
Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

IEEE P802.15
Wireless Personal Area Networks

Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Title LB97 resolutions - Kivinen

Date
Submitted

11 July, 2014

Source Tero Kivinen
INSIDE Secure
Eerikinkatu 28
FI-00180 Helsinki
Finland

Voice: +358 20 500 7800
Fax: +358 20 500 7801
E-mail: kivinen@iki.fi

Re: LB97 resolutions

Abstract LB 97 resolutions to CIDs 1028, 1150, 1026, 1145, 1146, 1148, 1147, 1153, 1101,
1151, 1105, 1104, 1154, R41 and R42

Purpose LB97 resolutions

Notice This document has been prepared to assist the IEEE P802.15. It is offered as a
basis for discussion and is not binding on the contributing individual(s) or
organization(s). The material in this document is subject to change in form and
content after further study. The contributor(s) reserve(s) the right to add, amend or
withdraw material contained herein.

Release The contributor acknowledges and accepts that this contribution becomes the
property of IEEE and may be made publicly available by P802.15.

Submission Page 1 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID 1028

Robert
Moskowitz

Verizon 313 9.2 16 Still need state machines for security flow Provide state machine figures

Outbound state machine done, see CID 1150 for it.
Inbound state machine done, see CIDs 1153, 1101, R41, R42 for it.

Submission Page 2 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID 1150
Tero Kivinen INSIDE

Secure
313 9.2.1 37 Swap steps c) and b). There is no point of checking

length of the data expansion length if we are not
protecting the frame. See CID 565.

Swap steps c) and
b).

New version of the Outbound state machine:

The inputs to this procedure are the frame to be secured and the SecurityLevel, KeyIdMode,
KeySource, and KeyIndex parameters from the originating primitive or automatic request PIB
attributes. The outputs from this procedure are the status of the procedure and, if this status is
SUCCESS, the secured frame.

The outgoing frame security procedure involves the following steps:

a) Do we need to secure the packet?
If the SecurityLevel parameter is zero, the procedure shall set the secured frame to be the
frame to be secured and return with a status of SUCCESS.

b) Do we have security enabled?
If the macSecurityEnabled attribute is set to FALSE the procedure shall return with a status
of UNSUPPORTED_SECURITY.

c) Fetch the KeyDescriptor.
The procedure shall obtain the KeyDescriptor using the KeyDescriptor lookup procedure as
described in 9.2.2 with the device addressing mode set to DstAddrMode, the device PAN ID
set to DstPANId, and the device address set to DstAddr. If that procedure fails, the procedure
shall return with a status of UNAVAILABLE_KEY.

d) Fetch frame counter.
If not using TSCH mode, the procedure shall set the frame counter to the macFrameCounter
attribute. If the frame counter has the value 0xffffffff, the procedure shall return with a status
of COUNTER_ERROR.

e) Insert and fill auxiliary security header.
The procedure shall insert the auxiliary security header into the frame, with fields set as
follows:

Submission Page 3 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

1) The Security Level field of the
Security Control field shall be set to the
SecurityLevel parameter.

2) The Key Identifier Mode field of the
Security Control field shall be set to the
KeyIdMode parameter.

3) If not using TSCH mode, the Frame
Counter field shall be set to the frame
counter.

4) If the KeyIdMode parameter is set to
a value not equal to zero, the Key
Source and Key Index fields of the Key
Identifier field shall be set to the
KeySource and KeyIndex parameters,
respectively.

f) Protect frame.
For frames specified in the Table 146 the
Private Payload field and Open Payload
field shall be set as indicate there. For
frames not specified in Table 146 the
Private Payload field shall be set to contain
all MAC payload fields, and the Open
Payload field shall be empty. The procedure
shall then use the Private Payload field, the
Open Payload field, the
macExtendedAddress, the frame counter,
the SecurityLevel parameter, and the Key
element of the KeyDescriptor to produce
the secured frame according to the CCM*
transformation process defined in 9.3.4.

g) Store frame counter
If not using TSCH mode, the procedure
shall increment the frame counter by one
and set the macFrameCounter attribute to
the resulting value.

h) The procedure shall return with a
status of SUCCESS.

