Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Mobile Channel Characterization in Typical Subway Tunnels at 30 GHz

Date Submitted: 11 September, 2015

Source: Ke Guan [Beijing Jiaotong University]

Address: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing,

100044, China

Voice: +86 13810331547, FAX: +86 10-51684773, E-Mail: kguan@bjtu.edu.cn

Re:

Abstract: Based on extensive ray-tracing simulations, this document presents channel characterization for a receiver moving at the speed of 100 m/s in tunnels with 2 GHz bandwidth between 31.5 GHz and 33.5 GHz. The main channel parameters, such as path loss, Rician K-factor, delay spread, Doppler spread, coherence time, decorrelation distance, XPD and CPR are analyzed for three antenna setups.

Purpose: The Channel characteristics can be helpful for link-level simulation of mobile communications in tunnel environments at 30 GHz

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Outline

- Motivation of channel characterization for HRRC
- Deterministic channel modeling approach
 - Ray-tracing simulator
 - Frequency domain simulation
- Channel simulation and characteristics
- Conclusion and future work

Outline

- Motivation of channel characterization for HRRC
- Deterministic channel modeling approach
 - Ray-tracing simulator
 - Frequency domain simulation
- Channel simulation and characteristics
- Conclusion and future work

1. Motivation of channel characterization for HRRC

Gbps data rate with high performance should be provided to the user groups inside of the fast-moving vehicles.

Feasibility studies

Physical layer emulation with diffrerent channel model

Propagation investigations

- propagation channel simulation
- Radio channel simulation

System simulations

System design guidelines

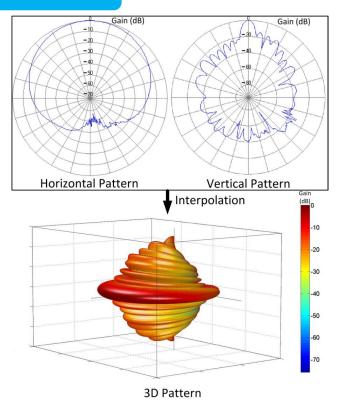
System testing

Outline

- Introduction of BJTU and RCS
- Motivation of channel characterization for HRRC
- Deterministic channel modeling approach
 - Ray-tracing simulator
 - Frequency domain simulation
- Channel simulation and characteristics
- Conclusion and future work

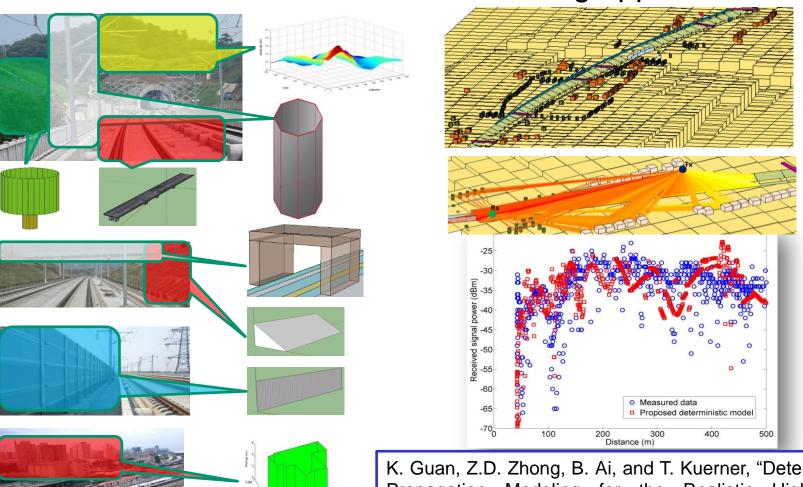
Ray-tracing based channel modeling

Deterministic modeling approach towards real scenarios


3D ray optical channel model:

