Feb 2015
 IEEE P802.15 - 15-14-0704-06-0mag

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	LB97 resolutions - Kivinen

	Date Submitted
	11 July, 2014

	Source
	Tero Kivinen
INSIDE Secure
Eerikinkatu 28

FI-00180 Helsinki

Finland
	Voice:
+358 20 500 7800
Fax:
+358 20 500 7801
E-mail:
kivinen@iki.fi

	Re:
	LB97 resolutions

	Abstract
	LB 97 resolutions to CIDs 1028, 1150, 1026, 1145, 1146, 1148, 1147, 1153, 1101, 1151, 1105, 1104, 1154, R1, R25, R28, R29, R30, R31, R40, R41, R42, R89, and adds two new rogue comments R106 and R107.

	Purpose
	LB97 resolutions

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

CID 1028

	Robert Moskowitz
	Verizon

	313

	9.2

	16

	Still need state machines for security flow
	Provide state machine figures

State machines posted as separate document 15-15-0106-02. Add that to the bibliography.

CID 1150

	Tero Kivinen
	INSIDE Secure
	313

	9.2.1

	37

	Swap steps c) and b). There is no point of checking length of the data expansion length if we are not protecting the frame. See CID 565.
	Swap steps c) and b).

Following changes covers the outgoing part CID 1026 and R107, and completely CID 1150 and R25.

–

Changes in 9.2.1 Outgoing frame security procedure.

1) The inputs, outputs and temporary variables in the procedure needs to have some kind of typographic marking to show them explictly. We cannot use italics, but perhaps we can replace then with something like bold inFTBS (input: frame to be secured), outStatus (output: status), varKD (variable KeyDescriptor) or something. In 15-14-0704-03 I marked them with Green (input), Red (output), Blue (variables), so they are easy to spot, but did not yet change their names or mark them otherwise.

2) Added short summary header to each step.

3) Moved step C to be first step, i.e. step A.

4) Removed whole step b, as we this checking is now done in generic parts. There cannot be any IEs added after this, but there might be other constraints for the length, thus checking it here specially for security processing is useless. Future steps are renumbered accordingly.

5) Moved step old A to be new step B, and removed "and the SecurityLevel parameter is not equal to zero," from there as we have already checked that case in new step A. The DstAddrMode, DstPANId and DstAddr are not defined anywhere, but I assume they mean fields from the frame, so it would be better use terms "Destination Addressing Mode field", "Destination PAN Identifier field", and "Destination Address field".

6) In old step E (now D), rewrite it to take account the FrameCounterPerKey parameter. New text:

If using TSCH mode, then ASN is used instead of frame counter,

and this step is skipped. If the FrameCounterPerKey in the

KeyDescriptor is set to FALSE, then the procedure shall set

the frame counter to the macFrameCounter attribute, otherwise

the procedure shall set the frame counter to the

KeyFrameCounter of the KeyDescriptor. If the frame counter has

the value 0xffffffff, the procedure shall return with a status

of COUNTER_ERROR.

7) Add new text to old step F (now E) in substep 3 to tell that if using TSCH mode then Frame Counter Suppression field is set to one.

8) In old step G (now F) explain that table 146 is only listing exceptions, i.e. change "The Private Payload field and Open Payload field shall be set as indicated in Table 146" to "For frames specified in the Table 146, the Private Payload field and Open Payload field shall be set as indicated there. For frames not specified in Table 146, the Private Payload field shall be set to contain all MAC payload fields, and the Open Payload field shall be empty."

9) In old step H (now G) change text "and set the macFrameCounter attribute to the resulting value." with "and store it back (either to the macFrameCounter attribute or to the KeyFrameCounter of the KeyDescriptor)."

–

New version of the Outbound state machine after making above changes:

–
The inputs to this procedure are the frame to be secured and the SecurityLevel, KeyIdMode, KeySource, and KeyIndex parameters from the originating primitive or automatic request PIB attributes. The outputs from this procedure are the status of the procedure and, if this status is SUCCESS, the secured frame.

The outgoing frame security procedure involves the following steps:

a) Do we need to secure the packet?

If the SecurityLevel parameter is zero, the procedure shall set the secured frame to be the frame to be secured and return with a status of SUCCESS.

b) Do we have security enabled?

If the macSecurityEnabled attribute is set to FALSE the procedure shall return with a status of UNSUPPORTED_SECURITY.

c) Fetch the KeyDescriptor.

The procedure shall obtain the KeyDescriptor using the KeyDescriptor lookup procedure as described in 9.2.2 with the device addressing mode set to Destination Addressing Mode field, the device PAN ID set to Destination PAN Identifier field, and the device address set to Destination Address field. If that procedure fails, the procedure shall return with a status of UNAVAILABLE_KEY.

d) Fetch frame counter.

If using TSCH mode, then ASN is used instead of frame counter, and this step is skipped. If the FrameCounterPerKey in the KeyDescriptor is set to FALSE, then the procedure shall set the frame counter to the macFrameCounter attribute, otherwise the procedure shall set the frame counter to the KeyFrameCounter of the KeyDescriptor. If the frame counter has the value 0xffffffff, the procedure shall return with a status of COUNTER_ERROR.

e) Insert and fill auxiliary security header.

The procedure shall insert the auxiliary security header into the frame, with fields set as follows:

1) The Security Level field of the Security Control field shall be set to the SecurityLevel parameter.

2) The Key Identifier Mode field of the Security Control field shall be set to the KeyIdMode parameter.

3) If using TSCH mode Frame Counter Suppression field of the Security Control field is set to one, otherwise the Frame Counter field shall be set to the frame counter and Frame Counter Suppression field of the Security Control field is set to zero.

4) If the KeyIdMode parameter is set to a value not equal to zero, the Key Source and Key Index fields of the Key Identifier field shall be set to the KeySource and KeyIndex parameters, respectively.

f) Protect frame.

For frames specified in the Table 146, the Private Payload field and Open Payload field shall be set as indicated there. For frames not specified in Table 146, the Private Payload field shall be set to contain all MAC payload fields, and the Open Payload field shall be empty. The procedure shall then use the Private Payload field, the Open Payload field, the macExtendedAddress, the frame counter, the SecurityLevel parameter, and the Key element of the KeyDescriptor to produce the secured frame according to the CCM* transformation process defined in 9.3.4.

g) Store frame counter

If not using TSCH mode, the procedure shall increment the frame counter by one and store it back (either to the macFrameCounter attribute or to the KeyFrameCounter of the KeyDescriptor).

h) The procedure shall return with a status of SUCCESS.

Following changes covers the change in the PIB table to swap KeyIdLookupDescriptor and KeyDescriptor around as we discussed in the January meeting.

This covers the R106.

–

Changes in 9.2.2 KeyDescriptor lookup procedure

1) The inputs, outputs and temporary variables in the procedure needs to have some kind of typographic marking to show them explictly. We cannot use italics, but perhaps we can replace then with something like bold inFTBS (input: frame to be secured), outStatus (output: status), varKD (variable KeyDescriptor) or something. In 15-14-0704-03 I marked them with Green (input), Red (output), Blue (variables), so they are easy to spot, but did not yet change their names or mark them otherwise.

