May 2016 IEEE P802.15-16-0367-01-0008

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Security for TG8

	Date Submitted
	May 11th, 2016

	Source
	Marco Hernandez, Huan-Bang Li, Fumihide Kojima (NICT)

	Response
	In response to Call for Contributions to TG8

	Abstract
	

	Purpose
	For discussion in TG8

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Contents
21. Security

21.1 GCMP

61.2 Key management

91.3 Ephemeral ECDH key agreement scheme

101.4 Signature scheme

13Annex A Cryptographic components

13A.1 Elliptic Curve Domain Parameters

13A.2 Elliptic curve key pair generation

14A.3 ECDH primitives

17A.4 Hash functions

1. Security
1.1 GCMP
This clause specifies the use of Advanced Encryption Standard (AES) in Galois counter mode (GCM) with Galois Message Authentication Code (GMAC) protocol (GCMP). GCMP provides data confidentiality and data origin authentication and integrity to the MPDU Data field and selected portions of the MPDU header.
The AES algorithm is defined in FIPS PUB 197. All AES processing used in GCMP uses AES with a 128-bit key (GCMP-128) or a 256-bit key (GCMP-256).
GCM is a generic mode that can be used with any block-oriented encryption algorithm. GCM requires a new temporal key (TK) for every session. GCM also requires a unique nonce value for each frame protected by a given temporal key, and GCMP uses a 96-bit nonce that includes a 48-bit packet number (PN) for this purpose. Reuse of a PN with the same temporal key voids all security guarantees. GCMP uses a 128-bit message integrity code (MIC).

1.1.1 Encrypted MPDU format

GCMP processing expands the original MPDU size by 24 octets: 8 octets for the GCMP Header field and 16 octets for the MIC field and 8 octets of ECDSA signature for the initial ECDH exchange.
The GCMP Header field is constructed from the PN and Key ID subfields. The 48-bit PN is represented as an array of 6 octets. PN5 is the most significant octet of the PN, and PN0 is the least significant. The Key ID field is one octet described in Table 1.

[image: image1.emf]MAC header GCMP header Encrypted MAC payload MIC FCS

PN

0

Reserved Key ID PN

1

PN

2

PN

3

PN

4

PN

5

Signature

Figure 1 —Expanded GCMP MPDU
Table 1 —Key ID field

	Name
	Type
	Description

	Key ID
	Octet
	Key identifier:

0 shall be used for GCMP

1−255 are reserved.

1.1.2 GCMP cryptographic encapsulation
The GCMP cryptographic encapsulation process is depicted in Figure 2.

[image: image2.emf]AAD

Nonce

Increment

GCMP

header

GCM

encryption

Plaintext

MPDU

Encrypted

MPDU

MAC header

SA

Data

PN

Key ID

TK

Encrypted

payload

and MIC

Figure 2 —GCMP encapsulation block diagram

GCMP encrypts the payload of a plaintext MPDU and encapsulates the resulting cipher text using the following steps:
a) Increment the PN, to obtain a fresh PN for each MPDU, so that the PN never repeats for the same temporal key. Retransmitted MPDUs are not modified on retransmission.
b) Use the fields in the MPDU header to construct the additional authentication data (AAD) for GCM. The GCM algorithm provides integrity protection for the fields included in the AAD. MPDU header fields that may change when retransmitted are masked to 0 when calculating the AAD.
c) Construct the GCM nonce from the PN and SA, where SA is source address in the MPDU header.
d) Place the new PN and key ID into the 8-octet GCMP Header.
e) Use the temporal key (TK), AAD, nonce, and MPDU payload to form the cipher text and MIC.

f) Form the encrypted MPDU by combining the original MPDU header, GCMP header, encrypted data, MIC, and append a FCS.

1.1.2.1 PN processing
Each transmitter shall maintain a single PN (48-bit counter).

The PN shall be implemented as a strictly increasing integer, initialized to 1 when the corresponding TK is initialized or refreshed.

The PN is incremented by a positive number for each MPDU. The PN shall never be repeated for a series of encrypted MPDUs using the same TK.

If the PN is larger than macPNExhaustionThreshold, an MLME-PNEXHAUSTION.indication primitive shall be generated.

1.1.2.2 GCM AAD

The format of the AAD is shown Figure 3.