Transmission, reflection, scattering

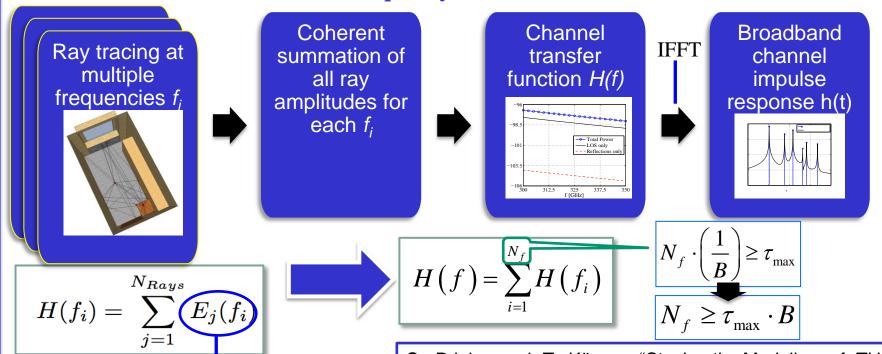
Antenna modeling


Ray optical method

$$h(\tau,t) = \sum_{k=1}^{N(t)} a_k(t) \cdot e^{j(2\pi f \tau_k(t) + \varphi_k(t))} \cdot \delta(\tau - \tau_k(t))$$

J. Nuckelt, et al., "Deterministic and stochastic channel models implemented in a physical layer simulator for Car-to-X communications," 2010 Advances in Radio Science, 2010.

Submission Slide 6



K. Guan, Z.D. Zhong, B. Ai, and T. Kuerner, "Deterministic Propagation Modeling for the Realistic High-Speed Railway Environment," IEEE 77th VTC2013-Spring, Dresden, Germany, pp. 1-5, June 2013.

UWB channel: Frequency domain simulation

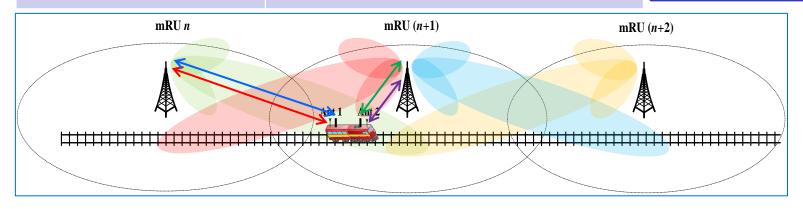
UWB → Significant frequency dispersion → Single frequency ray tracing insufficient

Idea: Channel simulation in frequency domain

Ray amplitudes from ray tracing

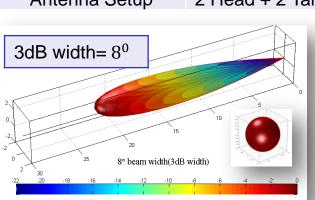
S. Priebe and T. Kürner, "Stochastic Modeling of THz Indoor Radio Channels," IEEE Trans. Wireless Commun., vol.12, no.9, pp. 4445–4455, Sept. 2013.

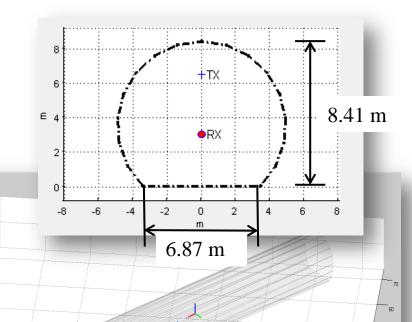
The ray-tracing simulator has been verified by extensive measurements:				
Frequency	System	Scenario		reference
930 MHz	GSM-R	High-speed railway		K. Guan, et al., "Deterministic Propagation Modeling for the Realistic High-Speed Railway Environment," IEEE VTC2013-Spring, Dresden, Germany, pp. 1-5, June 2013.
5.9 GHz	DSRC	Urban		T. Abbas, et al., "Simulation and Measurement Based Vehicle-to-Vehicle Channel Characterization: Accuracy and Constraint Analysis," IEEE Trans. on Ant. and Prop., 2015.
15 GHz	5G D2D	Corridor		Q. Wang, et al., "Ray-Based Analysis of Small-Scale Fading for Indoor Corridor Scenarios at 15 GHz," APEMC 2015
30 GHz, HRRC, Typical subway tunnel				
60 GHz	WLAN	Indoor		M. Jacob, et al., "Diffraction in MM and Sub-MM Wave Indoor Propagation Channels," IEEE Transactions on Microwave Theory and Techniques, vol.60, no.3, pp.833-844, Mar. 2012.
275 GHz- 325 GHz	WLAN WPAN	Indoor	11.7 dB	S. Priebe et al., "Stochastic Modeling of THz Indoor Radio Channels," IEEE Trans. Wireless Commun., vol.12, no.9, pp. 4445–4455, 2013.


