May 2014		doc.: IEEE 802.15-14-0328-00-0008
IEEE P802.15
Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Document for Final Proposal Doc 15-13-380r2

	Date Submitted
	May 15, 2014

	Source
	[Qing Li, Chonggang Wang, Hongkun Li, Zhuo Chen, and Tao Han]
InterDigital Communication Cp.

	E-Mail:
[Qing.Li@InterDigital.com]
Voice:
[610-878-5695]

	Re:
	Call for Final Proposals

	Abstract
	This detailed document presents final proposals on the PHY/MAC system design for 802.15.8 (PAC)

	Purpose
	To discuss technical feasibility of proposed system design for 802.15.8 (PAC)

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

	
	

Table of Contents
1.	Overview	3
2.	Definitions	3
3.	Abbreviations and acronyms	4
4.	General descriptions	5
4.1.	Concepts and architecture	5
4.2.	Topology	7
4.3.	Reference model	8
5.	MAC layer	8
5.0.	Overview	8
5.1.	8
5.2.	Frame structure	8
5.3.	Synchronization	9
5.4.	Discovery	11
5.5.	Peering	12
5.5.1.	Single Hop Peering	13
5.5.2.	Multi-hop Peering	14
5.6.	Communications	14
5.6.2.	Multicast	14
5.6.3.	Multi-application Data Transmitting and Receiving	15
5.7.	MPDU structure	19
5.7.1.	General MAC Frame:	19
5.7.2.	Beacon Frame	20
5.7.3.	Peering Related Frame Structure	21
5.8.	Multiple access	25
5.8.1.	Fast Channel Accessing	25
5.9.	Synchronization procedure	34
5.10.	Discovery procedure	36
5.11.	QoS	37
5.12.	Interference management	37
5.13.	Power control	38
5.14.	Multi-hop	38
5.15.	Relative positioning	38
5.16.	Power management	38
5.17.	Security	45
5.18.	Coexistence	45
5.19.	Upper layer interaction	45
5.19.2.	Cross-Layer Context Management	50
5.19.3.	Cross-Layer Data Acknowledgement	50

[bookmark: _Toc391476567]Overview

This standard defines PHY and MAC mechanism for Wireless Personal Area Networks (WPAN) Peer Aware Communications (PAC) optimized for Peer-to-Peer and infrastructure-less communications with fully distributed coordination. A PAC or Peer-to-Peer Network (P2PNW) is formed for a desired service or application within proximity. A peer can participate in multiple services or applications, i.e. multiple P2PNWs. Many P2PNWs may coexist in proximity.
PAC key features may include the following:
· Operational in selected globally available unlicensed/licensed bands below 11 GHz capable of supporting these requirements
· Scalable data transmission rates, typically up to 10 Mbps
· Discovery for peer information without Peering
· Discovery signaling rate typically greater than 100 kbps
· Discovery of the number of devices in the network
· Group communications with simultaneous membership in multiple groups, typically up to 10
· Multi-hop relay
· Relative positioning
· Security

[bookmark: _Toc391476568]Definitions
380r2 (beginning)
	Channel Accessing
	Procedure or action to physically connect to a physical communication channel to transmit or receive signals or data in a wireless communication system.

	Channel Allocation
	Procedure to define or assign the physical communication channel(s) to a terminal or multiple terminals for transmitting or receiving signals or data in a wireless communication system. A terminal accesses a channel allocated to it.

	Context
	Special situation information such as service, application, location, time, power, etc.

	Context Manager
	An MAC-layer function for local intra-PD context management or remote inter-PD context management.

	Context Management
	Context exchange interactions between two protocol layers within a PD or between two PDs on MAC layer. The interactions could include context information reporting, context information retrieval, context information deletion, context information subscription, and context notification.

	Peer
	A user or a device such as MS in 2G, a UE in 3GPP, an FFD or RFD in IEEE 802.15/WPAN; A peer can be a group of users or devices sharing a group ID.