2) In step A change the loop to go through macKeyIdLookupList, i.e. change "for each KeyDescriptor in the macKeyTable attribute and for each KeyIdLookupDescriptor in the KeyIdLookupList of the KeyDescriptor." to "for each KeyIdLookupDescriptor in the macKeyIdLookupList.".

3) In step A) 5) mark fields from the PIB with italics, i.e. DeviceAddrMode, DevicePANId and DeviceAddress. I.e. those are PIB elements from the KeyIdLookupDescriptor.

4) Same change in step B, i.e. change "then for each KeyDescriptor in the macKeyTable attribute and for each KeyIdLookupDescriptor in the KeyIdLookupList of the KeyDescriptor," with "then for each KeyIdLookupDescriptor in the macKeyIdLookupList, ". Change "KeySource" in the text "KeySource of the KeyIdLookupDescriptor" to italics, as it refers to the PIB element from the KeyIdLookupDescriptor. Also move the static test "KeySource matches macDefaultKeySource" out from the loop, so it text gets little bit clearer. New step B is:

b) If the KeyIDmode parameter is set to 0x01 and the KeySource

matches macDefaultKeySource, then for each

KeyIdLookupDescriptor in the macKeyIdLookupList, if the

KeyIndex matches the KeyIndex of a KeyIdLookupDescriptor, then

the procedure returns with the corresponding KeyDescriptor and

passed status."

5) Again same change as in 2, i.e. change "then for each KeyDescriptor in the macKeyTable attribute and for each KeyIdLookupDescriptor in the KeyIdLookupList of the KeyDescriptor," with "then for each KeyIdLookupDescriptor in the macKeyIdLookupList, ". Also change the "KeySource" and "KeyIndex" in the "KeySource and Keyindex of a KeyIdLookupDescriptor" to be italics.

–

New version of section 9.2.2 KeyDescriptor lookup procedure after making above changes:

–
The inputs to this procedure are the KeyIdMode, KeySource, KeyIndex, device addressing mode, device PAN ID, and device address. The outputs from this procedure are a status and, if passed, a KeyDescriptor.

The procedure involves the following steps:

a) If the KeyIdMode parameter is set to 0x00, then for each KeyIdLookupDescriptor in the macKeyIdLookupList:

1) If the device addressing mode is set to NONE, then the device PAN ID shall be set to macPANId. Otherwise, the device PAN ID shall be the value passed to the procedure.

2) If the device addressing mode is set to NONE and the frame type is beacon, then the device address shall be macCoordExtendedAddress.

3) If the device addressing mode is set to NONE and the frame type is not beacon, then:

i) If the macCoordShortAddress attribute is set to 0xfffe, then the device address shall be set to the macCoordExtendedAddress.

ii) If the macCoordShortAddress attribute is set to a value of 0x0000–0xfffd, then the device address shall be set to the macCoordShortAddress.

iii) If the macCoordShortAddress attribute is set to 0xffff, the procedure shall return with a failed status.

4) If the device addressing mode is set to SHORT or EXTENDED, then the device address shall be the value passed to the procedure.

5) If the device addressing mode, device PAN ID, and device address match the DeviceAddrMode, DevicePANId, and DeviceAddress of a KeyIdLookupDescriptor, then the procedure returns with the corresponding KeyDescriptor and passed status.

b) If the KeyIDmode parameter is set to 0x01 and the KeySource matches macDefaultKeySource, then for each KeyIdLookupDescriptor in the macKeyIdLookupList, if the KeyIndex matches the KeyIndex of a KeyIdLookupDescriptor, then the procedure returns with the corresponding KeyDescriptor and passed status.

c) If the KeyIDmode parameter is set to 0x02 or 0x03, then for each KeyIdLookupDescriptor in the macKeyIdLookupList, if the KeySource and KeyIndex match the KeySource and KeyIndex of a KeyIdLookupDescriptor, then the procedure returns with the KeyDescriptor and passed status.

d) The procedure shall return with a failed status.

CID 1026, 1145, 1146, 1148, 1147
This is already done in the DF3 draft.

	Toyoyuki Kato

	Anritsu Engineering Co.,Ltd,
	314
	9.2.1
	17

	"Table 146" is incorrect.

	Correct it appropriately.

	Tero Kivinen
	INSIDE Secure
	314
	9.2.1
	25
	In Table 146 we say that in beacons following fields are not encrypted: superface specifications, gts info, pending address, and both header IEs and Payload IEs. Are Payload IEs really meant to be sent unencrypted?
	Add Payload IEs to the private payload fields.

	Tero Kivinen
	INSIDE Secure
	314
	9.2.1
	26
	In Table 146 we say that in Data only the Data Payload field is encrypted, all other fields are unencrypted. This includes both header and Payload IEs. I would assume we want to make Payload IEs encrypted.
	Add Payload IEs to the private payload fields.

	Tero Kivinen
	INSIDE Secure
	314
	9.2.1
	31
	In Table 146 we say that there is no Open Payload fields for the MAC Command frame with version number >= 2, but the private payload fields does not list command identifier. So we do not include Command Identifier in either column, so we do not know whether it is open or private field?
	Add Command Identifier to the Private Payload field column.

	Tero Kivinen
	INSIDE Secure
	314
	9.2.1
	33
	In Table 146 we say that for Acknowledgement frames the full Information Elements field is encrypted, this includes both Header IE and Payload IE fields. Is this intended, or should we only include Payload IE here? If Header IE field is also included to be protected, then we most likely want to protect them also in other frame formats.
	Clarify.

Change inbound and outbound processing rules to say that Table 146 only contains exceptions to the generic rule, and that generic rule is that Private Payload Field contains all MAC Payload fields, and Open Payload Field is empty. Change the Table 146 to contain:

	Frame type
	Private Payload Field
	Open Payload Field

	Beacon

(Frame Version < 2)
	Beacon Payload
	All other fields in the MAC Payload

	MAC Command

(Frame Version < 2)
	Content
	Command Identifier

CID 1153, 1101, R41, R42

	Tero Kivinen
	INSIDE Secure
	315
	9.2.3
	49
	Both steps c) and steps e) will set “key identifier mode” / “KeyIdMode”, “key source”/”KeyIndex” and “key index”/”KeyIndex”. I think we need to do this only once.
	Modify the step c) so it will copy the values out from the auxiliary security header, and remove the copying from step e), so all auxiliary security header processing is in one step. We need to check which names of those local variables needs to be used in the rest of the processing steps, and perhaps also change them to use separate typographical look.

	Tero Kivinen
	INSIDE Secure
	316
	9.2.3
	50
	CID 470 was not done: In step l) the step will check the frame counter value of 0xffffffff. With TSCH mode the frame counter is not used, instead of 5-octet absolute slot number ASN is used, this test is not needed. Actually the current draft accidently did that change for step i) not for step l), so move the text from step “i) … procedure shall determine whether the frame to be unsecured ...” to step “l) The procedure shall set frame counter …”.
	Add ”If not using TSCH mode” in front of step l.

	Tero Kivinen
	INSIDE Secure
	316
	9.2.3
	35
	Steps i), j) and k) should be folded in to the step h. It is stupid to call subprocedure to fetch the SecurityLevelDescriptor and then check it here, as we could call SecurityLevelDescriptor validation procedure, that will get that SecurityLevelDescriptor and verify the packet is according to it, and then either return error (either UNAVAILABLE_SECURITY_LEVEL or IMPROVED_SECURITY_LEVEL) or SUCCESS, or pass forward.
	As described in the Comment section.