[image: image3.emf]Frame control Sequence number

Destination

address

Source

address

Auxiliary

security

Figure 3 —AAD frame format
The AAD is constructed from the MPDU header. The AAD does not include the IE header field; because such field value might change during normal IEEE Std 802.15.8 operation. For similar reasons, several subfields in the Frame Control field are masked to 0.

The AAD is form as follows:

a) Frame control field (2 octets) with

1) AR/SNS subfield masked to 0.
2) HIEP subfield masked to 0.

3) PIEP subfield masked to 0.

4) SEC subfield set to 1.

5) R subfield set to 0.

b) Destination address field (6/2 octets).

c) Source address field (6 octets).

d) Auxiliary security field with a randomly generated 6/10 octets (if destination address field is 6/2 octets, respectively).

1.1.2.3 GCM nonce
The format of the GCM nonce is shown in Figure 4.

[image: image4.emf]Source

address

PN

Figure 4 —GCM nonce format

The octets of PN shall be ordered so that PN0 is at octet index 6 and PN5 is at octet index 11.
1.1.3 GCM encryption processing
GCM is a generic authenticate-and-encrypt block cipher mode, and in this standard, GCM is used with the AES block cipher.

There are four inputs to the GCM encryption processing:

a) Key: the temporal key (16 octets or 32 octets).
b) Nonce: the nonce (12 octets) as described in 1.1.2.3.
c) Data: the plaintext MPDU payload.
d) AAD: the AAD (21 octets) formed from the MPDU header as described in 1.1.2.2.
The GCM encryption processing provides authentication and integrity of the MPDU payload and AAD; as well as data confidentiality of the MPDU payload. The output from the GCM encryption processing consists of the encrypted data and encrypted MIC.
The PN values sequentially number each MPDU. Each transmitter shall maintain a single PN (48-bit counter). The PN shall be implemented as a 48-bit strictly increasing integer, initialized to 1 when the corresponding temporal key is initialized or refreshed.

1.1.4 GCMP cryptographic decapsulation
The GCMP cryptographic decapsulation process is depicted in Figure 5.

[image: image5.emf]AAD

Nonce

GCM

decryption

Encrypted

MPDU

Plaintext

MPDU

MAC header

SA

Data

PN*

Plaintext

payload

PN

MIC

Key

Replay

check

Figure 5 —GCMP decapsulation block diagram

GCMP decrypts the payload of a cipher text MPDU and decapsulates a plaintext MPDU using the following steps:
a) The encrypted MPDU is parsed to construct the AAD and nonce.
b) The AAD is formed from the MPDU header of the encrypted MPDU.
c) The nonce is formed from the SA and PN fields.

d) The MIC is extracted for use in the GCM integrity checking.
e) The GCM decryption processing uses the temporal key, AAD, nonce, MIC, and MPDU cipher text payload to recover the MPDU plaintext payload, as well as to check the integrity of the AAD and MPDU plaintext payload.

f) The received MPDU header and the MPDU payload from the GCM decryption processing are concatenated to form a plaintext MPDU.

g) The decryption processing prevents replay of MPDUs by validating that the PN in the MPDU is greater than the replay counter maintained for the session.
1.1.5 GCM decryption processing
GCM decryption processing shall use the same parameters as GCM encryption processing. There are five inputs to GCM recipient processing:
a) Key: the temporal key (16 octets or 32 octets).
b) Nonce: the nonce (12 octets) as described in 1.1.2.3.

c) Encrypted payload: the encrypted MPDU payload.
d) MIC: the MIC parsed from the encrypted MPDU.

e) AAD: the AAD (21 octets) formed from the MPDU header as described in 1.1.2.2.

The GCM decryption processing checks the authentication and integrity of both: the MPDU payload and AAD; as well as decrypting the MPDU payload. The plaintext MPDU payload is returned only if the MIC check is successful (the parsed MIC matches the MIC value obtained from decrypting the received encrypted MPDU).

If successful, the GCM decryption processing concatenates the original MPDU header with the plaintext MPDU payload to form the plaintext MPDU.
1.1.5.1 PN and replay detection
The following processing rules are used to detect replay:

a) The receiver extracts the PN from the GCMP header.
b) The receiver shall maintain a separate set of replay counters for each PD. The receiver initializes these replay counters to 0 when the temporal key is reset for a PD. The replay counter is set to the PN value of accepted GCMP MPDUs.
c) A replayed frame occurs when the PN extracted from a received frame is less than or equal to the current replay counter value for the frame’s MPDU and the receiver shall discard such frame.
1.2 Key management
1.2.1 Key frames
IEEE Std 802.15.8 uses security key frames to exchange information between PDs. These exchanges result in cryptographic keys and synchronization of security association state.
Security key frames are used to implement security exchanges:

1) 2-way handshake, to confirm that the ECDH shared secret between associated PDs is the same and to install the TK to the PD.
2) Group key handshake, to update the GTK.
Security key frame (SKF) is shown in Figure 6.