Submission Page 4 Tero Kivinen,

Start

a)
Do we need to

secure the packet

Error:
UNSUPPORTED_

SECURITY

Error:
UNAVAILABLE_

KEY

Error:
COUNTER_

ERROR

SUCCESS

SecurityLevel is zero

b)
Do we have

security enabled

SecurityLevel non­zero

macSecurityEnabled is FALSE

c)
Fetch the KeyDescriptor

macSecurityEnabled is TRUE

Finding KeyDescriptor failed

d)
Fetch frame counter

frame counter = 0xffffffff

e)
Insert and fil

auxiliary security header

f)
Protect frame

g)
Store frame counter

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID 1026, 1145, 1146, 1148, 1147
Toyoyuk
i Kato

Anritsu
Engineering
Co.,Ltd,

314 9.2.1 17 "Table 146" is incorrect. Correct it
appropriately.

Tero
Kivinen

INSIDE
Secure

314 9.2.1 25 In Table 146 we say that in beacons following fields are not encrypted:
superface specifications, gts info, pending address, and both header IEs and
Payload IEs. Are Payload IEs really meant to be sent unencrypted?

Add Payload IEs
to the private
payload fields.

Tero
Kivinen

INSIDE
Secure

314 9.2.1 26 In Table 146 we say that in Data only the Data Payload field is encrypted, all
other fields are unencrypted. This includes both header and Payload IEs. I
would assume we want to make Payload IEs encrypted.

Add Payload IEs
to the private
payload fields.

Tero
Kivinen

INSIDE
Secure

314 9.2.1 31 In Table 146 we say that there is no Open Payload fields for the MAC
Command frame with version number >= 2, but the private payload fields does
not list command identifier. So we do not include Command Identifier in either
column, so we do not know whether it is open or private field?

Add Command
Identifier to the
Private Payload
field column.

Tero
Kivinen

INSIDE
Secure

314 9.2.1 33 In Table 146 we say that for Acknowledgement frames the full Information
Elements field is encrypted, this includes both Header IE and Payload IE fields.
Is this intended, or should we only include Payload IE here? If Header IE field
is also included to be protected, then we most likely want to protect them also
in other frame formats.

Clarify.

Change inbound and outbound processing rules to say that Table 146 only contains exceptions to
the generic rule, and that generic rule is that Private Payload Field contains all MAC Payload
fields, and Open Payload Field is empty. Change the Table 146 to contain:

Frame type Private Payload Field Open Payload Field

Beacon
(Frame Version < 2)

Beacon Payload All other fields in the MAC Payload

MAC Command
(Frame Version < 2)

Content Command Identifier

Submission Page 5 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID 1153, 1101, R41, R42
Tero
Kivinen

INSIDE
Secure

315 9.2.3 49 Both steps c) and steps e) will set “key identifier
mode” / “KeyIdMode”, “key source”/”KeyIndex”
and “key index”/”KeyIndex”. I think we need to do
this only once.

Modify the step c) so it will copy the
values out from the auxiliary security
header, and remove the copying from
step e), so all auxiliary security
header processing is in one step. We
need to check which names of those
local variables needs to be used in
the rest of the processing steps, and
perhaps also change them to use
separate typographical look.

Tero
Kivinen

INSIDE
Secure

316 9.2.3 50 CID 470 was not done: In step l) the step will check
the frame counter value of 0xffffffff. With TSCH
mode the frame counter is not used, instead of 5-
octet absolute slot number ASN is used, this test is
not needed. Actually the current draft accidently did
that change for step i) not for step l), so move the
text from step “i) … procedure shall determine
whether the frame to be unsecured ...” to step “l) The
procedure shall set frame counter …”.

Add ”If not using TSCH mode” in
front of step l.

Tero
Kivinen

INSIDE
Secure

316 9.2.3 35 Steps i), j) and k) should be folded in to the step h. It
is stupid to call subprocedure to fetch the
SecurityLevelDescriptor and then check it here, as
we could call SecurityLevelDescriptor validation
procedure, that will get that SecurityLevelDescriptor
and verify the packet is according to it, and then
either return error (either
UNAVAILABLE_SECURITY_LEVEL or
IMPROVED_SECURITY_LEVEL) or SUCCESS,
or pass forward.

As described in the Comment
section.