	Tero Kivinen
	INSIDE Secure
	316
	9.2.3
	49
	Steps l and m should be combined.
	Replace with “If not using TSCH mode, the procedure shall set frame counter to the Frame Counter field of the frame to be unsecured. If frame counter has the value 0xffffffff, or if the frame counter is less than the FrameCounter element of the DeviceDescriptor, the procedure shall return with a status of COUNTER_ERROR.”

Following changes covers R40, CID 1153, CID 1101.

This changes R41 to AiP and does not combine the steps, as some of those steps are moved to section 9.2.3b thus keeping them separate is useful.

This changes R42 to AiP as we did other changes to the frame counter checking.

This also covers R89 and R107 for the incoming frame security part.

This also updated the R1, i.e. unsecured frame processing rules.

–

Changes in 9.2.3 Incoming frame security procedure.

1) The inputs, outputs and temporary variables in the procedure needs to have some kind of typographic marking to show them explictly. We cannot use italics, but perhaps we can replace then with something like bold inFTBS (input: frame to be secured), outStatus (output: status), varKD (variable KeyDescriptor) or something. In 15-14-0704-03 I marked them with Green (input), Red (output), Blue (variables), so they are easy to spot, but did not yet change their names or mark them otherwise.

2) Renamed "key identifier mode" with KeyIdMode", "key source" with "KeySource" and "key index" with "KeyIndex", as those are the names used by the KeyDescriptor lookup routine.

3) There is new output from this procedure, i.e iestatus, which will tell status for each information element in the frame. Added text "... and the iestatus for each information element in the the frame. The iestatus can either be SKIP or PROCESS, and it will tell the user of the information element whether it should skip the information element processing or whether it should process it." to the end of the first paragraph.

4) The incoming frame security processed is split in two pieces, one for the secured frames, and another for unsecured frames. This means new section needs to be added after the 9.2.3. In this text I am referencing it as 9.2.3b.

5) The old step A is removed and replaced with the check whether the frame is secured or not. I.e. new text for step A is :

If the Security Enabled field of the frame to be unsecured is

set to zero, the procedure shall use procedure described in

section 9.2.3b.

6) The step B is simplified as we do not need to check Security Enabled field anymore, as it was done in step A, i.e. remove "the Security Enabled field of the frame to be unsecured is set to one and".

7) Swap the order of old step D and C. The old step D (new step C) can be simplified, by replacing "set the unsecured frame to be the frame to be unsecured and return with a status of SUCCESS if the security level is equal to zero and with a" with "return".

8) The old step C (new step D) can also be simplified, i.e. remove "If the Security Enabled field of the frame to be unsecured is set to one,". Also change "key identifier mode" with "KeyIdMode", "key source" with "KeySource" and "key index" with "KeyIndex" as those are the ones used in the KeyDescriptor lookup routine.

9) The step E (both old and new) can be simplified, as we have already set the KeyIdMode, KeyIndex and KeySource in new step D (old C), so the remove text "The KeyIdMode shall be set to the Key Identifier Mode field, the KeyIndex shall be set to the Key Index field, if present, and the KeySource shall be set to the Key Source field, if present."

10) The step F (old and new) does not need to check KeyIdMode anymore, as we unsecured frames are not processed by this procedure, so remove "and the KeyIdMode was set in step e),".

11) The step G is updated to fetch DeviceFrameCounters also using new procedure added as new subsection 9.2.4b. The new step is:

The procedure shall obtain the DeviceDescriptor using the

DeviceDescriptor lookup procedure described in 9.2.4, and if

that succeeded and FrameCounterPerKey element of KeyDescriptor

is set to TRUE the procedure shall obtain the

DeviceFrameCounter using the DeviceFrameCounter lookup

procedure described in 9.2.4b. If either of those procedures

fail, then the procedure shall return with a status of

UNAVAILABLE_DEVICE.

12) Old step L is moved to be new step H, and it is modifed as follows:

If using TSCH mode, then ASN is used instead of frame counter,

and this step is skipped. The procedure shall set frame

counter to the Frame Counter field of the frame to be

unsecured. If the FrameCounterPerKey element of the

KeyDescriptor is set to FALSE then frame counter check value

is set to be the DeviceFrameCounter element of

DeviceDescriptor, otherwise the frame counter check value is

set to be the FrameCounter element of the DeviceFrameCounter.

If frame counter has the value 0xffffffff, or the frame

counter is less than the frame counter check value, the

procedure shall return with a status of COUNTER_ERROR.

13) Old step M is removed as it was combined with old step L (new step H).

14) Old step O is moved to be step I and replace text "The Private Payload field and Open Payload field shall be set as indicated in Table 146." with "For frames specified in the Table 146 the Private Payload field and Open Payload field shall be set as indicate there. For frames not specified in Table 146 the Private Payload field shall be set to contain all MAC payload fields, and the Open Payload field shall be empty."

15) Also combine old step P in to old step O (new step I) by merging the whole old step P to the end of new step I.

16) Old step Q is moved to new step O, and modified to store the frame counter in correct location:

If using TSCH mode, the ASN is used instead of frame counter,

and this step is skipped. The procedure shall increment frame

counter by one and if FrameCounterPerKey element of the

KeyDescriptor is set to FALSE, then the DeviceFrameCounter

element of the DeviceDescriptor is set to the resulting value,

otherwise the FrameCounter element of the DeviceFrameCounter

is set to the resulting value.

17) Old step H is moved to be new step K. No modifications to the text.

18) Add new step L to do information element security:

If the IE present field of the frame to be unsecured is set to

one, the procedure shall determine whether the frame to be

unsecured conforms to the security level policy by passing the

DeviceDescriptor, SecurityLevelDescriptor and the security

level to the incoming information element security level

checking procedure, as described in 9.2.6b. That procedure

will return the iestatus for each information element in the

frame.

19) Add new step M to do information element key usage checking:

If the IE present field of the frame to be unsecured is set to

one, the procedure shall determine whether the frame to be

unsecured conforms to the key usage policy by passing the

iestatus, KeyDescriptor, the frame type, and, if the frame is

a MAC command, the Command Identifier field, to the incoming

information element key usage policy checking procedure, as

described in 9.2.7b. That procedure will update the iestatus

for each information element in the frame as specified by the

key usage policy.

20) Old step I is moved to be new step N, but remove the "If not using TSCH mode, " in the beginning (it was added by last letter ballot, but it was added to wrong step), and remove the "; otherwise, if that procedure returns with a passed status and the security level is equal to zero, the procedure shall set the unsecured frame to be the frame to be unsecured and return with a status of SUCCESS." from the end (unsecured frames are processed by other procedure, not by this).

21) Old step J is removed as unsecured frames are processed using other procedure.

22) Old step K is moved to 9.2.3b step G.

23) Old step N is moved to new step O. No modifications to the text.

24) Old step R is moved to new step P without any modifications.

–

New version of the Incoming state machine after making above changes:

–

The input to this procedure is the frame to be unsecured. The outputs from this procedure are the status of the procedure and, if this status is SUCCESS, the unsecured frame, the security level, the KeyIdMode, the KeySource, the KeyIndex, and the iestatus for each information element in the the frame. The iestatus can either be SKIP or PROCESS, and it will tell the user of the information element whether it should skip the information element processing or whether it should process it.