	P2P Proximity Communications
	Infrastructure-based or infrastructure-less communications among peers within proximity

	
Peer Discovery
	
Procedure used for a peer to find another peer(s) before Peering to enable P2P proximity communications

	Peering
	Procedure used for a peer to establish logical relationship with another peer(s) before P2P data transmission can be started. It is also termed as peer attachment, peering, pairing, or link establishment.

	
Peering Identifier
	
A locally unique identifier to identify each established peering relationship among peers. It is assigned during Peering or Re-Peering and can be updated during Peering Update.

	
Peering Update
	
Procedure used for a peer to update Peering Identifier and/or Peering Context of an existing association relationship with other peer(s).

	
De-Peering
	
Procedures used for a peer to cancel an existing association relationship with other peer(s)

	
Re-Peering
	
Procedures used for a peer to Re-Peering a cancelled association relationship with other peer(s)

	
Virtual Leader
	A virtual leader is a peer defined to represent, manage, and coordinate the P2P communications among a group of peers (i.e. the members of the group), sharing the same context-based service and/or application. A virtual leader may be dynamically determined and/or changed within the group. The virtual leader performs functions for the group such as context management, context-aware discovery broadcast, context-aware Peering, group membership management, synchronization, link management, channel accessing control, reliable data transmission, routing management, power control and interference management, and channel measurement coordination, etc. A peer can only be the virtual leader for one application, and one application can have only one virtual leader. Other alternative terms for virtual leader include group leader/header/controller/coordinator/master/manager, cluster leader/header/controller/coordinator/master/manager, and zone leader/header/controller/coordinator/master/manager, etc.

	Sub Virtual Leader
	A sub virtual leader is a peer defined to extend coverage through multi-hop based on the physical or logicalal topology. The roles of a sub virtual leader include: 1) as a virtual leader to manage a subgroup of peers with the same context-based service and/or application; 2) as a peer (i.e. a member) under the management of the virtual leader and/or a sub virtual leader of the same group. The sub virtual leader may perform a subset of functions of the virtual leader.

	
Super Virtual Leader
	A super virtual leader is a peer defined to coordinate all virtual leaders for the purposes of synchronization, power control, interference management, and channel accessing control, etc. A super virtual leader may be dynamically determined and/or changed among the virtual leaders. The super virtual leader is the top leader of the virtual leaders’ hierarchical structure.

	
	

380r2 (end)

[bookmark: _Toc391476569]Abbreviations and acronyms

380r2 (beginning)
ACK		Acknowledgement
APP		Application
CAID		Context Aware Identifier
CD		Context Database
CDMF		Context Dispatch Management Function
CEM		Context Exchange Mode
CCDCH	 Common Control/Data Channel
CPCI		Context and Power Control Information
CA 		Channel Allocation
CAc 		Channel Accessing
CM		Context Manager
D2D		Device-to-Device
DCDCH 	Dedicate Control/Data Channel
FFD		Full-Function Device
ID		Identifier
IE		Information Element
IEEE		Institute of Electrical and Electronics Engineers
MAC		Medium Access ControlMCPS 		MAC Common Part Sublayer
MLME		MAC subLayer Management Entity
MHR		MAC HeaderPHY		PhysicalPAC		Peer Aware Communications
P2P		Peer-to-Peer
P2PNW		Peer-to-Peer Network
PD		Peer Discovery
PI		Peer Information
PeerReq	Peer Requesting Channel Allocation or Channel Accessing
RFD		Reduced-Function Device
SubVL		Sub Virtual Leader
SuperVL	Super Virtual Leader
VL		Virtual Leader
WPAN		Wireless Personal Area Network
TCP 		Transmission Control Protocol
VLreq		VL Requesting Channel Allocation or Channel Accessing
380r2(end)

[bookmark: _Toc391476570]General descriptions

[bookmark: _Toc391476571]Concepts and architecture

A PAC system may contain the following functions at MAC and/or PHY.

Higher Layer: the layer above PHY/MAC, such as service or application layer for an infrastructure-less P2P wireless system.