Tero
Kivinen

INSIDE
Secure

316 9.2.3 49 Steps l and m should be combined. Replace with “If not using TSCH
mode, the procedure shall set frame
counter to the Frame Counter field of
the frame to be unsecured. If frame
counter has the value 0xffffffff, or if
the frame counter is less than the
FrameCounter element of the
DeviceDescriptor, the procedure
shall return with a status of
COUNTER_ERROR.”

The input to this procedure is the frame to be unsecured. The outputs from this procedure are the
status of the procedure and, if this status is SUCCESS, the unsecured frame, the security level,
the key identifier mode, the key source, and the key index.

All outputs of this procedure are assumed to be invalid unless and until explicitly set in this
procedure.

The incoming frame security procedure involves the following steps:

a) Do we have secured frame?
If the Security Enabled field of the frame to be unsecured is set to zero, the procedure
shall use procedure described in section 9.2.3b.

Submission Page 6 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

b) Legacy security?
If the Frame Version field of the frame to be
unsecured is set to zero, the procedure shall
return with a status of
UNSUPPORTED_LEGACY.

c) Check for macSecurityEnabled
If the macSecurityEnabled attribute is set to
FALSE, the procedure shall return status of
UNSUPPORTED_SECURITY.

d) Parse Auxiliary Security Header
The procedure shall set the security level and
the key identifier mode to the corresponding
fields of the Security Control field of the
auxiliary security header of the frame to be
unsecured, and the key source and key index
to the corresponding fields of the Key
Identifier field of the auxiliary security
header of the frame to be unsecured, if
present. If the resulting security level is zero,
the procedure shall return with a status of
UNSUPPORTED_SECURITY

e) Get Source Address
The device PAN ID shall be set to the Source
PAN Identifier field, if it is present. If the
PAN ID compression field is set to one, then
the device PAN ID shall be set to the
Destination PAN Identifier field. The device
addressing mode shall be set according to the
Source Addressing Mode field, as defined in
Table 147. The device address shall be set to
the Source Address, if present.

f) Obtain KeyDescriptor
The procedure shall obtain the
KeyDescriptor using the KeyDescriptor
lookup procedure as described in 9.2.2 with
using the key identifier mode as KeyIdMode,
key index as KeyIndex, key source as
KeySource, device addressing mode, device
PAN ID, and device address. If that procedure
fails the procedure shall return with a status

Submission Page 7 Tero Kivinen,

Start

a)
Do we have

secured frame

Error:
UNSUPPORTED_

LEGACY

Error:
UNSUPPORTED_

SECURITY

Error:
UNAVAILABLE_

KEY

Error:
UNAVAILABLE_

DEVICE

Error:
COUNTER_

ERROR

Error:
SECURITY_

ERROR

Error:
UNAVAILABLE_

SECURITY_
LEVEL

Error:
IMPROPER_
SECURITY_

LEVEL

Error:
IMPROPER_
KEY_TYPE

SUCCESS

b)
Legacy security?

Security Enabled field is set
9.2.3b

Security Enabled field is not set

Frame Version field is zero

c)
Check for

macSecurityEnabled

macSecurityEnabled is FALSEd)
Parse auxiliary
security header

security level is zero

e)
Get Source

Address

f)
Obtain KeyDescriptor

KeyDescriptor lookup failed

g)
Get

DeviceDescriptor

DeviceDescriptor lookup failed

h)
Get & Check

Frame counter

frame counter is 0xffffffff or
frame counter is less than framecounter

in devicedescriptor

i)
Unsecure frame

CCM* inverse transformation failed

j)
Get

SecurityLevelDescriptor

SecurityLevelDescriptor lookup failed

k)
Check

Security Policy

Security level checking failed

l)
Check key

Usage policy

Key usage policy checking failed

m)
Store

frame counter

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

of UNAVAILABLE_KEY.

g) Get DeviceDescriptor
The procedure shall obtain the DeviceDescriptor using the DeviceDescriptor lookup
procedure described in 9.2.4. If that procedure fails, then the procedure shall return with a
status of UNAVAILABLE_DEVICE.

h) Get & Check Frame Counter
If not using TSCH mode, the procedure shall set frame counter to the Frame Counter
field of the frame to be unsecured. If frame counter has the value 0xffffffff, or if the
frame counter is less than the FrameCounter element of the DeviceDescriptor, the
procedure shall return with a status of COUNTER_ERROR.