All outputs of this procedure are assumed to be invalid unless and until explicitly set in this procedure.

The incoming frame security procedure involves the following steps:

a) Do we have secured frame?

If the Security Enabled field of the frame to be unsecured is set to zero, the procedure shall use procedure described in section 9.2.3b.

b) Legacy security?

If the Frame Version field of the frame to be unsecured is set to zero, the procedure shall return with a status of UNSUPPORTED_LEGACY.

c) Check for macSecurityEnabled

If the macSecurityEnabled attribute is set to FALSE, the procedure shall return status of UNSUPPORTED_SECURITY.

d) Parse Auxiliary Security Header

The procedure shall set the security level and the key identifier mode to the corresponding fields of the Security Control field of the auxiliary security header of the frame to be unsecured, and the key source and key index to the corresponding fields of the Key Identifier field of the auxiliary security header of the frame to be unsecured, if present. If the resulting security level is zero, the procedure shall return with a status of UNSUPPORTED_SECURITY.

e) Get Source Address

The device PAN ID shall be set to the Source PAN Identifier field, if it is present. If the PAN ID compression field is set to one, then the device PAN ID shall be set to the Destination PAN Identifier field. The device addressing mode shall be set according to the Source Addressing Mode field, as defined in Table 147. The device address shall be set to the Source Address, if present.

f) Obtain KeyDescriptor

The procedure shall obtain the KeyDescriptor using the KeyDescriptor lookup procedure as described in 9.2.2 with using the KeyIdMode, KeyIndex, KeySource, device addressing mode, device PAN ID, and device address. If that procedure fails the procedure shall return with a status of UNAVAILABLE_KEY.

g) Get DeviceDescriptor

The procedure shall obtain the DeviceDescriptor using the DeviceDescriptor lookup procedure described in 9.2.4, and if that succeeded and FrameCounterPerKey element of KeyDescriptor is set to TRUE the procedure shall obtain the DeviceFrameCounter using the DeviceFrameCounter lookup procedure described in 9.2.4b. If either of those procedures fail, then the procedure shall return with a status of UNAVAILABLE_DEVICE.

h) Get & Check Frame Counter

If using TSCH mode, then ASN is used instead of frame counter, and this step is skipped. The procedure shall set frame counter to the Frame Counter field of the frame to be unsecured. If the FrameCounterPerKey element of the KeyDescriptor is set to FALSE then frame counter check value is set to be the DeviceFrameCounter element of DeviceDescriptor, otherwise the frame counter check value is set to be the FrameCounter element of the DeviceFrameCounter. If frame counter has the value 0xffffffff, or the frame counter is less than the frame counter check value, the procedure shall return with a status of COUNTER_ERROR.

i) Unsecure frame

For frames specified in the Table 146 the Private Payload field and Open Payload field shall be set as indicate there. For frames not specified in Table 146 the Private Payload field shall be set to contain all MAC payload fields, and the Open Payload field shall be empty. The procedure shall then use the Private Payload field, the Open Payload field, the ExtAddress element of the DeviceDescriptor, frame counter, the security level, and the Key element of the KeyDescriptor to produce the unsecured frame, according to the CCM* inverse transformation process described in the security operations, as described in 9.3.5. If the CCM* inverse transformation process fails, the procedure shall return with a status of SECURITY_ERROR.

j) Store frame counter

If using TSCH mode, the ASN is used instead of frame counter, and this step is skipped. The procedure shall increment frame counter by one and if FrameCounterPerKey element of the KeyDescriptor is set to FALSE, then the DeviceFrameCounter element of the DeviceDescriptor is set to the resulting value, otherwise the FrameCounter element of the DeviceFrameCounter is set to the resulting value.
k) Get SecurityLevelDescriptor

The procedure shall obtain the SecurityLevelDescriptor by passing the frame type and, if the frame is a MAC command, the Command Identifier, to the SecurityLevelDescriptor lookup procedure described in 9.2.5. If that procedure fails, the procedure shall return with a status of UNAVAILABLE_SECURITY_LEVEL.

l) Check Information Element Security

If the IE present field of the frame to be unsecured is set to one, the procedure shall determine whether the frame to be unsecured conforms to the security level policy by passing the DeviceDescriptor, SecurityLevelDescriptor and the security level to the incoming information element security level checking procedure, as described in 9.2.6b. That procedure will return the iestatus for each information element in the frame.

m) Check information Element Key Usage Policy

If the IE present field of the frame to be unsecured is set to one, the procedure shall determine whether the frame to be unsecured conforms to the key usage policy by passing the iestatus, KeyDescriptor, the frame type, and, if the frame is a MAC command, the Command Identifier field, to the incoming information element key usage policy checking procedure, as described in 9.2.7b. That procedure will update the iestatus for each information element in the frame as specified by the key usage policy.

n) Check Security Policy

The procedure shall determine whether the frame to be unsecured conforms to the security level policy by passing the SecurityLevelDescriptor and the security level to the incoming security level checking procedure, as described in 9.2.6. If that procedure returns with a failed status, the procedure shall return with a status of IMPROPER_SECURITY_LEVEL.

o) Check Key Usage Policy

The procedure shall determine whether the frame to be unsecured conforms to the key usage policy by passing the KeyDescriptor, the frame type, and, if the frame is a MAC command, the Command Identifier field, to the incoming key usage policy checking procedure, as described in 9.2.7. If that procedure fails, the procedure shall return with a status of IMPROPER_KEY_TYPE.

p) Return SUCCESS

The procedure shall return with a status of SUCCESS.

–

Following changes update the R1, i.e. unsecured frame processing rules.

New subsection 9.2.3b Incoming frame security procedure for security level zero frames:

–
9.2.3b Incoming frame security procedure for security level zero frames

This procedure is used to process the frames which has security level of zero. The input to this procedure is the frame to be unsecured. The outputs from this procedure are the status of the procedure and, if this status is SUCCESS, the unsecured frame.
The incoming frame security procedure for security level zero frames involves following steps:
a) Check for macSecurityEnabled

if the macSecurityEnabled attribute is set to FALSE, the procedure shall set the unsecured frame to be the frame to be unsecured and return with a status of SUCCESS.
b) Get Source Address

See identically named step of the section 9.2.3.

c) Get DeviceDescriptor

The procedure shall obtain the DeviceDescriptor using the DeviceDescriptor lookup procedure described in 9.2.4 using security level set to zero. If that procedure fails, then the procedure shall return with a status of UNAVAILABLE_DEVICE.

d) Get SecurityLevelDescriptor

See identically named step of section 9.2.3.

e) Check Information Element Security

See identically named step of section 9.2.3.

f) Check Security Policy

The procedure shall determine whether the frame to be unsecured conforms to the security level policy by passing the SecurityLevelDescriptor and the security level of zero to the incoming security level checking procedure, as described in 9.2.6. If that procedure returns with a failed status, the procedure shall return with a status of IMPROPER_SECURITY_LEVEL.

g) Check for Exempt

If the incoming security level checking procedure of step f) had as output the ‘conditionally passed’ status and the Exempt element of the DeviceDescriptor is set to FALSE, the procedure shall return with a status of IMPROPER_SECURITY_LEVEL.

h) Return SUCCESS

The procedure shall set the unsecured frame to be the frame to be unsecured and return with a status of SUCCESS.
Following changes covers CID 1104, 1105 and R28, R29, i.e. the PIB table changes.