PD Management Entity: manages PD information across PHY/MAC and higher layer for P2P communications.

Synchronization Function: performs initial and/or periodic time boundary synchronization with a peer at MAC; maintains frequency and/or clock phase synchronization at PHY.

Discovery Function: discovers peer(s) in proximity by using IDs such as Device ID, Device Group ID, Application type ID, Application-specific ID, Application-specific user ID, and Application-specific group ID, and/or peer context information; sends discovery request messages with IDs such as Device ID, Device Group ID, Application type ID, Application-specific ID, Application-specific user ID, and Application-specific group ID, and/or peer context information for to-be-discovered in proximity.

Peering Function: requests or responds to Peering (i.e. association), Peering Updates, De-peering, or Re-peering by using IDs such as Device ID, Device Group ID, Application type ID, Application-specific ID, Application-specific user ID, and Application-specific group ID, and/ or peer context information.

Channel Management Function: manages the radio resource or channel allocation among P2P networks based on the services or applications; manages channel allocation and/or accessing within a P2P network based on the peer information.

Power Control Function: performs transmitting power control and interference management based on power control information.

Data Transceiving Function: conducts reliable data transmitting and/or receiving based on the QoS required by service or application.

Measurement and Report Function: conducts measurements of channel, QoS, etc., and sends data reports from other logic functions to higher layer.

Scheduler Function: manages or controls the sequence of events in MAC and/or PHY layer, for example, transmission queuing, collision avoidance, etc.

Encoder Function: performs encoding and other data processing such as interleaving, scrambling, etc. at PHY to aid in reliable reception

Modulator Function: performs modulation and other data processing such as mapping, precoding, etc. at PHY

Decoder Function: performs decoding and other data processing, such as de-interleaving, de-scrambling, etc. at PHY to aid in reliable reception

Demodulator Function: performs demodulation and other data processing such as equalization, de-mapping, etc. at PHY

[bookmark: _Toc391476572]Topology
380r2 (beginning)

Figure X: Typical P2P Network Topology

As required in TGD, a P2P network (P2PNW) is formed by a desired application. There may be multiple applications existing simultaneously, therefore multiple P2PNWs coexist at the same time in proximity. In addition, a peer may run multiple applications simultaneously, and therefore joins multiple P2PNWs at the same time. As shown in the figure X, there are 4 applications (P2PNWs), peer 6 and peer 9 join 2 P2PNWs for 2 applications, respectively. Application 3 is pair communication between two peers, while application 1 is multi-hop broadcast for commercial advertisement with a tree topology, and application 4 is gaming with a mesh topology. With many different P2PNWs co-existing in the proximity, the topology is more heterogeneous than homogenous.

380r2(end)

[bookmark: _Toc391476573][bookmark: _Toc334703576][bookmark: _Toc334703577]Reference model

[bookmark: _Toc339564054][bookmark: _Toc391476574][bookmark: _Toc333303924][bookmark: _Toc333303925][bookmark: _Toc333303926]MAC layer

0. [bookmark: _Toc391476575]Overview

This section defines MAC mechanism for Wireless Personal Area Networks (WPAN) Peer Aware Communications (PAC) optimized for peer-to-peer and infrastructure-less communications with fully distributed coordination.

[bookmark: _Toc391476576]
[bookmark: _Toc391476577]Frame structure
380r2 (beginning)

Frame Structure for Single Hop

Figure 5-2-1: General Hierarchical Frame Structure

1. Superframe Beacon: start of a Superframe. It also indicates the superframe structure, such as the length of common channel, number of application frames, and length of reserved time duration. It may be used as synchronization reference also.
2. Common Channel: shared by all peers and applications in proximity - both public broadcasting / multicasting and private pair communications via contention based accessing.
3. Application Frame: dedicated to an application. There may be one or multiple Application Frames within a Superframe. An application frame consists of a dedicated channel and contention free period. Dedicated channel is shared among all peers within the application group, and is contention based for accessing. Contention free period is allocated to individual peers.
4. Reserved Time: reserved for the insertion of other application frames.
5. Inactive Period: optionally as the gap or guard time between Superframes.
6. Hyperframe: top level frame. It may include several Superframes. The Hyperframe structure is shown in Figure 5-2-2.

