device.

	MultiplexId
	Integer
	0x0000–0xffff
	The higher-layer protocol using the MMI data service. See 7.2.3

	MmiData
	Set of octets
	—
	The set of octets forming the MPX data payload.

	SecurityLevel
	Integer
	0–7
	See Table 2.

	KeyIdMode
	Integer
	0x00–0x03
	See Table 2.

	KeySource
	Set of octets
	As specified by the KeyIdMode parameter.
	See Table 2.

	KeyIndex
	Integer
	0x01–0xff
	See Table 2.

MMI-PURGE primitives
The MMI-PURGE primitives provide a means to remove or abort pending transfers from the MMI transaction queue of the originator.
The MMI-PURGE.request primitive allows the next higher layer to purge an MMI payload from the transaction queue.
The semantics of the MMI-PURGE.request are as follows:
 (
MmiHandle,
SendAbort
)
The primitive parameters are described in Table 6.
Table 6—MMI-PURGE.request parameters
	Name
	Type
	Valid range
	Description

	MmiHandle
	Integer
	0x00–0xff
	An identifier that can be used to refer to a particular primitive transaction; used to match a MMI-PURGE.request primitive with the corresponding MMI-DATA.confirm primitive.

	SendAbort
	Boolean
	TRUE, FALSE
	If this parameter is TRUE and the transaction is still active, the MMI data service sends a MPX IE with an abort code to the other end indicating that the transaction was aborted. If this parameter is FALSE, the transaction is just purged locally, and no information is sent to the other end.

On receipt of the MMI-PURGE.request primitive, the MMI data service attempts to find in the transaction queue the payload indicated by the MmiHandle parameter. If a MMI payload has left the transaction queue, the handle will not be found, and the MMI payload can no longer be purged. If a MMI payload matching the given handle is found, the payload is discarded from the transaction queue, and optionally an abort message is sent to the other end, if the SendAbort parameter is TRUE. If an abort message is sent to the other end that will allow the other end to clear out its state immediately without waiting for the timeout.
The MMI-PURGE.request will also issue a corresponding MCPS-PURGE.request to the MAC data service, provided it has an MCPS-DATA.request in process when the MMI-PURGE.request is called.
MMI-PURGE.confirm
The MMI-PURGE.confirm primitive allows the MMI data service to notify the next higher layer of the success of its request to purge a MMI payload from the transaction queue.
The semantics of this primitive are as follows:
MMI-PURGE.confirm
(
MmiHandle,
Status
)
The primitive parameters are described in Table 7.
Table 7—MMI-PURGE.confirm parameters
	Name
	Type
	Valid range
	Description

	MmiHandle
	Integer
	0x00–0xff
	An identifier which can be used to refer to a particular primitive transaction; used to match a confirm primitive with the corresponding request.

	Status
	Enumeration
	SUCCESS, INVALID_HANDLE
	The status of the request to purge MMI data from the transaction queue.

MMI Management Service Primitives
MMI-MGMT.request
MMI-MGMT.indication
MMI-MGMT.confirm

MMI Operation Service Primitives
MMI-OPERATION.request
MMI- OPERATION.indication
MMI- OPERATION.confirm

Management Protocol Module

MCPS-DATA.request 	(
SrcAddrMode,
DstAddrMode,
DstPanId,
DstAddr,
Msdu,
MsduHandle,
HeaderIeList,
PayloadIeList,
HeaderIeIdList,
NestedIeSubIdList,
AckTx,
GtsTx,
IndirectTx,
SecurityLevel,
KeyIdMode,
KeySource,
KeyIndex,
UwbPrf,
Ranging,
UwbPreambleSymbolRepetitions,
DataRate,
LocationEnhancingInformationPostamble,
LocationEnhancingInformationPostambleLength,
PanIdSuppressed,
SeqNumSuppressed,
SendMultipurpose
FrakPolicy,
CriticalEventMessage
)