–

Changes to section 9.2.4 DeviceDescriptor lookup procedure

1) The inputs, outputs and temporary variables in the procedure needs to have some kind of typographic marking to show them explictly. We cannot use italics, but perhaps we can replace then with something like bold inFTBS (input: frame to be secured), outStatus (output: status), varKD (variable KeyDescriptor) or something. In 15-14-0704-03 I marked them with Green (input), Red (output), Blue (variables), so they are easy to spot, but did not yet change their names or mark them otherwise.

2) Remove step D completely, we do not have DeviceDescriptorSecLevelZero table anymore.

3) Move the old step E to new step D, and change it as follows:

For each DeviceDescriptor in macDeviceTable, if the device PAN

ID matches the PANId element and the device address matches

the ShortAddress element, if the device addressing mode is set

to SHORT, or the ExtAddress element, if the device addressing

mode is set to EXTENDED, then the procedure shall return with

the corresponding DevicesDescriptor and a passed status.

–

New version of the DeviceDescriptor lookup procedure after making above changes:

–
9.2.4 DeviceDescriptor lookup procedure

The inputs to this procedure are the device addressing mode, the device PAN ID, and the device address. The output from this procedure is a passed or failed status and, if passed, a DeviceDescriptor.

The DeviceDescriptor lookup procedure involves the following steps:

a) If the device addressing mode is set to NONE, then the device PAN ID shall be set to macPANId. Otherwise, the device PAN ID shall be the value passed to the procedure.

b) If the device addressing mode is set to NONE, then:

1) If the macCoordShortAddress attribute is set to 0xfffe, then the device address shall be set to the macCoordExtendedAddress.

2) If the macCoordShortAddress attribute is set to a value of 0x0000–0xfffd, then the device address shall be set to the macCoordShortAddress.

3) If the macCoordShortAddress attribute is set to 0xffff, the procedure shall return with a failed status.

c) If the device addressing mode is set to SHORT or EXTENDED, then the device address shall be the value passed to the procedure.

d) For each DeviceDescriptor in macDeviceTable, if the device PAN ID matches the PANId element and the device address matches the ShortAddress element, if the device addressing mode is set to SHORT, or the ExtAddress element, if the device addressing mode is set to EXTENDED, then the procedure shall return with the corresponding DevicesDescriptor and a passed status.

e) The procedure shall return with a failed status.
Following changes covers R107.

–

New subsection 9.2.4b DeviceFrameCounter lookup procedure.

Here is the new subsection for fetching DeviceFrameCounter:

–
9.2.4b DeviceFrameCounters lookup procedure

The inputs to this procedure are the DeviceDescriptor and KeyDescriptor. The output from this procedure is a passed or failed status and if passed a DeviceFrameCounter.

The DeviceFrameCounter lookup procedure involves the following steps:

a) For each DeviceFrameCounter in DeviceFrameCounterTable of the KeyDescriptor, if the ExtAddress element of DeviceFrameCounter matches the ExtAddress element of the DeviceDescriptor, then the procedure shall return with corresponding DeviceFrameCounter and a passed status.

b) The procedure shall return with a failed status.
Editorial changes to the 9.2.5 SecurityLevelDescriptor lookup procedure:

–

1) The inputs, outputs and temporary variables in the procedure needs to have some kind of typographic marking to show them explictly. We cannot use italics, but perhaps we can replace then with something like bold inFTBS (input: frame to be secured), outStatus (output: status), varKD (variable KeyDescriptor) or something. In 15-14-0704-03 I marked them with Green (input), Red (output), Blue (variables), so they are easy to spot, but did not yet change their names or mark them otherwise.

–

Highlighted version of 9.2.5:
–

9.2.5 SecurityLevelDescriptor lookup procedure

The inputs to this procedure are the frame type and, if the frame is a MAC command, the Command Identifier field. The output from this procedure are a passed or failed status and, if passed, a SecurityLevelDescriptor.

The SecurityLevelDescriptor lookup procedure involves the following steps:

a) For each SecurityLevelDescriptor in the macSecurityLevelTable attribute:

1) If the frame type indicates that the frame is not a MAC command and the frame type is equal to the FrameType element of the SecurityLevelDescriptor (i.e., there is a match), the procedure shall return with the SecurityLevelDescriptor and a passed status.

2) If the frame type indicates that the frame is a MAC command and the frame type is equal to the FrameType element of the SecurityLevelDescriptor and the Command Identifier field is equal to the CommandIdentifier element of the SecurityLevelDescriptor, the procedure shall return with the SecurityLevelDescriptor and a passed status.

b) The procedure shall return with a failed status.
Editorial changes to the 9.2.6 Incoming security level checking procedure:

–

1) The inputs, outputs and temporary variables in the procedure needs to have some kind of typographic marking to show them explictly. We cannot use italics, but perhaps we can replace then with something like bold inFTBS (input: frame to be secured), outStatus (output: status), varKD (variable KeyDescriptor) or something. In 15-14-0704-03 I marked them with Green (input), Red (output), Blue (variables), so they are easy to spot, but did not yet change their names or mark them otherwise.

2) In step a change "AllowedSecurityLevels" to "AllowedSecurityLevels element of the SecurityLevelDescriptor".

3) In step b change "AllowedSecurityLevels" to "AllowedSecurityLevels element of the SecurityLevelDescriptor".

–

Highlighted and corrected version of 9.2.6:

–
9.2.6 Incoming security level checking procedure

The inputs to this procedure are the SecurityLevelDescriptor and the incoming security level. The output from this procedure is a passed, failed, or ‘conditionally passed’ status.

The incoming security level checking procedure involves the following steps:

a) If the AllowedSecurityLevels element of the SecurityLevelDescriptor is empty, then the procedure shall compare the incoming security level (as SEC1) with the SecurityMinimum element of the SecurityLevelDescriptor (as SEC2) according to the algorithm described in 9.4.1.1. If this comparison evaluates to TRUE, the procedure shall return with a passed status.

b) If the AllowedSecurityLevels element of the SecurityLevelDescriptor is not empty, the procedure shall check whether the incoming security level is equal to any of the elements of the AllowedSecurityLevels. If this check is successful (i.e., there is a match), the procedure shall return with a passed status.

c) If the incoming security level is equal to 0x00 and the DeviceOverrideSecurityMinimum element of the SecurityLevelDescriptor is set to TRUE, the procedure shall return with a ‘conditionally passed’ status.

d) The procedure shall return with a failed status.

Following changes are part of R89.

–

New subsection 9.2.6b Incoming information element security level checking procedure.
–

9.2.6b Incoming information element security level checking procedure

The inputs to this procedure are the DeviceDescriptor, SecurityLevelDescriptor, the incoming security level, and the information elements in the frame. The output from this procedure is an iestatus list, containing SKIP or PROCESS status for each information element in the frame.

When matching the information element Element ID, Group ID or Sub-ID to the elements in the DeviceIESecurityDescriptor entry, the match is found if the IEType element of the DeviceIESecurityDescriptor entry matches the type of the information element (HEADER_IE, PAYLOAD_IE, NESTED_IE_SHORT or NESTED_IE_LONG) and the IEID element of the DeviceIESecurityDescriptor entry matches the Element ID, Group ID, or Sub-ID of the information element.