Outline

- Motivation of channel characterization for HRRC
- Deterministic channel modeling approach
 - Ray-tracing simulator
 - Frequency domain simulation
- Channel simulation and characteristics
- Conclusion and future work

3. Channel simulation and characteristics


System: Mobile Hotspot Network (MHN)		
Cell Coverage	1 km (mRU interval)	
Frequency	31.5~33.5 GHz	
Bandwidth	125 MHz x 4	
Length of Train	200 m	
Antenna Setup	Head ant. + Tail ant.	
MIMO Configuration	1x1, 1x2, 2x1, 2x2	
Target Maximum Speed	400 ~ 500 km/h	
Antenna Type	Patch array antenna (directional ant.) w. 8° beam width (3 dB width)	
Antenna Separation	Around 10 cm	


Dae-Soon Cho, al., et "Performance of downlink control channels for Mobile Hotspot Network system," 2013 International Conference on ICT Convergence (ICTC), pp.909-912, 14-16 Oct. 2013

3. Channel simulation and characteristics

Simulation Setup		
Environment	Subway tunnel	
Tunnel Type	Arched subway tunnel	
Frequency	31.5~33.5 GHz	
Bandwidth 125 MHz (Time resolution		
Antenna Height	6.5 m for mRU, 3 m for mTE	
Transmission Power	20 dBm	
Cable Loss	6 dB	
Antenna Type	O2O, D2O, D2D	
Speed	100 m/s (360 km/h)	
Complian Intomial	1 m	
Sampling Interval	2 mm (\approx 0.2 λ) after interp.	
Distance	1 km	
Antenna Setup	2 Head + 2 Tail ant., 10 cm sep.	

- K. Guan, et al., "Measurements and Analysis of Large-Scale Fading Characteristics in Curved Subway Tunnels at 920 MHz, 2400 MHz, and 5705 MHz," to appear, IEEE Transactions on Intelligent Transportation Systems, 2015.
- M. Schack, Integrated Simulation of Communication Applications in Vehicular Environments, Ph.D. Dissertation