[image: image6.emf]Key

information

Key

length

Key replay

counter

Key

MIC

Key

data length

Key

data

Octets: 1 2

8

variable

2 variable

Figure 6 —Security key frame
1.2.1.1 Key information
The key information frame specifies characteristics of the key and shown in Figure 7.

[image: image7.emf]Error

Key

type

Key

install

MIC Secure

Encrypted key

data

b

0

b

1

b

2

b

3

b

4

b

5

b

6

b

7

Reserved Reserved

Figure 7 —Key information frame

1) Key type field specifies if the security key frame is part of a handshake deriving a PTK. The value 0 indicates the KSF is not part of a PTK derivation. The value 1 indicates the SKF is part of a PTK derivation.
2) The key install field indicates if the derived PTK shall be used in the PD, depending on the value of the of key type field.
a) If the key type field value is 1 and the key install field value is 1, then the TK derived from this SKF shall be used to configure the PD secured message.
b) If the key type field value is 1 and the key install field value is 0, then the TK derived from this SKF shall not be used to configure the PD secured message.

c) If the key type field value is 0, then the key install field is reserved.
3) The key MIC field is set to 1 if a MIC is in this SKF, and is set to 0 otherwise.

4) The secure field is set to 1 once the initial key exchange is complete, and set to 0 otherwise.

5) The error field is set to 1 to report that a MIC failure occurred, and set to 0 otherwise.
6) The encrypted key data field is set to 1 if the key data field is encrypted, and set to 0 otherwise.

1.2.1.2 Key length
This field is 2 octets in length, represented as an unsigned integer. The value defines the length in octets of the pairwise temporal key. See Table 2.
Table 2 —Cipher suite key lengths

	Cipher suite
	Key length (octets)
	Key length (bits)

	GCM
	16
	128

	GCM
	32
	256

1.2.1.3 Key replay counter
This field is 8 octets, represented as an unsigned integer. The key replay counter shall be initialized to 0 when the key exchange is established, and shall be incremented on each successive KSF. It carries a sequence number that is used to detect replayed KSFs. PDs shall track the key replay counter per security association.
1.2.1.4 Key receive sequence counter
This field is 7 octets in length. It contains the receive sequence counter (RSC) for the TK being installed. The key RSC field gives the current message number for the TK, to allow a PD to identify replayed MPDUs. The value of the key RSC field is given by the packet number (PN) counter in the AES GCM cipher suite as shown in Table 3.
Table 3 —Key RSC field

	RSC0
	RSC1
	RSC2
	RSC3
	RSC4
	RSC5
	RSC6

	PN0
	PN1
	PN2
	PN3
	PN4
	PN5
	Reserved

1.2.1.5 Key data length

This field is 2 octets in length, represented as an unsigned integer. It indicates the length of the key data field in octets.
1.2.1.6 Key data

This field includes any additional data required for the TK exchange.
1.3 Handshake operation

The 2-way handshake operation is illustrated in Figure 8.

[image: image8.emf]PD U PD V

Message 1: SKF(Q

U

, keyInfo, r,s)

Message 2: SKF(Q

V

, keyInfo, r’, s’)

Derive

shared secret

Derive TK

with KDF

Derive

shared secret

Derive TK

with KDF

Verify

signature

Verify

signature

Figure 8 —Establishing pairwise keys

1.4 Ephemeral ECDH key agreement scheme
This section specifies the ephemeral public key exchanged. The two parties exchange ephemeral public keys and then compute the shared secret. The secret keying material (from which the temporal key is derived) is extracted using the shared secret.
With the exception of key derivation, the key agreement is “symmetric” in the actions of PD U and PD V. Only the actions performed by PD U are specified here; a specification of the actions performed by PD V shall be obtained by systematically replacing the PD U by PD V in the description of the key-agreement.