MPM Description
The MPM provides:
1. Configuration parameters to the MAC and PHY using configuration data received from a higher layer
2. Configuration parameters to other protocol modules received from a higher layer or stored in the management protocol module
Note: ULI Profile IDs, used to identify the device/module configuration, may need to be assigned by the 802.15 ANA for common profiles such as ULI device discovery, etc. However, proprietary configurations will be vendor specific. See 15-17-0050 for more information on ULI Profiles.
3. Network device monitoring or management. The monitoring function defines managed objects to provide device monitoring metrics to a higher layer application. The management function uses data collected from the device to optimize the device’s configuration for better spectral use.
4. Discovery services to detect other ULI-capable devices.
ULI Profile Description
· Overview
A ULI profile is a set of configuration parameters required by the 802.15.4 MAC and PHY for operation. The ULI profile mechanism uses Yang modeling.
· Use cases for ULI Profile
· Use case 1: one-shot MAC/PHY configuration
· Use case 2: 802.x <-> 802.y protocol translation
· Use case 3: MAC/PHY configuration by higher layer applications
Use case 1: one-shot MAC/PHY configuration
	Parameter
	Value

	 MAC Parameters

	Device Type
	FFD

	PAN
	discovery

	Operation mode
	TSCH-BE

	Channel Hopping
	

	PHY Parameters

	Modulation type
	FSK

	FCS
	4

	Data rate
	100

	Transmit power
	20mW

Profile Operation Primitives
· Type of operations
· ULM-CREATE-PROFILE()
· ULM-EXEC-PROFILE()
· ULM-GET-PROFILE()
· ULM-CHANGE-PROFILE()
· ULM-DELETE-PROFILE()

	Name
	Request
	Indication
	Response
	Confirm

	ULM-CREATE-PROFILE
	X
	
	X
	

	ULM-EXEC-PROFILE
	X
	
	X
	

	ULM-GET-PROFILE
	X
	
	X
	

	ULM-CHANGE-PROFILE
	X
	
	X
	

	ULM-DELETE-PROFILE
	X
	
	X
	

MPH-EXEC-PROFILE.request
Management
Protocols sublayer
PDE
sublayer

Next
higher layer
ULM-EXEC-PROFILE.request
MMI-MGMT.request

MAC PIB
Device
MAC

MLME-SRM.request

MMI
sublayer
MPH-EXEC-PROFILE.response
ULM-EXEC-PROFILE.response
MMI-MGMT.response
MLME-SRM.response
IEEE802.15.12

MLME-SET.request
MLME-SET.response
IEEE802.15.4

ULI Protocol Module Discovery and Configuration Primitives
· Type of operations
· ULM-LIST-MODULES(): retrieve supported protocol module(s)
· ULM-GET-MODULE-STATUS(): get the status of the protocol module
· ULM-SET-MODULE-STATUS(): set the status of the protocol module

	Name
	Request
	Indication
	Response
	Confirm

	ULM-LIST-MODULES
	X
	
	X
	

	ULM-GET-MODULE-STATUS
	X
	
	X
	

	ULM-SET-MODULE-STATUS
	X
	
	X
	

Usage of ULM-LIST-MODULES()
The entire list of module attributes are collected in a YANG store called “MODULE-DESCRIPTOR"

“ULM-LIST-MODULES” ULI() is an enumeration function:

	handle = ULM-LIST-MODULES(NULL, module_descriptor_result)

the first module descriptor returned is in “module_descriptor_result”
the first module returned is always the “Management Module”

Then the caller makes additional calls as follows:

	handle = ULM-LIST-MODULES(handle, module_descriptor_result)
Each time returning a module descriptor in “module_descriptor_result”
The caller can know it reached the end of the module list when “handle” returns NULL