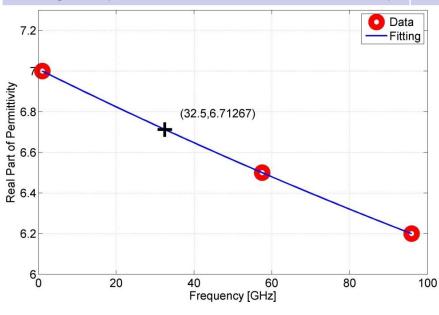
Electromagnetic property

Concrete

6.71267

Licetromagnetic propi

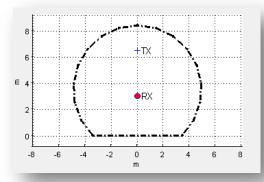
Tunnel walls


Real part of relative permittivity


Imaginary part of relative permittivity

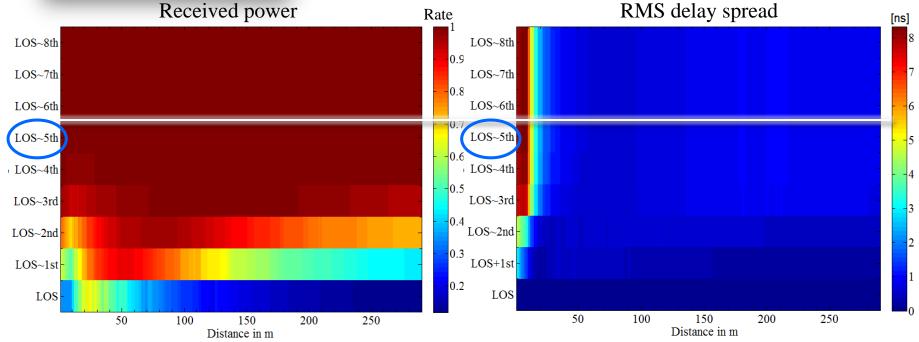
Material

 $\varepsilon = \varepsilon' - j\varepsilon''$


Loss tangent = $\arctan \frac{\mathcal{E}}{\mathcal{E}}$

Recommendation ITU-R P.1238-7-EM Property

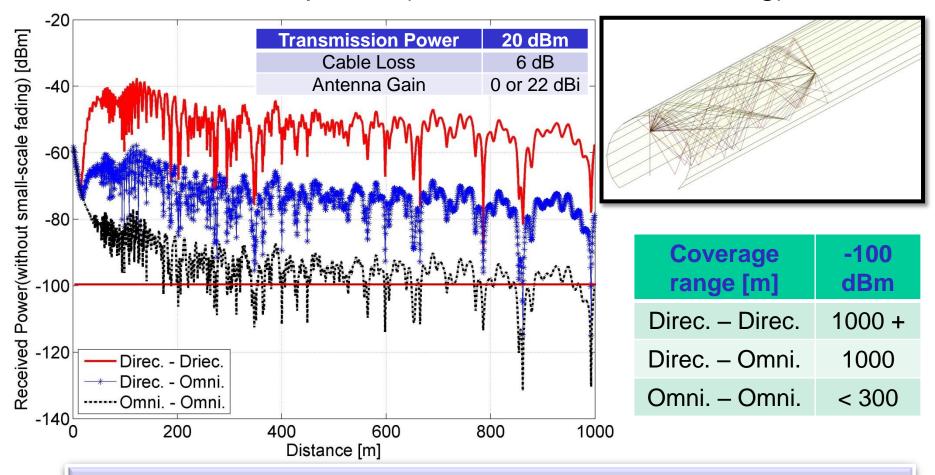
Geometry of tunnel and orders of reflections



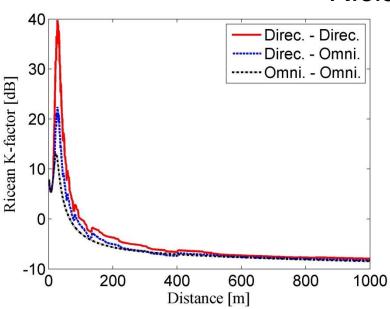
Tunnel - 17 faces

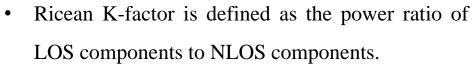
Direct ray + reflected rays

Order of reflections – 5

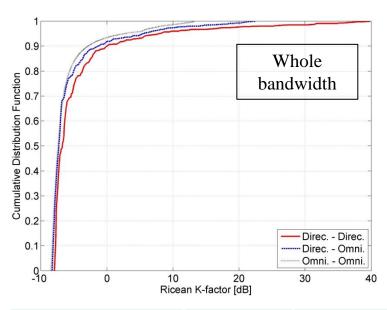

K. Guan, et al., "Measurements and Analysis of Large-Scale Fading Characteristics in Curved Subway Tunnels at 920 MHz, 2400 MHz, and 5705 MHz," to appear, IEEE Transactions on Intelligent Transportation Systems, 2015.

Parameters of channel characteristics


Parameters of channel characteristics		
Loss and fading	Received power	
	Rician K-factor	
Power delay profile	RMS delay spread	
Doppler spectrum	RMS Doppler spread	
	Mean Doppler shift	
Time-varying property	Coherence time	
Correlation of shadow fading	ng Decorrelation distance	
	Cross-correlation coefficient	
Polarization	Cross polarization discrimination (XPD)	
Co-polarization power ratio (CPR)		

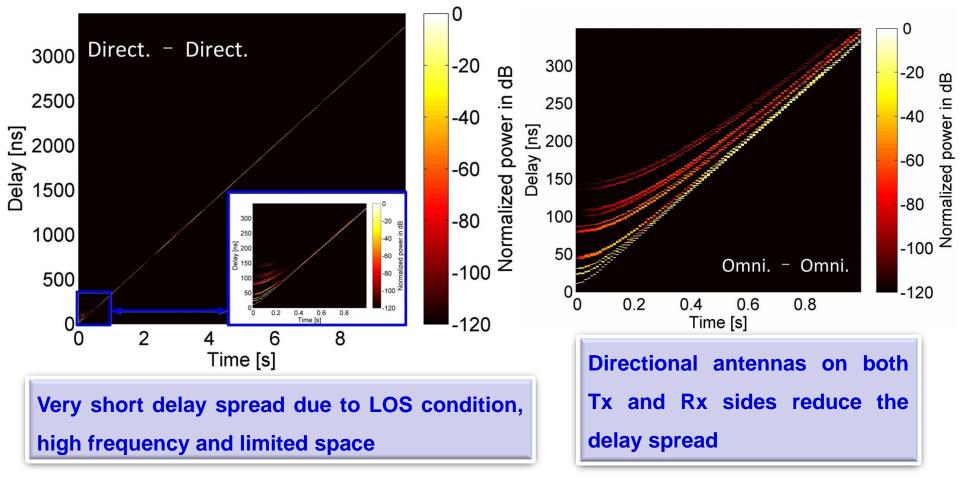

Received power (without small scale fading)