i) Unsecure frame
For frames specified in the Table 146 the Private Payload field and Open Payload field
shall be set as indicate there. For frames not specified in Table 146 the Private Payload
field shall be set to contain all MAC payload fields, and the Open Payload field shall be
empty. The procedure shall then use the Private Payload field, the Open Payload field,
the ExtAddress element of the DeviceDescriptor, frame counter, the security level, and
the Key element of the KeyDescriptor to produce the unsecured frame, according to the
CCM* inverse transformation process described in the security operations, as described
in 9.3.5. If the CCM* inverse transformation process fails, the procedure shall return with
a status of SECURITY_ERROR.

j) Get SecurityLevelDescriptor
The procedure shall obtain the SecurityLevelDescriptor by passing the frame type and, if
the frame is a MAC command, the Command Identifier, to the SecurityLevelDescriptor
lookup procedure described in 9.2.5. If that procedure fails, the procedure shall return
with a status of UNAVAILABLE_SECURITY_LEVEL.

k) Check Security Policy
The procedure shall determine whether the frame to be unsecured conforms to the
security level policy by passing the SecurityLevelDescriptor and the security level to the
incoming security level checking procedure, as described in 9.2.6. If that procedure
returns with a failed status, the procedure shall return with a status of
IMPROPER_SECURITY_LEVEL.

l) Check Key Usage Policy
The procedure shall determine whether the frame to be unsecured conforms to the key
usage policy by passing the KeyDescriptor, the frame type, and, if the frame is a MAC
command, the Command Identifier field, to the incoming key usage policy checking
procedure, as described in 9.2.7. If that procedure fails, the procedure shall return with a
status of IMPROPER_KEY_TYPE.

Submission Page 8 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

m) Store frame counter
If not using TSCH mode, the procedure shall increment frame counter by one and set the
FrameCounter element of the DeviceDescriptor to the resulting value.

n) Return SUCCESS
The procedure shall return with a status of SUCCESS.

9.2.3b Incoming frame security
procedure for security level
zero frames

This procedure is used to process the frames
which has security level of zero. The input to
this procedure is the frame to be unsecured. The
outputs from this procedure are the status of the
procedure and, if this status is SUCCESS, the
unsecured frame.

The incoming frame security procedure for
security level zero frames involves following
steps:

a) Check for macSecurityEnabled
if the macSecurityEnabled attribute is set
to FALSE, the procedure shall set the
unsecured frame to be the frame to be
unsecured and return with a status of
SUCCESS.

b) Get Source Address
See identically named step of the section
9.2.3.

c) Get DeviceDescriptor
The procedure shall obtain the
DeviceDescriptor using the
DeviceDescriptor lookup procedure
described in 9.2.4 using security level set
to zero. If that procedure fails, then the
procedure shall return with a status of
UNAVAILABLE_DEVICE.

Submission Page 9 Tero Kivinen,

Start

a)
Check for

macSecurityEnabled

Error:
UNAVAILABLE_

DEVICE

Error:
IMPROPER_
SECURITY_

LEVEL

SUCCESS

macSecurityEnabled is FALSE

b)
Get Source

address

c)
Get

DeviceDescriptor

DeviceDescriptor lookup failed

d)
Get

SecurityLevelDescriptor

e)
Check

Security Policy

Security level checking failed
f)

Check for
Exempt

Conditionally passed but not Exempted

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

d) Get SecurityLevelDescriptor
See identically named step of section 9.2.3.

e) Check Security Policy
The procedure shall determine whether the frame to be unsecured conforms to the
security level policy by passing the SecurityLevelDescriptor and the security level of zero
to the incoming security level checking procedure, as described in 9.2.6. If that procedure
returns with a failed status, the procedure shall return with a status of
IMPROPER_SECURITY_LEVEL.

f) Check for Exempt
If the incoming security level checking procedure of step e) had as output the
‘conditionally passed’ status and the Exempt element of the DeviceDescriptor is set to
FALSE, the procedure shall return with status of IMPROPER_SECURITY_LEVEL.

g) Return SUCCESS
The procedure shall set the unsecured frame to be the frame to be unsecured and return
with a status of SUCCESS.