The incoming information element security level checking procedure involves the following steps:

a) If the DeviceIESecurityTable element of the SecurityLevelDescriptor is empty, then set iestatus to PROCESS for each information element in the frame, and return iestatus.

b) Set the iestatus to SKIP for each information element in the frame.

c) For each information element in the frame and for each or each entry in DeviceIESecurityTable element of the SecurityLevelDescriptor:

1) If the information element matches the DeviceIESecurityDescriptor entry, then

i) If the AllowedSecurityLevels element of the DeviceIESecurityDescriptor entry is empty, then the procedure shall compare the incoming security level (as SEC1) with the SecurityMinimum element of the DeviceIESecurityDescriptor entry (as SEC2) according to the algorithm described in 9.4.1.1. If this comparison evaluates to TRUE, the procedure shall set the iestatus of this information element to PROCESS.

ii) If the AllowedSecurityLevels element of the DeviceIESecurityDescriptor entry is not empty, the procedure shall check whether the incoming security level is equal to any of the elements of the AllowedSecurityLevels of the DeviceIESecurityDescriptor entry. If this check is successful (i.e., there is a match), the procedure shall set the iestatus of this information element to PROCESS.

iii) If the incoming security level is equal to 0x00 and the DeviceOverrideSecurityMinimum element of the DeviceIESecurityDescriptor entry is set to TRUE, and the Exempt element of the DeviceDescriptor is set to TRUE, the procedure shall set the iestatus of this information element to PROCESS.

d) Return iestatus.

Editorial changes to the 9.2.7 Incoming key usage policy checking procedure.

–

1) The inputs, outputs and temporary variables in the procedure needs to have some kind of typographic marking to show them explictly. We cannot use italics, but perhaps we can replace then with something like bold inFTBS (input: frame to be secured), outStatus (output: status), varKD (variable KeyDescriptor) or something. In 15-14-0704-03 I marked them with Green (input), Red (output), Blue (variables), so they are easy to spot, but did not yet change their names or mark them otherwise.

2) Change the "KeyUsageDescriptor in the KeyUsageList of the KeyDescriptor" to "KeyUsageDescriptor entry in the KeyUsageTable element of the KeyDescriptor".
–

Highlighted and corrected version of 9.2.7:
–
9.2.7 Incoming key usage policy checking procedure
The inputs to this procedure are the KeyDescriptor, the Frame Type field, and the Command Identifier field.

The output from this procedure is a passed or failed status.

The incoming key usage policy checking procedure involves the following steps:

a) For each KeyUsageDescriptor entry in the KeyUsageTable element of the KeyDescriptor:

1) If the frame type indicates that the frame is not a MAC command and the frame type is equal to the FrameType element of the KeyUsageDescriptor, the procedure shall return with a passed status.

2) If the frame type indicates that the frame is a MAC command, the frame type is equal to the FrameType element of the KeyUsageDescriptor, and the Command Identifier field is equal to the CommandIdentifier element of the KeyUsageDescriptor, the procedure shall return with a passed status.

b) The procedure shall return with a failed status.
Following changes are part of R89.

–

New subsection 9.2.7b Incoming information element key usage policy checking procedure:

–
9.2.7b Incoming information element key usage policy checking procedure
The inputs to this procedure are the KeyDescriptor, the Frame Type field, the Command Identifier field, the information elements in the frame, and the iestatus list.

The output from this procedure is updated iestatus list.
When matching the information element Element ID, Group ID or Sub-ID to the elements in the KeyIEUsageDescriptor entry, the match is found if the IEType element of the KeyIEUsageDescriptor entry matches the type of the information element (HEADER_IE, PAYLOAD_IE, NESTED_IE_SHORT or NESTED_IE_LONG) and the IEID element of the KeyIEUsageDescriptor entry matches the Element ID, Group ID, or Sub-ID of the information element.
The incoming information element key usage policy checking procedure involves the following steps:

a) For each KeyUsageDescriptor entry in the KeyUsageTable element of the KeyDescriptor:

1) Find the matching KeyUsageDescriptor entry, by checking that if the frame type indicates that the frame is not a MAC command and the frame type is equal to the FrameType element of the KeyUsageDescriptor, or if the frame type indicates that the frame is a MAC command, the frame type is equal to the FrameType element of the KeyUsageDescriptor, and the Command Identifier field is equal to the CommandIdentifier element of the KeyUsageDescriptor, then use that matching KeyUsageDescriptor for following processing.

b) If step a did not found matching KeyUsageDescriptor ,or if the KeyIEUsageTable of the KeyUsageDescriptor is empty, then return iestatus and finish processing.
c) For each information element in the frame
1) For each entry in KeyIEUsageTable element of the KeyUsageDescriptor:

i) If the information element matches the KeyIEUsageDescriptor entry, then move to process next information element.

2) If no match was found in the step 1) then set the iestatus for the information element to SKIP.

d) Return iestatus.

CID1151

This is already done in the DF3 draft.

	Tero Kivinen
	INSIDE Secure
	324
	9.4.1.3
	34
	Remove extra “either”.
	Replace “.. is either an incrementing shared global frame counter such as ASN.” with “... is an incrementing shared global frame counter such as ASN.”.

Accept, as described in Proposed Change column.

CID1105, CID1104, R28, R29, R30, R31

	Tero Kivinen
	INSIDE Secure
	325
	9.5
	39
	R29 was not done properly. The table 153 still refers to table 157 (DeviceDescriptor), when it should refer to 158 (DeviceDescriptorSecLevelZero). (And the link to table 157 is broken :-). Also the table 154 DeviceDescriptorList should refer to the table 157 (DeviceDescriptor).
	In table 153, change macDeviceTable to macDeviceExemptTable, and change reference to table 158 instead of 157. Change description “DeviceDescriptorSecLevelZero for each device which is allowed to be exempted for the security.” Change Type of DeviceDescriptorList to ”Set of DeviceDescriptors, as defined in Table 157.”

	Tero Kivinen
	INSIDE Secure
	325
	9.5
	46
	R28 was not done. Move the macFrameCounter from the table 153 to KeyDescriptor table, i.e. table 154
	 Move the macFrameCounter from the table 153 to KeyDescriptor table, i.e. table 154

This covers CID 1104 (== R28), CID 1105 (== R29), R30, and R31.

This also covers R89 for the PIB tables part.

Up to date picture can be found from the 15-15-0106 document.

–

In section 9.5 Security Related MAC PIB attributes do following

changes:

In table 153 -- Security-related MAC PIB attributes.

1) Remove macKeyTable

2) Add macKeyIdLookupList attribute with type: "List of KeyIdLookupDescriptor entries, as defined in Table 159", range: "-", description: "A list of KeyIdLookupDescriptor entries matching keys defined in this device."

3) Change macDeviceTable type to be "Set of DeviceDescriptors, as defined in Table 158". (i.e. reference from table 157 to table 158). Note that the DeviceDescriptors in Type column currently has hard linebreak, fix that at same time.

4) macSecurityLevelTable has hard linebreak in attribute column.

5) SecurityLevelDescriptor has hard linebreak with hyphen in the type column.

6) Change description of the macFrameCounter to say: "The global outgoing frame counter for this device to be used for keys which do not have FrameCounterPerKey set to TRUE."

7) macAutoRequestSecurityLevel has hard linebreak in attribute column, and Table 151 reference is not a link in Range column.