- Enough coverage can be realized by usage of directional antenna
- At least one directional antenna should be used for enough link length


Rician K-factor

• K=0 -- Rayleigh fading; $K=\infty$ -- no fading.

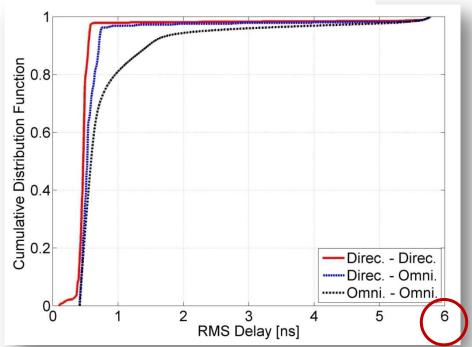
In the first 50 m, channel fading is weak, but after 50 m, channel goes through a serious fading.



Ricean K- factor [dB]	50%	90%
Direc. – Direc.	-6.750	-0.006
Direc. – Omni.	-7.280	-1.368
Omni. – Omni.	-7.400	-2.844

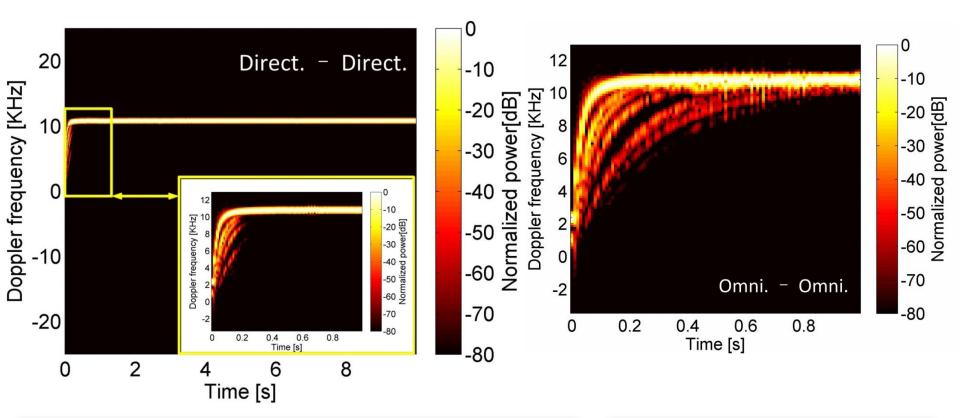
Andrea Goldsmith. 2005. Wireless Communications. Cambridge University Press, New York, NY, USA.

Power delay profile


Normalized Power Delay Profile (32.5GHz)

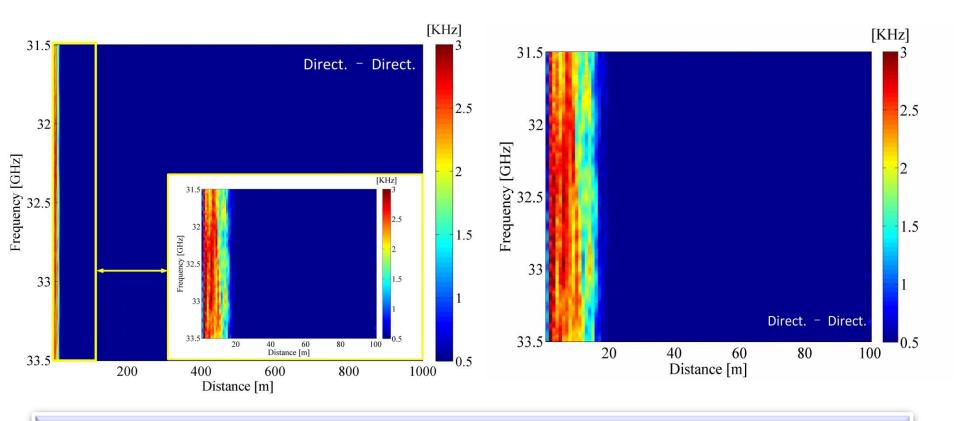
Root-mean-square (RMS) delay spread

$$\tau_{\text{rms}} = \sqrt{\frac{\sum_{r=1}^{N} \tau_r^2 X(r)}{\sum_{r=1}^{N} X(r)} - \left(\frac{\sum_{r=1}^{N} \tau_r X(r)}{\sum_{r=1}^{N} X(r)}\right)^2} \quad X(r) \quad (r=1,2,\cdots,N) \text{ be the r-th sample of the power delay profile (PDP) at a certain time}$$