[image: image9.emf]U V

U’s ephemeral public key

V’s ephemeral public key

Shared secret derivation: Z

Shared secret derivation: Z

TK=KDF(Z,otherInfo)

TK=KDF(Z,otherInfo)

Figure 9 —Ephemeral key pair generation

Initialization:
1) Each party shall use the same set of EC domain parameters T
2) Each party shall use the same hash function and associated parameters for the key derivation function.
3) Prior to or during the key-agreement process, each party shall obtain the identifier associated with the other party during the key-agreement scheme (MAC/multicast addresses).
Output: The octet string masterKey of length keyDataLength bits or an error indicator.
Action:
1) Generate an ephemeral key pair (dU, QU) from the domain parameters T as specified in A.2. Send the public key QU to PD V. Receive an ephemeral public key QV from PD V. If QV is not received, output an error indicator and stop.
2) Verify that QV is a valid public key for the domain parameters T as specified in A.3. If assurance of public key validity cannot be obtained, output an error indicator and stop.
3) Use the ECDH primitive specified A.3 to derive a shared secret Z (octet string). If the call to the ECDH primitive outputs an error indicator, destroy the results of all intermediate calculations, output an error indicator, and stop.
4) Use the Key Derivation Function (see A.3) to derive secret masterKey of length keyDataLength bits from the shared secret value Z and OtherInformation (as indicated in A.3). If the key derivation function outputs an error indicator, destroy all copies of Z and all intermediate calculations, output an error indicator, and stop. Otherwise, output the secret masterKey.
1.5 Signature scheme
This section specifies the signature schemes based on ECC supported in this standard.

The signature scheme is designed to be used by two entities: a signer-PD U and a verifier-PD V, when U wants to send a message M in an authentic manner and V wants to verify the authenticity of M. In fact, once a message is signed, any PD V having a copy of U’s public key can verify the signature. In particular, the verifier may not be the entity to whom U originally sent the message. Such third party verification is optional and recommended when a PAC network may have access to infrastructure.

The signature scheme is described in terms of a signing operation, a verifying operation, associated setup and key deployment procedures. PDs U and V should use the schemes as follows: when they want to communicate, PDs U and V shall use the setup procedure to establish which signing option to use. Then PD U shall select an EC key pair and PD V should obtain PD U’s public key. PD U will use the key pair to control the signing operation, and PD V will use the public key to control the verifying operation. Then, each time PD U wants to send a message M, PD U should apply the signing operation to M under its key pair to obtain a signature S of message M, in order to form a signed message. Finally, when PD V receives the signed message, PD V should apply the verifying operation to the signed message under PD U’s public key to verify its authenticity. If the verifying operation is “valid”, PD V concludes the signed message is indeed authentic.

[image: image10.emf]Message

Hash

Message digest

Private key

Signature

generation

Signature

Signature

verification

Message

Hash

Message digest

Public key

Valid or invalid

Signature

generation

Signature

verification

Figure 10 —ECC signature process

1.5.1 ECDSA signature procedure
Initialization:

1) PD U shall establish which hash function to use when generating signatures, see A.4. Let Hash denote the hash function and hashlen denote the length in octets of the hash values.
2) PD U should establish elliptic curve domain parameters T = (p, a, b, G, n, h) at the desired security level. The elliptic curve domain parameters T should be generated using the primitive specified in Section 3.1.1.1 or the primitive specified in Section 3.1.2.1. Entity U should receive an assurance that the elliptic curve domain parameters T are valid using one of the methods specified in Section 3.1.1.2 or Section 3.1.2.2.
3) Entity V should obtain in an authentic manner the hash function Hash and elliptic curve domain parameters T established by PD U.

4) PD U should establish an elliptic curve key pair (dU, QU) associated with T to use with the signature scheme. The key pair generation is specified in A.2.
5) PD V should obtain, in an authentic manner, the EC public key QU selected by PD U.

6) PD U Shall sign messages using ECDSA using the keys and parameters established previously and the key deployment procedure as follows:

Input: The message M as an octet string.
Output: The signature S = (r, s) on M consisting of a pair of integers r and s (each in [1, n-1]), or “error message”.
Actions:

1) Compute an ephemeral EC key pair (k, R) where R = (xR, yR), associated with the elliptic curve domain parameters T established during the setup procedure, using the EC key pair generation specified in A.2.
2) Set r = xR mod n (n is the EC subgroup order associated to domain parameters T).

If r = 0 go to 1).
3) Compute the hash function z=Hash(M) as specified in A.4.
4) Compute
[image: image11.wmf]n

d

z

k

s

U

Mod

)

(

1

+

=

-

, where k-1 is the multiple inverse of k Mod n (see A.3.2.2) and dU is the private key of PD U.
5) If s=0 go to 1).

