Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Discussion on Channel Model for B4
Date Submitted: November 9, 2015
Source: V. Jungnickel, D. Schulz, J. Hilt, C. Alexakis, M. Schlosser, A. Paraskevopoulos, L. Grobe, R. Freund
Company: Fraunhofer HHI
Address: Einsteinufer 37, 10587 Berlin, Germany, Voice: +49 30 31002 768
mail: volker.jungnickel@hhi.fraunhofer.de

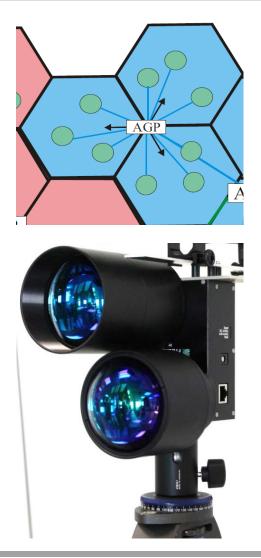
Re: Agenda for Monday Nov. 9, PM2 session

Abstract: Fudan University proposed that an additional channel model should be developed for scenario B4. Fraunhofer provides insights into recent work on that issue as a basis for discussion.

Purpose: Discussion

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.


Outline

- Low-cost short-range backhaul
- Initial results
- Long-term outdoor measurements
- Model for optimized link design
- Results with optimized link design
- Conclusions

Low-cost short-range backhaul

Photonic Networks and Systems

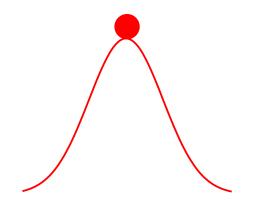
Increasing amounts of data over mobile networks

Small cells are the main capacity scaling factor

V. Jungnickel et al., "The role of small cells, coordinated multipoint, and massive MIMO in 5G," IEEE Communications Magazine, Special Issue on *5G Wireless Communication Systems: Prospects and Challenges*, vol.52, no.5, pp.44-51 (2014).

5G: Up to 50/10 indoor/outdoor small cells per sector

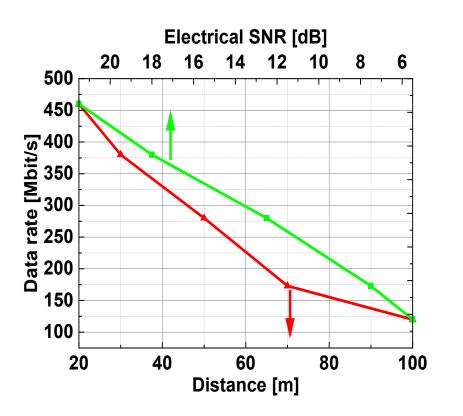
- Urban areas (Germany): Typical inter-site distance is 500 m
- Small-cell backhaul distance is 50-250 m
- High line-of-sight probability


New idea: Use LED-based optical wireless link as low-cost backhaul solution for small radio cells

V. Jungnickel, D. Schulz, N. Perlot, K.-D. Langer, W. Störmer, "Optical Wireless as a Low-Cost Small-Cell Backhaul Solution," 8. ITG Fachtagung Photonische Netze und Systeme, Berlin, 1.-2. April 2014

Laser vs. LED

Laser: Gaussian beam profile


- Sensitive against misalignment
- Needs tracking

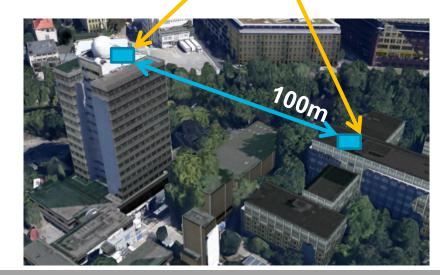
- LED: Flat-top beam profile
 - Easy alignment
 - No more tracking is needed
 - Very robust link
 - Lamp posts, etc.

Initial results

- 3", f=10/8,5 cm lens at Tx/Rx
- Single-color infrared LED
- 7x7 mm² emitting area
- 14 mm effective PD diameter
- 7x7 m² beam area at 100 m

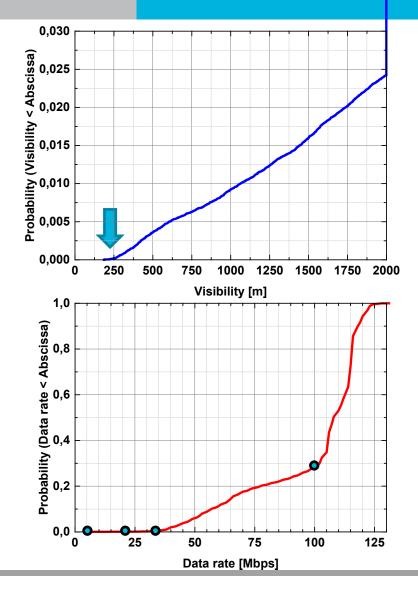
- More focused beam
- Better usage of optical bandwidth