$$\tau_r^{\text{denote the excess delay of the r-th sample of PDP}$$

RMS delay spread [ns]	50%	90%
Direc. – Direc.	0.467	0.545
Direc. – Omni.	0.528	0.708
Omni. – Omni.	0.586	1.463

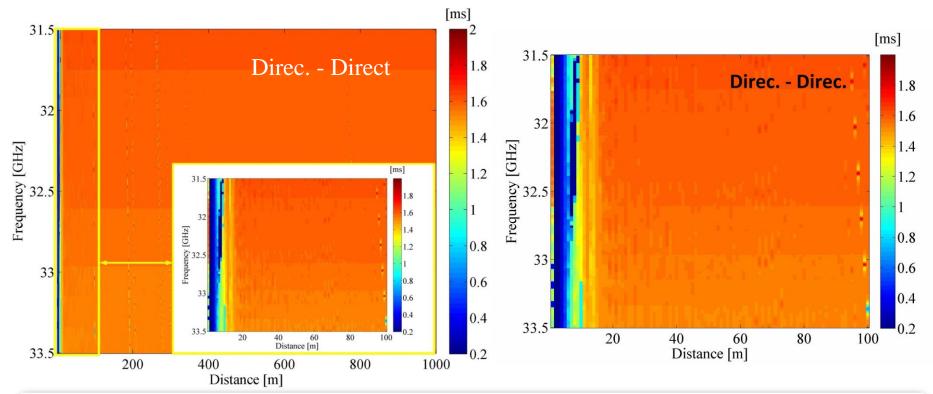
So short time delay spread will not introduce Inter-symbol Interference (ISI)


Doppler spectrum at 32.5 GHz

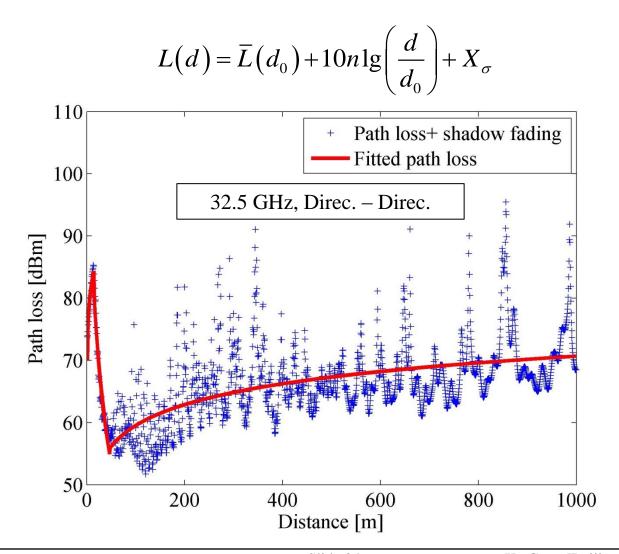
- Maximum Doppler shift is around 12 kHz
- Doppler spread mainly happens in the first 100 m

Directional antennas reduce the RMS Doppler spread

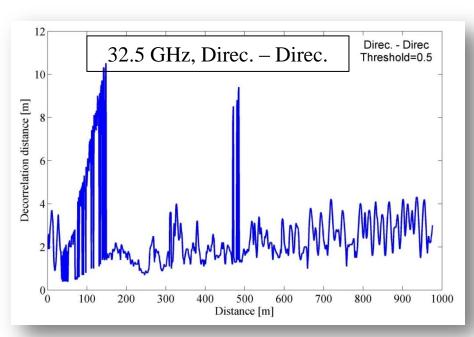
RMS Doppler Spread for the whole 2-GHz bandwidth