Management Protocol
KMP
L2R
Ranging
NULL

PTM Description
Overview
The PTM provides a conduit between the MMI and the PDE
· Allows applications/functions above the ULI to transparently access the 802.15.4 device
· Allows data from MCPS-SAP to be sent directly to those applications/functions above the ULI not using other protocol modules
1. Allows legacy applications/functions (non-ULI capable) to be compatible with ULI devices
2. Responds to primitives (i.e. MCPS.DATA.confirm and MCPS.DATA.indication) delivered via the data SAP, such as passing the MPDU to a higher layer function

Design of (and questions about) the PTM

The interfaces of the PTM are shown in Figure 0.1 as PTH-SAP and PTM-SAP.
From one point of view, there should be very little specification required for such a module, since it does not seem to impose any process requirements on the data that it passes through to the next lower layer (for transmission) or next higher layer (for reception). Nevertheless, there are several possibilities which make sense. Do we provide for all of them? If only one, how do we choose?

For data to be transmitted, the PTM will allow a higher layer to supply all 28 parameters for presentation of the payload (via PTM-SAP) to the MCPS-SAP. In order to reduce the number of parameters required by the PTM, it will also be allowed for a higher layer protocol to pass a profile identifier as one of the parameters. Then, most of the parameters would be implicitly available to the PTM by referring to the definition and current configuration state for that profile within the ULI layer.

Upon reception of a well-formed 802.15.4 frame, the PTM should be able to dispatch the frame by inspection of the frame fields following the MHR. But this is what the ULI must anyway do upon frame reception, so that it is not clear whether the PTM actually has any responsibility for handling incoming frames.

· Does the PTM bypass L2R routing operations? If so, then transmission could occur only to immediate neighbors. Similarly, if ranging is required prior to transmission, how does PTM know to make the request?

· If profiles are not enabled for use with the PTM function, how does the function identify the proper MAC interface? Are the appropriate MAC and PHY layers associated with the source MAC address of the frame? Or, with the destination MAC address?

If profiles are enabled for use, then a table of profiles will be required, along with the MCPS-SAP interface parameters that each profile allows the PTM to infer from the profile definition. In this way, most of the PTM specification text actually would reside as part of the profile definitions. Each new profile will need a section within its specification for use by the generic PTM.

802.15.4
MCPS-DATA.request (
SrcAddrMode,
DstAddrMode,
DstPanId,
DstAddr,
Msdu,
MsduHandle,
HeaderIeList,
PayloadIeList,
HeaderIeIdList,
NestedIeSubIdList,
AckTx,
GtsTx,
IndirectTx,
SecurityLevel,
KeyIdMode,
KeySource,
KeyIndex,
UwbPrf,
Ranging,
UwbPreambleSymbolRepetitions,
DataRate,
LocationEnhancingInformationPostamble,
LocationEnhancingInformationPostambleLength,
PanIdSuppressed,
SeqNumSuppressed,
SendMultipurpose
FrakPolicy,
CriticalEventMessage
)

Some parameters aren’t simple data types, and can have substructure and refer to objects with nontrivial structure. We will need NULL (not present) parameters.

image2.emf
Next Higher Layer

]

MPX

1]

MPX-DATA.request

MPX-DATA.confirm

MCPS-DATA.request

MCPS-DATA.confirm

Originator MAC

]

MCPS-DATA.request

%}
ACK

Recipient MAC

]

Retry Data frame
transmission up to
aMaxFrameRetries
times

MCPS-DATA.confirm

MCPS-DATA.request

(optional)

(optional)

Figure 3—Failed fragment transfer

MCPS-DATA.indication

MPX

Next Higher Layer

At some point
the MPX layer
will timeout the
unfinished MPX
transaction and
clear state.

IEEE Std 802.15.9-2016 IEEE Recommended Practice for Transport of Key Management Protocol (KMP) Datagrams

20

Copyright © 2016 IEEE. All rights reserved.