6) Output the pair S = (r, s) as the signature.

1.5.2 ECDSA signature verification procedure
PD V shall verify signed messages from PD U with ECDSA using the keys and parameters established during the setup procedure and the key deployment procedure

Initialization:
1) Assurance of the signatory’s claimed identity, PD U.

2) Assurance of the validity of the public key of PD U, QU.

3) Assurance that the claimed signatory actually possessed the private key that was used to generate the digital signature at the time that the signature was generated.

Methods for the verifier to obtain these assurances are provided in SP800-89 in case the PAC network has access to infrastructure. Otherwise initialization can be skipped.
Input:

1) The initialization procedure as specified in 1.4.1.
2) The message M as an octet string.

3) PD U’s purported signature S = (r, s) on M.
Output: An indication of whether the purported signature on M is “valid” or “invalid”.

Actions:

1) If r and s are not integers in the interval [1, n − 1], output “invalid” and stop.
2) Use the hash function established during the initialization procedure to compute the hash value: z=Hash(M).

3) Compute the integer
[image: image12.wmf]n

z

s

u

 Mod

1

1

-

=

.

4) Compute the integer
[image: image13.wmf]n

r

s

u

 Mod

1

2

-

=

.
5) Compute the EC point
[image: image14.wmf]U

P

P

Q

u

G

u

y

x

P

2

1

)

,

(

+

=

=

.

6) If
[image: image15.wmf]n

x

r

P

 Mod

=

then output “valid”. Otherwise output “invalid”.
Annex A Cryptographic components
A.1 Elliptic Curve Domain Parameters
An elliptic curve over a finite field Fp is defined as

[image: image16.wmf]}

0

{

}

 Mod

0

27

4

;

 Mod

|

)

,

(

{

2

3

3

2

2

È

¹

+

+

+

=

Î

p

b

a

p

b

ax

x

y

F

y

x

p

 LISTNUM STDS_EQ * MERGEFORMAT
where
[image: image17.wmf]p

F

b

a

Î

,

 and 0 is the point at infinity (identity element required to define an Abelian group). Arithmetic operations in an EC over Fp are referred as EC arithmetic, whose definitions are out of the scope of this standard.
The domain parameters of an EC over Fp is defined as

[image: image18.wmf])

,

,

,

,

,

(

h

n

G

b

a

p

T

 LISTNUM STDS_EQ * MERGEFORMAT
This defines public-key cryptographic schemes based on ECC.
1) The odd prime number p that specifies the size of the finite field.

2) The coefficients a,b of the EC equation.

3) The base point G=(xG , yG) that generates the subgroup (over Mod operation).

4) The prime order n of the subgroup (number of points in the subgroup).

5) The cofactor h=N/n of the subgroup required to compute n. N is the No. of points in the EC.
For interoperability, this standard shall use the elliptic curves P-256 and P-384 defined in FIPS 186-4 for ECDSA and Curve 25519 defined in Annex A.5.3 for ECDH key exchange protocol.
A.2 Elliptic curve key pair generation

Elliptic curve key pairs should be generated as follows:

Input: Valid elliptic curve domain parameters T (p, a, b, G, n, h).

Output: An elliptic curve key pair (d, Q) associated with T.

Actions: Generate an elliptic curve key pair as follows:

 1) The private key is a random integer d in the interval [1, n − 1].

 2) The public key is the point Q = d G.

 3) Output (d, Q).
A.3 ECDH primitives
An EC primitive indicates a relatively simple operation that is defined to facilitate implementation in hardware or in software for the ECDH key-establishment scheme. Note that, in practice, the key-agreement scheme is just one component of a larger (key-agreement) protocol, which may include many additional actions. Other components of the protocol may provide security services that are not provided by the key-agreement scheme itself. For instance, authentication and integrity of exchanged ephemeral public keys must be provided by other components of a protocol (ECSDA).