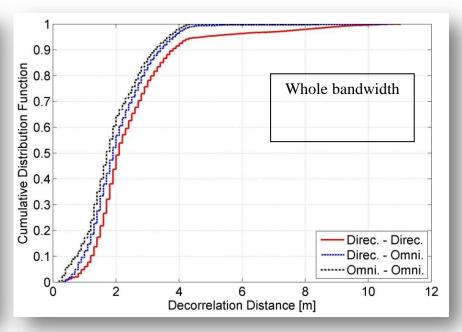

- In the first 20 m, the RMS Doppler spread is up to 3 kHz
- Directional antennas reduce the distance of the signal suffering Doppler spread

Mean Doppler Shift at 32.5 GHz


- Mean Doppler shift increases very fast up to 12 kHz within the first 10 m
- Directional antennas do NOT influence Doppler shift as it comes form the direct path at short distance, and at long distance the reflections are close to direct paths.

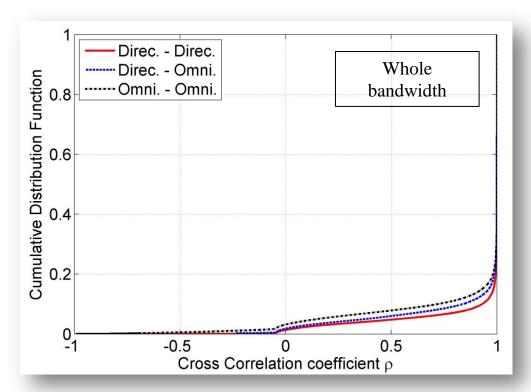
Coherence time




- Coherence time increases very fast up to around 1.5 ms within the first 10 m
- Directional antennas do NOT influence coherence time at the first short distance, but they can constrain the fluctuation of coherence time versus distance.
- Very short coherence time requires channel estimation on slot level

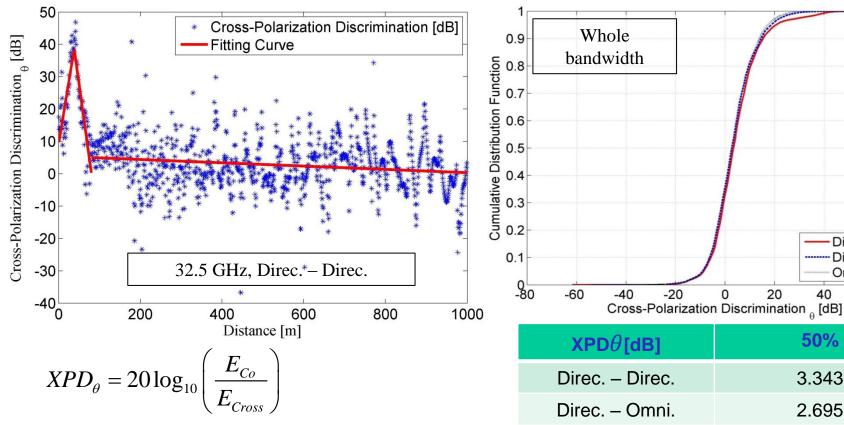
Correlation of shadow fading

Decorrelation distance with threshold 0.5



Decorrelation distance [m]	50%	90%
Direc. – Direc.	2.104	3.807
Direc. – Omni.	1.904	3.406
Omni. – Omni.	1.703	3.206

- Directional antennas increase the decorrelation distance
- Mean decorrelation distance is around 2
 m, MIMO antennas should separated
 further to get diversity gain


Cross correlation coefficient between two adjacent links

Cross correlation coefficient	>0.5	>0.9
Direc. – Direc.	99.5%	99.1%
Direc. – Omni.	99.4%	98.8%
Omni. – Omni.	99.3%	98.6%

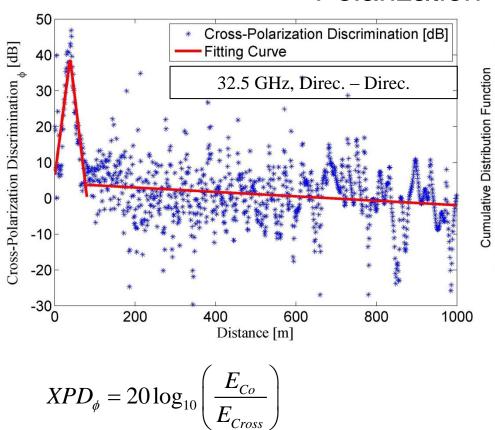
- Cross correlation coefficient between two adjacent links with 10-cm separation is larger than 0.9 in 99% cases.
- Diversity gain can be expected by enlarging the separation between MIMO antennas