8) macAutoRequestKeyIdMode has hard linebreak in attribute column, and the Table 154 reference is not a link in Range column.

9) macAutoRequestKeySource has hard linebreak in attribute column, also the "macAutoRequesKeyIdMode" word with hard linebreak with hyphen in the Type column.

10) macAutoRequestKeyIndex has hard linebreak in attribute column.

11) macDefaultKeySource has hard linebreak in attribute column.

12) Remove the macPANCoordExtendedAddress. It is not used anywhere. The KeyDescriptor and DeviceDescriptor lookup procedures uses macCoordExtendedAddress, not this one, and the macCoordExtendedAddress is used also elsewhere in the specification. macCoordExtendedAddress is defined in the table 132.

13) Remove the macPANCoordShortAddress. It is not used anywehere. The KeyDescriptor and DeviceDescriptor lookup procedures uses macCoordShortAddress, not this one, and macCoordShortAddress is used also elsewhere in this specification. macCoordShortAddress is defined in the table 132.

14) Add comment to end of 1st paragraph in section 9.5 saying how those tables in here are updated. I.e. most likely we want to say something like that as some of those tables can be large (for example DeviceDescriptors table, which contains every single remote device this device is talking to) and their contents might be updated asyncronously by the MAC the MLME-GET.request/MLME-SET.request primitive pairs cannot be used to update them. I.e. we cannot use MLME-GET.request to get the macDeviceTable containing list of DeviceDescriptors and then add new device entry to it and then write it back using MLME-SET.request, as in the mean time we might have received new frame from the device already in the list and the frame counter stored in that entry might have already been updated. Or other option is to add new MLME-UPDATE.request call that will get PIBAttrbuteTable, ListofKeyValues, operation (ADD, REMOVE, UPDATE), and PIBAttributeValue or something like that.

–

In table 154 -- Elements of KeyDescriptor

1) Add more description for the table 154. "The KeyDescriptor table contains one entry for each key in use in this device. This table is referenced from the KeyIdLookupDescriptor table so that multiple KeyIdLookupDescriptor can point to the same KeyDescriptor entry in this table."

2) Remove KeyIdLookupList name. This was moved to the table 153.

3) Remove DeviceDescriptorList, this is replaced with DeviceFrameCounters.

4) Add DeviceFrameCounterTable name with type of "Set of DeviceFrameCounter entries, as defined in Table 157", with range of "-", and with Description of "A set of DeviceFrameCounter entries containing the per key frame counters used for this Key".

5) Change "KeyUsageList" to "KeyUsageTable", and change type to be "Set of KeyUsageDescriptor entries, as defined in Table 155" (i.e. List->Set).

6) Add FrameCounterPerKey name, with Type of "Boolean", and Range of "TRUE,FALSE", and Description of "If this value is TRUE, this key will use per key frame counters stored in KeyDescriptor and DeviceFrameCounter entries. If this value is FALSE, then per device frame counters are used for this key."

7) Add KeyFrameCounter name, with type of Integer, and Range of "0x00000000-0xffffffff", and Description of "The outgoing frame counter for this device for this key. This element is not used if FrameCounterPerKey is FALSE."

–

In table 155 -- Elements of KeyUsageDescriptor

1) Add description for the table 155. "The KeyUsageDescriptor table contains list of frame types allowed to be used for this key. If the frame type is MAC command then this table also contains list of Command Identifiers fields allowed for this key. Each KeyDescriptor entry has separate KeyUsageDescriptor table, and the keys for this table is FrameType and if present, CommandFrameIdentifier. For each entry in this table there is table of allowed information elements in KeyIEUsageTable element for this FrameType, and if present, CommandFrameIdentifier."

2) Add new entry "KeyIEUsageTable" with Type of "Set of KeyIEUsageDescriptor entries, as defined in Table XX1", with Range of "-", and with Description of "A set of KeyIEUsageDescriptor entries, listing which Information Elements are accepted for this FrameType, and if present CommandFrameIdentifier. If this table is empty, then all information elements that were accepted by DeviceIESecurityTable are accepted."

–

In table 156 -- Elements of SecurityLevelDescriptor

1) Add description for the table 156. "The SecurityLevelDescriptor table contains list of frame types allowed to be used when receiving frame. If the frame type is MAC command then this table also contains list of Command Identifier fields allowed. The keys used to index this table are FrameType, and if present CommandFrameIdentifier. For each entry in this table there is table of allowed information elements in DeviceIESecurityTable for this FrameType, and if present, CommandFrameIdentifier."

2) Add text to the end of SecurityMinimum Description field: "This is only used if AllowedSecurityLevels is empty.".

3) DeviceOverrideSecurityMinimum has hard linebreak.

4) Add new name "DeviceIESecurityTable" with Type of "Set of DeviceIESecurityDescriptor entries, as defined in Table XX2", with Range of "-", and with Description of "A set of DeviceIESecurityDescriptor entries, listing which Information Elements are accepted for this FrameType, and if present CommandFrameIdentifier. If this table is empty, then all information elements are accepted."

–

Table 157 -- Elements of DeviceDescriptor

This table will now be named DeviceFrameCounter and the DeviceDescriptorSecLevelZero will be named DeviceDescriptor.

1) Rename the table 157 from DeviceDescriptor to DeviceFrameCounter.

2) Change description of table 157 from "Table 157 defines the elements of a DeviceDescriptor." to "Table 157 defines the elements of a DeviceFrameCounter. The DeviceFrameCounter table contains the frame counters used by the remote devices for this key. Keys in KeyDescriptor table having FrameCounterPerKey set to TRUE have separate table of DeviceFrameCounter for each Device this key has been used for. The keys used to index this table is ExtAddress."

3) Remove PANId field, or not, depending whether the PANId field is supposed to be used with Extended Addresses or not. The actual procedure for finding the DeviceDescriptor (which this used to be) is not completely clear whether PANID is also used for Extended address or not. Most likely it should not be used, so this can be removed.

4) Remove ShortAddress field.

5) Change description of the ExtAddress to be "The extended IEEE address of the remote device."

–

In table 158 -- Elements of DeviceDescriptorSecLevelZero

This table will now be named for DeviceDescriptor (the old 157 was renamed to DeviceFrameCounter).

1) Rename the table 158 from DeviceDescriptorSecLevelZero to DeviceDescriptor.

2) Change the description of table 158 from "Table 158 defines the elements of a DeviceDescriptorSecLevelZero." to "Table 158 defines the elements of a DeviceDescriptor. The DeviceDescriptor table contains the mapping from PANId and ShortAddress to the ExtAddress, so the keys to it are either PANId and ShortAddress if device addressing mode of SHORT is used, or ExtAddress if device addressing mode of EXTENDED is used. This table contains entries for each remote device this device has talked to. If FrameCounterPerKey for the key is set to FALSE, then DeviceFrameCounter from this table is used for frame counter for remote device."

3) Add new name "DeviceFrameCounter" with Type of "Integer" and Range of "0x00000000-0xffffffff", and with Description of "The smallest frame counter allowed to be sent by the other device if FrameCounterPerKey for the key is set to FALSE. If incoming frame counter is smaller than this then the frame is replay.".