Figure 3—Failed fragment transfer

Figure 4—Aborted fragment transfer

Next Higher Layer

MPX Originator MAC MPX Recipient MAC

Next Higher Layer

MPX-DATA.request

MCPS-DATA.request

MCPS-DATA.confirm

MCPS-DATA.indication

MCPS-DATA.request

Data

ACK

Retry Data frame

transmission up to

aMaxFrameRetries

times

Data

Data

MCPS-DATA.confirm

MPX-DATA.confirm

Data (IE with abort code)

MCPS-DATA.request

(optional)

(optional)

At some point

the MPX layer

will timeout the

unfinished MPX

transaction and

clear state.

Ne x t H i g h e r L a y e r

MP X O r i g i n a t o r MA C M P X Reci pi en t M A C

N e xt H i g h er Laye r

M P X - D A TA . r eque s t

M C PS - D AT A. r e q u e s t

MC P S - D A T A . c o n f i r m

M C P S - D ATA. i n d i ca t i o n

Da t a

ACK

MP X - D A T A . c o n f i r m

TRA N SA CT I O N _

ABO R T E D

M C P S - D AT A. r e qu es t

Da t a

(M PX I E w i th abo r t c o de)

M C P S - D ATA. i n di ca t i o n

image1.emf
Protocol Discrimination Entity (PDE) -Mandatory-

Multiplexed MAC Interface (MMI) -Mandatory-

PD-SAP PLME-SAP

Vendor

Specific

-Optional-

I

E

E

E

8

0

2

.

1

5

.

1

2

I

E

E

E

8

0

2

.

1

5

.

4

L

a

y

e

r

2

L

a

y

e

r

1

 IPv6 Network

EPD=0x86DD

Lay

e

r

3

a

n

d

a

b

o

v

e

Other Networks

NWK-SAP

VSH-SAP

Applications

AppM -SAP

EPD=

0x888E

802.1X

-Optional-

6top

-Optional-

Rsvd-2

-Optional-

6LoWPAN

-Optional-

Rsvd-1

-Optional-

Management Protocols

-Mandatory-

IPv6-SAP

Rsv1H-SAP

Rsv2H-SAP

6tH-SAP MPH-SAP .1XH-SAP

6LON-SAP

RLS

(Ranging &

Location

Support)

-Optional-

RLSH-SAP

Generic (GTS)

-Optional-

TSCH/BE

-Optional-

DSME

-Optional-

Generic

-Optional-

RFID

-Optional-

LP-WAN

-Optional-

PSDU FRAK

Beacon-enabled modes Nonbeacon-enabled modes

O-QPSK

-Optional-

BPSK

-Optional-

FSK

-Optional-

OFDM

-Optional-

CSS

-Optional-

I.E.s

UWB -HRP

-Optional-

MSK

-Optional-

Modulation type

Data Whitener FEC

PHY optional behaviors

RCC

-Optional-

Low

Energy

Priority Security

MAC optional behaviors

Association Metrics

Channel

Hopping

Promiscuous

ASK

-Optional-

TRLE

M

A

C

P

H

Y

UWB -LRP

-Optional-

Ranging

Interleaver

SUN TVWS

TSCH

-Optional-

SRU

.1XM-SAP VSM-SAP Rsv1M-SAP Rsv2M-SAP 6tM-SAP

MPM-SAP RLSM-SAP

MCPS-SAP MLME-SAP

PassThru

-Mandatory-

PTM-SAP

PTH-SAP

L2R

(Layer 2

Routing)

-Optional-

RUH-SAP

RUM-SAP

KMP

(Key

Management

Protocol)

-Optional-

KPM-SAP

KPH-SAP

P

D

E

M

M

I

P

r

o

t

o

c

o

l

M

o

d

u

l

e

EPD=0xA0ED

AppD-SAP

LP-WAN/BE

-Optional-

MAC PIBs

PHY PIBs

Mgmt

MIB

Ny, 208 e PSS 6o 10
P BTSN G e W Perd e e
T eyt o
ey]
e T

e

e o

]

e D e e PR

N T e e b T PAETS T d
e i e ot
g) Th i s o
pe et e N

R o oo st 0 b e
o ey L kR iy e by PO 1S

