March, 1994	 DOC: IEEE P802.11-94/xxx
July, 2014	 IEEE P802.15-14-0411-0002-0008
IEEE P802.15
Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Proposed text for PAC TGD: Clustered Random Drop

	Date Submitted
	July 2014

	Source
	[Nah-Oak Song, Junhyuk Kim, June-Koo Kevin Rhee]1
[Byung-Jae Kwak, Kapseok Chang, Moon-Sik Lee]2
[KAIST, Korea]1, [ETRI, Korea]2
	E-mail:
nsong@kaist.ac.kr, kim.jh@kaist.ac.kr, rhee.jk@kaist.edu

	Re:
	TG8 Technical Guidance Document (DCN 15-12-0568-09-0008), and
DCN 15-14-0410-00-0008.

	Abstract
	This document provides text proposal for TG8 Technical Guidance Document. The proposed text provides detailed information for a new realistic distribution model of PDs for improved performance evaluation of PAC network, which is presented in DCN 15-14-0xxx0410-0001-0008.

	Purpose
	Discussion and Approval.

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

[bookmark: _Toc378094406]
9.4 System-level simulation (MAC)
9.4.2.1 Simulation parameters for discovery
	PD deployment
	* Uniform random drop or clustered random drop in 500×500 m2 area
. The number of PDs: 100, 500, 1000, 5000, 10000.

	Simulation time
	At least10 sec

	Iteration
	Until smooth curve is obtained

	PHY interface abstraction
	* Common PHY mode:
The received Es/N0 can be used in the PER (Packet Error Rate) curves provided in DCN13-0058 to know the value of PER of discovery signal sent by BPSK and 1/2 coding rate. Such PER curves were obtained assuming using convolution code and a packet length of 150 bytes at AWGN channel. Assuming bit errors in a packet are independent and uniformly distributed, the PER curves for a packet length of 16 bytes are obtained as

. Optionally and in addition, proposers may provide results with their own PHY interface abstraction

	Discovery ID length
	16 bytes and any other sizes are up to proposers

	Discovery transmission interval
	It depends on proposers.

Annex A	Clustered Random Drop
(Informative)

In a realistic network scenario, the PDs are distributed clustered around the area of attractions, and thus uniform distribution of PDs may lead to inaccurate performance evaluation in system simulations. In this annex, realistic distribution model of PDs for performance evaluation is provided.

A.1 Clustered Random Drop Procedure
1. Choose an area, where device will be randomly dropped.
2. The first PD is dropped according to uniform distribution.
3. Update the probability distribution of PDs.
4. Drop a PD according to the current probability distribution of PDs.
5. Repeat Step 3 – 4 until the target number of PDs are dropped.

A.2 Probability Distribution of PDs
Let be the probability distribution of the devices after dropping n devices, then

where
	
	a uniform distribution function

	
	a scalar,

	
	a scalar,

	
	drop location of i-th device

	
	pdf representing gravity or pull by i-th device

	, where A is the area of the network

Note that
· can be a fixed number, which means the attraction by all PDs are identical. Alternatively, can be a number drawn from a probability distribution function. For example, a number drawn from a uniform random distribution between 0 and 1.
· is a probability distribution function representing the attraction, that is, the probabilistic “pull” exerted by the already dropped i-th PD on the PD being dropped. For example, normal distribution can be used as follows:

· When , clustered random drop becomes identical to uniform random drop. Smaller represents stronger attraction by existing PDs. A typical for clustered random drop is 0.2.
· [bookmark: _GoBack]A typical value for is 50 m.

A.4 Matlab code for Clustered Random Drop

Submission	Page 	D. Kawaguchi, Symbol Technologies
Submission	Page 	Nah-Oak Song et al.
image2.emf
% Copyright (c) 2014 Junhyuk Kim <kim.jh@kaist.ac.kr>, % Nah - Oak Song <nsong@kaist.ac.kr>, and Byung - Jae Kwak <bjkwak@etri.re.kr>. % All rights reserved. % % Redistribution and use in source and binary forms, with or without modification, are permitted. % % THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES ARE DISCLAIMED. IN NO EVENTS % SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DAMAGES ARISING IN ANY WAY OUT OF THE USE OF % THIS SOFTWARE. % % Function: clustered_random_drop() % Matlab function for computing the locations of mobile devices obtained by clustered random drop. % % Input: % * X_max: the width of the area where PDs are dropped [meters] % * Y _max: the height of the area where PDs are dropped [meters] % * N_dev: The number of PDs to be dropped in the (X_max x Y_max) area % * sigma: The standard deviation of the distribution representing the pulling power/attraction applied to the device % currently being dropped by already dropped PDs. % * beta: a parameter that controls the amount of clustering. % Return value: % * position: (N_dev x 2) matrix holding the locations of dropped devices % % Usage: % The following command will return (1000 x 2) matrix holding the coordinates of 1000 device locations % in an (500 x 500) area, where sigma = 50 and beta = 0.2. The returned matrix is stored in dev_position. % % >> dev_position = clustered_random_drop(500, 500, 1 000, 50, 0.2); function position = clustered_random_drop(X_max, Y_max, N_dev, sigma, beta) ll_corner = [0 0]; % Lower - left corner of the area ur_corner = [X_max, Y_max]; % Upper - right corner of the area covar = [sigma 0; 0 sigma]; % Covariance matrix o f 2D normal distribution % Initialization alpha = ones(N_dev, 1); % alpha(i) = 1 for all i = 1, 2, ..., N_dev. % Memory allocation position = zeros(N_dev, 2); % Device locations gamma = zeros(N_dev, 1); alpha_gamma = zeros(N_dev, 1); % 'alpha(i) * gam ma(i)'. % The 1st device is dropped according to uniform distribution position(1,:) = [rand * X_max, rand * Y_max]; gamma(1) = mvncdf(ll_corner, ur_corner, position(1,:), covar); alpha_gamma(1)= alpha(1) * gamma(1); % For k = 2, 3, ..., N_dev. for k = 2:N_dev if rand < beta % Follows uniform distribution with probability beta position(k,:) = [rand * X_max, rand * Y_max]; else % Drop location determined by previous dropped devices tmp_rnd = rand * sum(alpha_gamma(1:(k - 1))); for kk = 1:(k - 1) if tmp_rnd < sum(alpha_gamma(1:kk)) % New drop attracted to kk - th dev not_in_area = 1; while (not_in_area) position(k,:) = mvnrnd(position(kk,:), covar); if ((0 <= position(k,1) || position(k,1) <= X_max) || ... (0 <= position(k,2) || position(k,2) <= Y_max)) not_in_area = 0; end end break; end end % for: kk end gamma(k)= mvncdf(ll_corner, ur_corner, position(k,:), covar); alpha_gamma(k) = alpha(k) * gamma(k); end % for: k end % clustered_random_drop().

oleObject2.bin

image1.wmf
(

)

)

150

/

16

(

1

1

PER

PER

-

-

=

oleObject1.bin