–

Table 159 -- Elements of KeyIdLookupDescriptor

1) Add description for the table. "The KeyIdLookupDescriptor table contains lookup information which allows finding the key to be used based on the key identifier mode, key source and key index. The primary key used to index this table are KeyIdMode. If KeyIdMode is 0x00, then secondary keys are DeviceAddrMode, DevicePANId, and DeviceAddress. If KeyIdMode is 0x01 then secondary key is KeyIndex. If KeyIdMode is 0x02 or 0x03 then secondary key is KeySource and KeyIndex. For each element in this table there is pointer to the key which is to be used with this lookup identifier. There might be multiple lookup entries pointing to the same key."

2) Add new name "KeyDescriptor" with Type of "Single KeyDescriptor entry, as defined in Table 154.", and with Range of "-", and with Description of "A KeyDescriptor entry to be used with these key identifiers."

–

New table XX1 -- Elements of KeyIEUsageDescriptor

1) Add Description for the table. "Table XX1 defines the elements of a KeyIEUsageDescriptor. The KeyIEUsageDescriptor table contains list of information elements that are to be accepted for this key. There can be separate KeyIEUsageDescriptor tables for each KeyUsageDescriptor entries. If the this table is empty then all information elements that were accepted by the DeviceIESecurityTable are accepted. If this table is not empty, then only those information elements listed in this table are allowed. This table can only restrict information elements more, it cannot allow information elements which were forbidden by the DeviceIESecurityTable."

2) Add name "IEType" with Type of Enumeration, and with Range of "HEADER_IE, PAYLOAD_IE, NESTED_IE_SHORT, NESTED_IE_LONG", and with Description of "The type of the information element specified for this entry."

3) Add name "IEID" with Type of "Integer", and with Range of "0x00-0xff if IEType is HEADER_IE or NESTED_IE_SHORT, and 0x0-0xf if IEType is PAYLOAD_IE or NESTED_IE_LONG.", and with Description of "Information element ID for this entry."

–

Add new table XX2 -- Elements of DeviceIESecurityDescriptor

1) Add Description for the table. "Table XX2 defines the elements of a DeviceIESecurityDescriptor. The DeviceIESecurityDescriptor table contains list of information elements that are to be accepted. There can be separate DeviceIESecurityDescriptor tables for each SecurityLevelDescriptor entries. If the this table is empty then all information elements are accepted, otherwise only information elements listed here are accepted. The keys used to index this table is IEType and IEID."

2) Add name "IEType" with Type of Enumeration, and with Range of "HEADER_IE, PAYLOAD_IE, NESTED_IE_SHORT, NESTED_IE_LONG", and with Description of "The type of the information element specified for this entry."

3) Add name "IEID" with Type of "Integer", and with Range of "0x00-0xff if IEType is HEADER_IE or NESTED_IE_SHORT, and 0x0-0xf if IEType is PAYLOAD_IE or NESTED_IE_LONG.", and with Description of "Information element ID for this entry."

4) Add name "SecurityMinimum" with Type of "Integer" and with Range of "As defined in Table 151", and with Description of "The minimal required/expected security level, as defined in Table 151, for incoming information elements with the indicated IEType and IEID. This is only used if AllowedSecurityLevels is empty."

5) Add name "DeviceOverrideSecurityMinimum" with Type of "Boolean", and Range of "TRUE, FALSE", and Description of "Indication of whether originating devices for which the Exempt flag is set may override the security level indicated by the AllowedSecurityLevels or SecurityMinimum. If TRUE, this indicates that for originating devices with Exempt status, the incoming security level zero is also acceptable for processing of the information elements."

6) Add name "AllowedSecurityLevels" with Type of "Set of integers", with Range of "-", and with Description of "A set of allowed security levels, as defined in Table 151, for incoming information elements with the indicated IEType and IEID. If the set is empty, then the SecurityMinimum parameter applies instead."

CID1154

	Tero Kivinen
	INSIDE Secure
	522
	23.3.2
	14
	The security of the fragmentation is still completely broken.
	It needs to be fixed. It needs a bit different nonce generation format.

Add new subsection 9.3.2.3:
–

9.3.2.3 CCM* nonce for Fragments

The CCM* nonce for the fragments shall be formatted as shown in Figure xxx. The Source Address and security level as set as in defined in 9.3.2.1, and the Fragment Frame Counter is set to match the phyFragmentFrameCounter, and the Fragment number is set to match the fragment number of the fragment. Fragment indicator shall be set to 1.
Figure xxx – CCM* nonce for fragments
	Octets: 8
	Bits: 0-25
	26-31
	32-35
	36
	37-39

	Source Address
	Fragment frame counter
	Fragment number
	Reserved
	Fragment indicator
	Security level

–

We might want to split the security level field in the 9.3.2.1 to have 3 bits of security level and 5 bits of reserved just to be clear how the 3-bit security level field is formatted inside the 1-octet space reserved for it.

I am not sure whether it is good idea to refer to the phyFragmentFrameCounter here, or whether we should just use term Fragment frame counter, and modify the text in section 23.3.1 to match. The section 23.3 might need even more changes, it still needs to be checked properly.

–

Editing instructions of for the 9.3.2.1 section:

9.3.2.1 CCM* nonce for non-TSCH mode

1) The Security level field in Figure 217 is one octet long, but security level stored there is only 3 bits long. It would be better to spell it out which bits are used for those 3 bits. I.e. split the field to 5 reserved bits and 3 bits for security level. Also the CID 1154 resolution from 15-14-0704 needs to be made so it matches, i.e. Security level bits are in same location for both formats. I think the security level is bits 5-7 of last octet, or bits 37-39 for 9.3.2.3 CCM* nonce for Fragments, but I am not sure...

2) The text "The source address shall be set to the extended address macExtendedAddress of the device originating the frame, ..." is incorrect when we are receiving the frame. We have no way of knowing the PIB value of macExtendedAddress from the other end. The text should be changed to just say "The source address shall be set to the extended address of the device originating the frame, ...". That would be correct, i.e. it is always the extended address of the device originating the frame. Similar change is needed in the section 9.3.2.2.
R106

	Tero Kivinen
	INSIDE Secure
	-
	9.5
	-
	Change the order of KeyIdLookupDescriptor and KeyDescriptor so that top level PIB table has list of KeyIdLookupDescriptor and they have pointer to the KeyDescriptor, not other way around.
	

This has been taken care of other sections already, I.e changes to section 9.2.2, and 9.5
R107

	Tero Kivinen
	INSIDE Secure
	-
	9
	-
	The use of FrameCounterPerKey should be explained.
	

Following changes are part of R107:

–

9.4.2 Frame Counter field.

1) Remove the text "used, thus requiring this key to be updated by changing to use a new key."

2) Add following paragraphs to the end to explain the new way of using per key frame counters.

For this version of the specification there is new

FrameCounterPerKey attribute for each key in the KeyDescriptor

entry. This will select whether the old way of using per

device frame counter is used, or whether the frame counters

can be per key. Per key frame counters are needed if automated

key management is in use, and it allows devices to forget old

frame counters after rekey (old per device frame counters

needs to be stored to stable storege for ever, and they can

never be forgotten). This attribute shall be set to TRUE only

if higher layer knows that other end supports this feature,

for example because automated key management was used to

create the key, and this feature was either implictly defined

to be required for when using that key management protocol, or

it was negotiated during the key exchange.

Submission
Page 2
Tero Kivinen,