Submission Page 10 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID1151
Tero Kivinen INSIDE

Secure
324 9.4.1.3 34 Remove extra “either”. Replace “.. is either an incrementing

shared global frame counter such as
ASN.” with “... is an incrementing shared
global frame counter such as ASN.”.

Accept, as described in Proposed Change column.

Submission Page 11 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID1105
Tero Kivinen INSIDE

Secure
325 9.5 39 R29 was not done properly. The table 153

still refers to table 157
(DeviceDescriptor), when it should refer
to 158 (DeviceDescriptorSecLevelZero).
(And the link to table 157 is broken :-).
Also the table 154 DeviceDescriptorList
should refer to the table 157
(DeviceDescriptor).

In table 153, change macDeviceTable to
macDeviceExemptTable, and change reference
to table 158 instead of 157. Change description
“DeviceDescriptorSecLevelZero for each
device which is allowed to be exempted for the
security.” Change Type of
DeviceDescriptorList to ”Set of
DeviceDescriptors, as defined in Table 157.”

Accept, as described in Proposed Change column.

Submission Page 12 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID1104
Tero Kivinen INSIDE

Secure
325 9.5 46 R28 was not done. Move the

macFrameCounter from the table 153 to
KeyDescriptor table, i.e. table 154

 Move the macFrameCounter from the table
153 to KeyDescriptor table, i.e. table 154

Accept, as described in Proposed Change column.

Submission Page 13 Tero Kivinen,

Dec 2014 IEEE P802.15 - 15-14-0704-02-0mag

CID1154
Tero Kivinen INSIDE

Secure
522 23.3.2 14 The security of the fragmentation is still

completely broken.
It needs to be fixed. It needs a bit different
nonce generation format.

Add new subsection 9.3.2.3:

9.3.2.3 CCM* nonce for Fragments

The CCM* nonce for the fragments shall be formatted as shown in Figure xxx. The Source
Address and security level as set as in defined in 9.3.2.1, and the Fragment Frame Counter is set
to match the phyFragmentFrameCounter, and the Fragment number is set to match the fragment
number of the fragment. Fragment indicator shall be set to 1.

Figure xxx – CCM* nonce for fragments

Octets: 8 Bits: 0-25 26-31 32-33 34 35-39

Source
Address

Fragment
frame counter

Fragment
number

Security level Fragment
indicator

Reserved

We might want to split the security level field in the 9.3.2.1 to have 2 bits of security level and 6
bits of reserved just to be clear how the 2-bit security level field is formatted inside the 1-octet
space reserved for it.

I am not sure whether it is good idea to refer to the phyFragmentFrameCounter here, or whether
we should just use term Fragment frame counter, and modify the text in section 23.3.1 to match.
The section 23.3 might need even more changes, it still needs to be checked properly.

Submission Page 14 Tero Kivinen,

	CID 1028
	CID 1150
	a) Do we need to secure the packet?
	b) Do we have security enabled?
	c) Fetch the KeyDescriptor.
	d) Fetch frame counter.
	e) Insert and fill auxiliary security header.
	f) Protect frame.
	g) Store frame counter
	h) The procedure shall return with a status of SUCCESS.

	CID 1026, 1145, 1146, 1148, 1147
	CID 1153, 1101, R41, R42
	a) Do we have secured frame?
	b) Legacy security?
	c) Check for macSecurityEnabled
	d) Parse Auxiliary Security Header
	e) Get Source Address
	f) Obtain KeyDescriptor
	g) Get DeviceDescriptor
	h) Get & Check Frame Counter
	i) Unsecure frame
	j) Get SecurityLevelDescriptor
	k) Check Security Policy
	l) Check Key Usage Policy
	m) Store frame counter
	n) Return SUCCESS
	9.2.3b Incoming frame security procedure for security level zero frames
	a) Check for macSecurityEnabled
	b) Get Source Address
	c) Get DeviceDescriptor
	d) Get SecurityLevelDescriptor
	e) Check Security Policy
	f) Check for Exempt
	g) Return SUCCESS

	CID1151
	Accept, as described in Proposed Change column.
	CID1105
	Accept, as described in Proposed Change column.
	CID1104
	Accept, as described in Proposed Change column.
	CID1154
	9.3.2.3 CCM* nonce for Fragments