PD U shall employ the following process to calculate a shared secret value, Z, with PD V.
A.3.1 ECDH shared secret primitive

Input:

1) Supported elliptic curve domain parameters T = (p, a, b, G, n, h)
2) PD U’s private key dU
3) PD V’s public key QV
Output: A shared secret EC element Z, or error indication.
Actions:
1) Compute the elliptic curve point
[image: image19.wmf]V

U

P

P

Q

d

h

y

x

P

)

,

(

=

=

 using EC arithmetic.
2) If P=0 destroy
[image: image20.wmf]V

U

Q

d

h

P

,

,

,

 and output: “error message”.
3) If P≠0 convert xP to Z using the EC element-to-octet string, destroy P and output: Z.
A.3.2 Key derivation function

Input:

1) Shared secret Z

2) KeyDataLength in bits (either 128 or 256).
3) Hash function (either Hash256 or Hash384).

4) OtherInformation= keyInfo|| PD U MAC address|| PD V MAC/Multicast address
Output: The temporal/session key K (octet string of length KeyDataLength/8), or error message.

Actions:

1) If Hash = Hash256 then hashLength=256, maxHashInput=264 and set H=Hash256().
2) If Hash = Hash384 then hashLength=384, maxHashInput=2128 and set H=Hash384().
3) Compute a random integer c in [1,20] and set counter as a an integer with value 1.
4) If (Z || counter || OtherInformation) > maxHashInput, then output: “error message”
5) Set
[image: image21.wmf]é

ù

hashLength

gth

keyDataLen

rep

/

=

6) For i=1 to rep do

 Compute Hash(i)=H(Z || counter || OtherInformation).

 counter=counter+1.

end
7) MasterKey=Hash(1) || Hash (2) || … || Hash(rep).
8) TK||KeyData=Parse(MasterKey,0,keylength)
A.3.2.1.1 Other information
OtherInformation=keyInfo|| PD U MAC address|| PD V MAC/Multicast address
A.3.2.1.2 Finite field element-to-Byte string conversion
Input: An element α in the finite field Fq.
Output: A byte string S of length
[image: image22.wmf]é

ù

8

/

t

n

=

 bytes, where
[image: image23.wmf]é

ù

)

(

log

2

q

t

=

.

Actions:

1) If q is an odd prime, then α must be an integer in the interval [0, q-1].
2) Let (S1, S2,…, Sn) be the bytes of S from leftmost to rightmost, where

Si = (ai1, ai2, … , ai8), for i =1 to n
Assume: ai =ai1 27+ai2 26+…+ai7 2+ai8, for i =1 to n.
The bytes of S shall satisfy q=a128(n-1)+a228(n-2)+…+an-128+an.
Stop.

3) Alternatively, if q = 2m, then we assume that α is already represented as a bit string of length m, with each bit indicating the coefficient (0 or 1) of a specific element of basis GF(2m) viewed as a vector space over GF(2). Let (s1, s2… sm) be the bits of α from leftmost to rightmost; and let (S1, S2,…, Sn) be the bytes of S from leftmost to rightmost. The rightmost bit sm shall become the rightmost bit of the last byte Sn, and so on until the leftmost bit s1, which shall become the (8n─ m + 1)th bit of the first byte S1. The leftmost (8n ─ m) bits of the first byte S1 shall be zero. Stop.
A.3.2.2 Finite element multiplicative inverse computation
Input:
1) z: the value to be inverted modulo m
2) m: the modulus.

Output:

1) status: either “success” or “error”.

2) z’: the multiplicative inverse of z Mod m, if it exists.
Actions:

1) Verify that m and z are positive integers such that z < m; if not, output ERROR.

2) Set i = m, j = z, y2 = 0 and y1 = 1.
3) Set
[image: image24.wmf]ë

û

j

i

quotient

/

=

4) Set
[image: image25.wmf])

quotient

(

j

i

remainder

-

=

5) Set
[image: image26.wmf])

(

1

2

quotient

y

y

y

-

=

6) Set
[image: image27.wmf]y

y

y

y

remainder

j

j

i

=

=

=

=

1

1

2

,

,

,

7) If j > 0, then go to step 3.
8) If i ≠ 1, then output ERROR
9) Compute
[image: image28.wmf]m

y

z

 Mod

'

2

=

10) Output z’ and status=”success”.

A.4 Hash functions
This Annex specifies the cryptographic hash functions supported in this Standard. Hash functions are used by the ECDSA specified in

The supported hash functions are SHA-256 and SHA-384 specified in FIPS 180-4 []. They map octet strings to hash values (message digest), which are octet strings of a fixed length. The security level associated with a hash function depends on its application.
Table A.1—Hash algorithm basic properties
	Algorithm
	Message size (bits)
	Message digest size (bits)

	SHA-256
	< 264
	256

	SHA-384
	< 2128
	384

Hash values should be calculated as follows:
A.4.1 Hash256

Input: The input to the hash function is an octet string M.