Long-term outdoor experiment

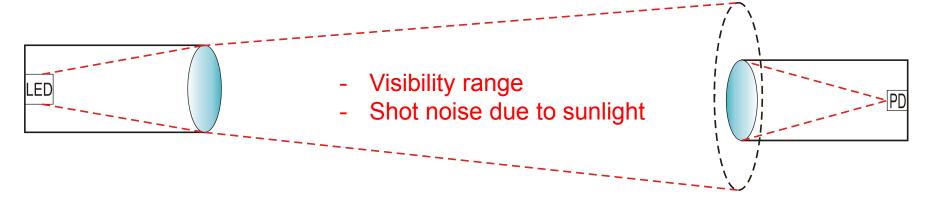
Evaluate the impact of fog and sunlight

- Measured both, visibility range and data rate
- 5-month trial during winter term
 Nov. 2014 April 2015



Cumulative long-term statistics

- Cumulative statistics of visibility and data rate for 5 months
- Visibility was never below 180 m
 High availability for short distances
- Rate adaptation: Data rate was for
 - On average more than 100 Mbit/s
 - 99% more than 39 Mbit/s
 - 99,9% more than 22 Mbit/s
 - More than 6 Mbit/s at any time
- No outage at all
 - Thanks to rate-adaptive system concept



Model for optimized link design

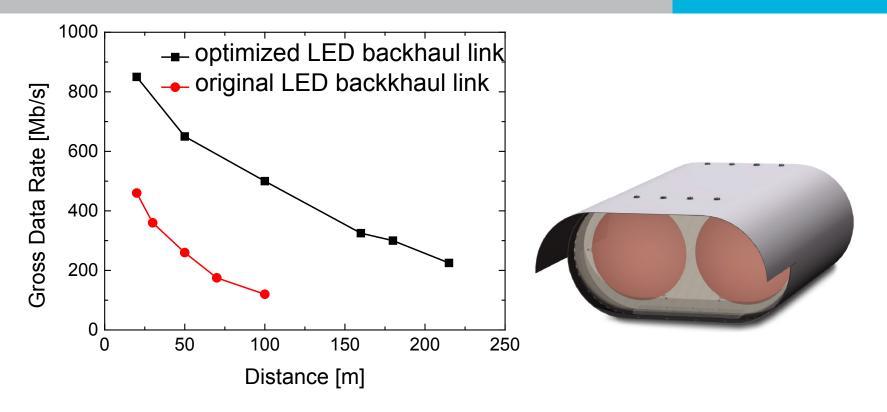
LED power, active area, beam width

Focal length and diameter of lens

- Received power
- PD area, sensitivity
- Focal length and diameter of lens
- Rx bandwith

- Model computes finally the electrical SNR_{el} at the receiver
- Use modified Shannon's formula $C = B^* \log_2(1 + SNR_{el}/\Gamma)$
- Determine empirical parameter Γ from system measurements

New 1 Gb/s baseband chip

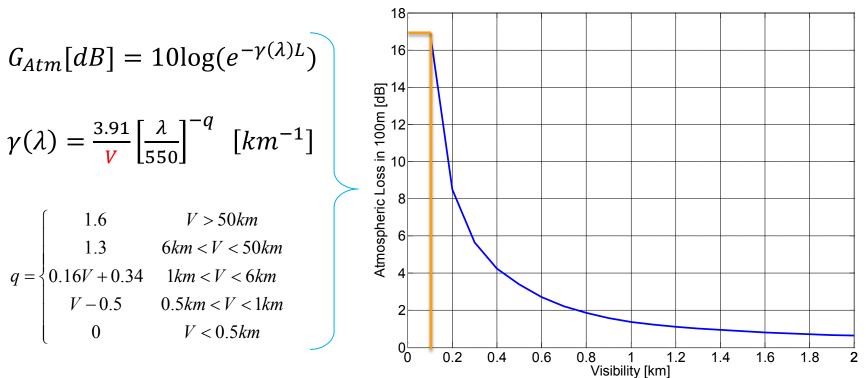

- Standard RFC 2544 test
 - electrical back-to-back measurements
 - Electrical gross data rate ~950 Mb/s
 - Optical gross data rate ~850 Mb/s
- Throughput results
 - Is smaller for smaller frame sizes
 - Max. reached for frame size \geq 512 byte
 - 230% more net throughput
- Latency results
 - (10±1) ms for 500 Mb/s chip for frame size ≥ 512 byte
 - < 2 ms for 1 Gb/s chip, independent of the frame size