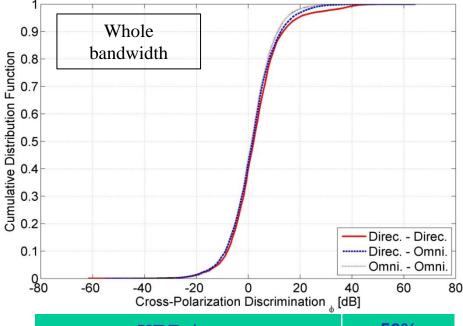
Polarization – XPD_VH

 XPD_{θ} refers to the field received in θ co-polarization relative to the field transmitted in θ and received in ϕ polarization

XPD heta[dB]	50%
Direc. – Direc.	3.343
Direc Omni.	2.695
Omni. – Omni.	2.644

1/3 energy of the vertically polarized wave is depolarized

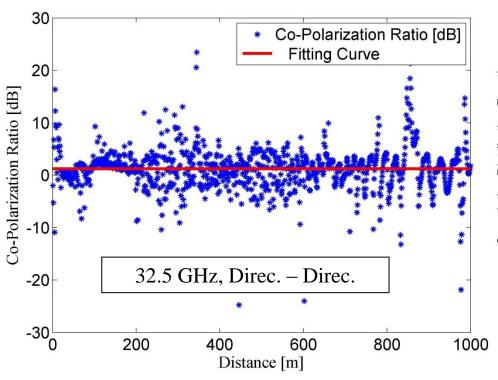

Direc. - Direc Direc. - Omni.


Omni. - Omni.

60

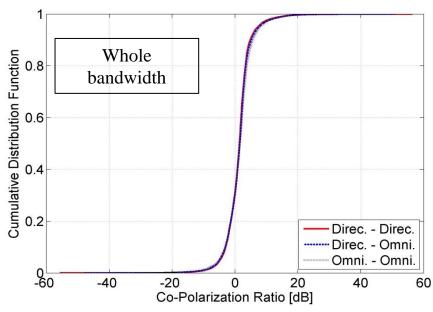
40

Polarization – XPD_HV


$XPD_{\phi} = 20\log_{10}$	$\left(rac{E_{Co}}{E_{Cross}} ight)$
----------------------------	---------------------------------------

 XPD_{ϕ} refers to the field received in ϕ co-polarization relative to the field transmitted in ϕ and received in θ polarization

$XPD\phi$ [dB]	50%
Direc. – Direc.	2.097
Direc. – Omni.	1.639
Omni. – Omni.	1.315


Half energy of the horizontally polarized wave is depolarized

Polarization - CPR

The CPR, which describes the power ratio between the copolarized V-channels (h_{VV}) and H-channels (h_{HH}), is defined:

$$CPR = \frac{E\left\{ |h_{VV}|^2 \right\}}{E\left\{ |h_{HH}|^2 \right\}}$$

Co-polarization Ratio [dB]	50%
Direc. – Direc.	1.386
Direc. – Omni.	1.499
Omni. – Omni.	1.561

Vertical polarization is slightly better than horizontal polarization

Outline

- Motivation of channel characterization for HRRC
- Deterministic channel modeling approach
 - Ray-tracing simulator
 - Frequency domain simulation
- Channel simulation and characteristics
- Conclusion and future work

Conclusion

Conclusion on channel characteristics	
Received power	1-km long coverage is promising by using dual-
	directional antenna setup
Rician K-factor	Very small and the channel suffers Rayleigh fading
RMS delay spread	Very short, no bother
RMS Doppler spread	Around 3 kHz in the first 20 m,
	reduced by directional antennas
Mean Doppler shift	Increase up to 12 kHz within the first 10 m
Coherence time	Much shorter than frame duration
Decorrelation distance	Around 2 m, much larger than 10 cm
Cross-correlation coefficient	Links separated only 10 cm are highly correlated
XPD	Around half energy is depolarized
CPR	Vertical polarization is slightly better

Future work

Future work:

- More railway scenarios
- More communication system setups

transport model, playing a more and more

significant role for human development!