Output: The hash value H or “error message”.
Actions:
1) If message size |M| ≥ 264, then output: “error message”.
2) If message size |M| < 264, then output: hash value H according to FIPS 180-4.

A.4.2 Hash384
Input: The input to the hash function is an octet string M.

Output: The hash value H or “error message”.

Actions:

3) If message size |M| ≥ 2128, then output: “error message”.

4) If message size |M| < 2128, then output: hash value H according to FIPS 180-4.

A.5 EC Domain Parameters
A.5.1 Curve P-256
Finite field size:
p = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff

Curve parameters:

a = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff fffffffc

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b

EC base point G:
xG = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296

yG = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5

Order of the point G:

n = ffffffff 00000000 ffffffff ffffffff bce6faad a7179e84 f3b9cac2 fc632551

Cofactor:

h=1.

A.5.2 Curve P-384

Finite field size:

p = ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe ffffffff 00000000 00000000 ffffffff

Curve parameters:

a = ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe ffffffff 00000000 00000000 fffffffc

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

EC base point G:
xG = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

yG = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

Order of the point G:

n = ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973

Cofactor:

h=1.

A.5.3 Curve 25519
y2 = x3+486662 x2+x
Modulus p = 2255 – 19

G=(9, 14781619447589544791020593568409986887264606134616475288964881837755586237401)

n=7237005577332262213973186563042994240857116359379907606001950938285454250989
Annex B To be added in clause 6

MLME-PN-EXHAUSTION.indication

This primitive indicates that the PN associated with a temporal key exceeds PNExhaustionThreshold.

The primitive parameters are as follows:

MLME-PN-EXHAUSTION.indication{

Key ID,

Key Type,

}

	Name
	Type
	Range
	Description

	Key ID
	Integer
	N/A
	Key identifier

	Key type
	Integer
	Pairwise, group
	Defines whether this key is a pairwise key or group key.

This primitive is generated by the MLME when the PN associated with a temporal key exceeds PNExhaustionThreshold. On receipt of this primitive, the PD deletes the temporal key associated with the PN.
B.1 To be added in PIB

PNExhaustionThreshold = 248−1

Annex C To be added in clause 6
MLME-SETKEYS.request
This primitive causes the keys identified in the parameters of the primitive to be set in the MAC and enabled for use.

The primitive parameter is as follows:

MLME-SETKEYS.request{

KeyDescriptors
}

Table 4 —KeyDescriptors parameters
	Name
	Type
	Range
	Description

	Key
	Bit string
	 N/A
	The temporal key value

	Length
	Integer
	 N/A
	The number of bits in the Key to be used

	Key ID
	Integer
	0 GCM

1-255 reserved
	Key identifier

	Receive Sequence Count
	 8 octets
	 N/A
	 Value to which the RSC(s) is initialized

	Direction
	Integer
	Receive, transmit, both
	Indicates the direction for which the keys are to be installed. Receive indicates that the keys are being installed for the receive direction. Transmit indicates that the keys are being installed for the transmit direction. Both indicates that the keys are being installed for both the receive and transmit directions.

This primitive is generated at any time when one or more keys are to be set in the MAC
Receipt of this primitive cause the MAC to apply the keys as follows (provided the MLME-SETPROTECTION.request primitive has been issued):

a) If the Direction element of the KeyDescriptor indicates Transmit or Both then the MAC uses the key information for the transmission of all subsequent frames to which the key applies.

b) If the Direction element of the KeyDescriptor indicates Receive or Both then the MAC installs the key with the associated Key ID such that received frames of the appropriate type and containing the matching Key ID are processed using that key.
MLME-DELETEKEYS.request
This primitive causes the keys identified in the parameters of the primitive to be deleted from the MAC and thus disabled for use.

The primitive parameter is as follows:

MLME-DELETEKEYS.request{
DeleteKeyDescriptor

}

Table 5 —DeleteKeyDescriptors

	Name
	Type
	Range
	Description

	Key
	Key Bit string
	 N/A
	The temporal key value

	Length
	 Integer
	 N/A
	The number of bits in the Key to be used

This primitive is generated at any time when keys for a security association are to be deleted in the MAC. Receipt of this primitive cause the MAC to delete the temporal keys identified by the DeleteKeyDescriptors and to cease using them.