Results with optimized backhaul link

Photonic Networks and Systems

- 4" f=10 cm lenses at Tx and Rx, single-color IR LED
- 1x1 m² at 100 m \rightarrow higher SNR
- New baseband chip \rightarrow Higher throughput, lower latency

Fraunhofer Heinrich Hertz Institute


- Initial work using LED-based optical wireless link for the backhaul of small radio cells (WiFi, LTE).
- Long-term outdoor trial indicates the impact of fog and sunlight.
- Mathematical model of the link was developed to figure out optimized link parameters, goal was 1 Gbps over 100 m within available analog bandwidth (180 MHz).
- Optimized link with new baseband chip (using 100 MHz bandwidth only) achieved around 500 Mbps over 100 m.
- Potential towards 10G lies in replacing LED with lasers (high bandwidth).
- WDM is regarded critical as it increases receiver complexity.

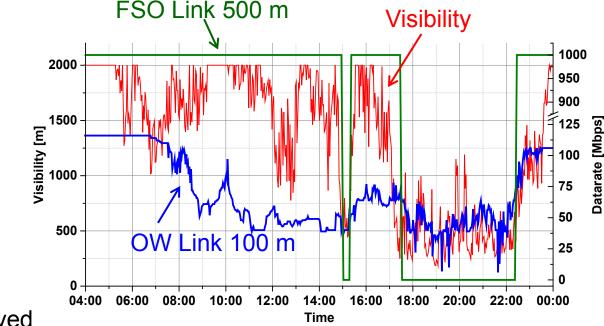
Impact of visibility

- Attenuation due to fog is main limiting factor
- Visibility is essential parameter
- Use well-known Kim's formula: 17 dB loss if visibility is equal to distance

I. I. Kim, B. McArthur, E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications".

Volker Jungnickel et al.: Discussion on Channel Model for B4

Impact of fog

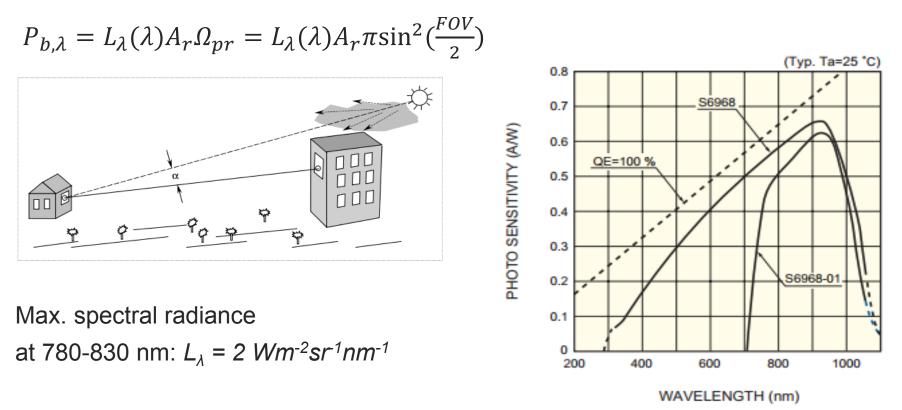

Reduced visibility leads to higher atmospheric losses

Fixed-rate FSO link

- Total outage
- Where link margin is not enough

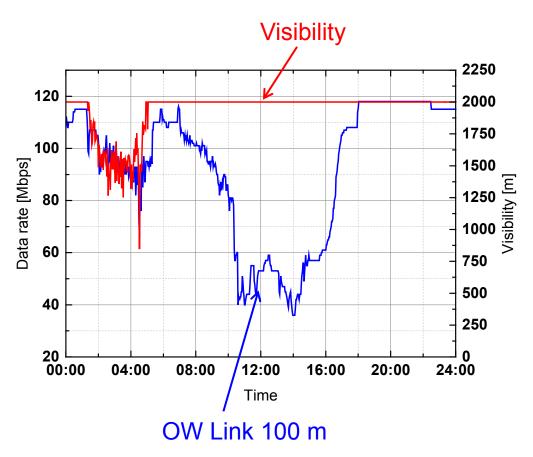
Rate adaptive OW link

- Reduced rate
- No more outage is observed
- Enhanced link availability



Impact of sunlight

Photonic Networks and Systems


Example:

Ø 75mm , FOV=9°, $E_p(780-830nm)=0,6 \text{ A/W}, L_{\lambda} = 2 \text{ Wm}^{-2}\text{sr}^{-1}nm^{-1}$ $P_b=8.5 \text{ mW}$ $I_b=5,1mA$

Impact of sunlight

Scattered sunlight leads to

- Shot noise
- Rx saturation (if strong)
- Use sun cap

Direct sunlight leads to outage

- Rare event
- If both, Tx and sunlight are inside the Rx field-of-view (FOV)
- Minimize the FOV
- Use optical band-pass filter