MLME-SKF.request
The primitive parameters are as follows:

MLME-SKF.request {

Data

}

Data is specified in 1.2.1.

This primitive is generated by the PD has a SKF frame to send.
MLME-SKF.confirm

The primitive parameters are as follows:

MLME-SKF.confirm {

ResultCode

}

Table 6 —ResultCode parameters

	Name
	Type
	Range
	Description

	ResultCode
	Enumeration
	 SUCCESS,

TRANSMISSION_FAILURE
	Indicates whether the SKF frame has been transmitted to the target PD.

This primitive is generated by the MAC as a result of an MLME-SKF.request primitive being created to send a SKF frame. This primitive communicates that the SKF frame has been transmitted.
MLME-SETPROTECTION.request
This primitive indicates whether protection is required for frames sent to and received from the indicated MAC address.

The primitive parameter is as follows:

MLME-SETPROTECTION.request{

ProtecDescriptor

}

Table 7 —ProtecDescriptor parameters

	Name
	Type
	Range
	Description

	ProtectType
	 Enumeration
	 None, Rx, Tx, Rx_Tx
	The protection value for this MAC.

	Key Type
	 Integer
	 Pairwise, group
	Defines whether this key is a pairwise key, Group key.

This primitive is generated by the PD when protection is required for frames sent to and received from the source MAC address.

Receipt of this primitive cause the MAC to set the protection and to protect data frames as indicated in the ProtectType element of the ProtectDescritor parameter:

a) None: specifies that data frames neither from the source MAC address nor to the source MAC address are protected.

b) Rx: specifies that data frames from the source MAC address are protected (i.e., any Data frames without protection received from the MAC address are discarded).

c) Tx: specifies that Data frames to the source MAC address are protected.

d) Rx_Tx: specifies that Data frames to and from the source MAC address are protected.

Once Data frames are protected to and/or from the specified source MAC address, the MLME-SETPROTECTION.request primitive is used to reset the prior setting.
Invocation of the MLME-SETPROTECTION.request primitive with a ProtectType of None deletes a protection state.

i
Submission Page

Hernandez, Li, Dotlic, Miura (NICT)

_1523986131.unknown

_1524829833.vsd
MAC header

GCMP header

Encrypted MAC payload

MIC

FCS

PN0

Reserved

Key ID

PN1

PN2

PN3

PN4

PN5

Signature

_1525054394.unknown

_1525056002.unknown

_1525056217.unknown

_1525067634.vsd
PD U

PD V

Message 1: SKF(QU, keyInfo, r,s)

Message 2: SKF(QV, keyInfo, r’, s’)

Derive shared secret

Derive TK with KDF

Derive shared secret

Derive TK with KDF

Verify signature

Verify signature

_1525056482.unknown

_1525056063.unknown

_1525055820.unknown

_1525054107.unknown

_1525054331.unknown

_1525054025.unknown

_1524378063.vsd
U

V

U’s ephemeral public key

V’s ephemeral public key

Shared secret derivation: Z

Shared secret derivation: Z

TK=KDF(Z,otherInfo)

TK=KDF(Z,otherInfo)

_1524465853.vsd
Message

Hash

Message digest

Private key

Signature
generation

Signature

Signature
verification

Message

Hash

Message digest

Public key

Valid or invalid

Signature
generation

Signature verification

_1524483291.unknown

_1524395800.unknown

_1524395896.unknown

_1524163700.unknown

_1524251786.unknown

_1524162941.unknown

_1523364826.vsd
Key
 information

Key
 length

Key replay
 counter

Octets: 1

Key
MIC

Key
data length

Key
data

2

8

variable

2

variable

_1523984526.unknown

_1523984986.unknown

_1523450527.vsd
b7

Reserved

Error

Key
 type

Key
install

MIC

Secure

Encrypted key
 data

Reserved

b0

b1

b2

b3

b4

b5

b6

_1521192534.vsd
AAD

Nonce

Increment

GCMP header

GCM encryption

Plaintext MPDU

Encrypted MPDU

MAC header

SA

Data

PN

Key ID

TK

Encrypted payload and MIC

_1521204578.vsd
AAD

Nonce

Replay check

MIC

Key

GCM decryption

Encrypted MPDU

Plaintext MPDU

MAC header

SA

Data

PN*

Plaintext payload

PN

_1521179589.vsd
Frame control

Sequence number

Destination address

Source address

Auxiliary security

_1521183136.vsd
Source address

PN