Figure 5-2-2: Hyperframe Structure

Figure 5-2-3 shows the an example of Superframe structure for TDMA.

Figure 5-2-3: Superframe structure for TDMA.

Frame Structure with Multi-hop Period
Note that the contribution of multi-hop frame structure is in final contribution document # 15-14-0258-00-0008.

380r2(end)

[bookmark: _Toc391476578]Synchronization
380r2 (beginning)
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The synchronization procedure is to find the frame/slot boundary, and can be triggered by the request from other procedures such as Discovery, Peering, Data transceiving, higher layer etc. The synchronization procedure starts by scanning for the common synchronization reference signal, which may be carried on common beacon and or sent on common channel. Figure 5-3-1 illustrates an example of a superframe under virtually centralized control consists of the super beacon, application beacons and application frames. In the super beacon, which indicates the start of a superframe, there is a Frame Map (FM) field to indicate the application frame allocation for different applications. FM further contains “Application Offset List” (AOL) field indicating the time offset of the application frames according to the time reference of the super beacon. The time reference in the super beacon is the time information that can be used as the reference to calculate the starting time of each application frame. The structure of FM is shown inFigure 5-3-2.

[bookmark: _Ref388946760]Figure 5-3-1: Superframe Structure under Virtually Centralized Control

[bookmark: _Ref388947157]Figure 5-3-2: Structure of Frame Map in Super Beacon

In different scenarios, the peer may either find a super beacon or an application beacon first. Therefore, to collect the application information efficiently, a new field “Super Beacon Offset” (SBO) is contained in the application beacon to indicate where the Super Beacon is in the form of time offset. One possible example of SBO is illustrated in Figure 5-3-3, where the slot/symbol number between App 2 beacon and the next Super Frame is indicated in SBO.

[bookmark: _Ref388947510]Figure 5-3-3: Example of SBO

Based on the FM and SBO,
For hybrid control, there is no SuperVL acting as the virtually central controller to manage the applications in proximity. The individual application is managed by the VL. One of the VLs in proximity defines the time reference by sending the beacon to formulate a superframe. The beacon sent by the VL who maintains the time reference for the common channel is called Common Beacon (CB). The superframe consists of application frames for different applications with guard interval if the desired applications are found during CAIS, the peer shall synchronize with the VLs of desired P2PNWs for hybrid control. Otherwise, the peer shall synchronize with the Common Beacon

The Common Beacon contains two fields Common Beacon Offset (CBO) and Common Channel Offset (CCO) to search the common channel. For ease of searching the beginning of an application beacon, a new field Application End Offset (AEO) is included in the application beacon to indicate the end of the application frame as shown in Figure 5-3-4.

[bookmark: _Ref388949113]Figure 5-3-4: The Superframe under Hybrid Control with AEO example

380r2(end)

[bookmark: _Toc391476579]Discovery

380r2 (beginning)

[bookmark: _Ref388949743]Figure 5-4-1: Discovery Procedure

The proposed discovery procedure consists of three main stages as shown in Figure 5-4-1:
1) Peer Discovery Scan;
2) Peer Discovery Evaluation;
3) Peer Discovery Request.
“To Discover” means that the peer wants to discover other peer(s) with a desired application in proximity; while “to be discovered” implies that the peer wants to be discovered by other peer(s) through broadcasting discovery message in proximity.

A peer enters Peer Discovery Scan first - “To Discover” a peer or peers for a desired service or application. Then, the peer enters Peer Discovery Evaluation to qualify the discovered peer(s). If no peer is discovered or qualified for the desired service or application based on certain criteria, the peer enters Peer Discovery Request - “To Be Discovered” for a desired service or application. During “To Discover” process, the peer scans the beacon or pilot/broadcast/paging channel carrying the desired context information across all available frequency channels if applicable. If any peer is detected, peer discovery evaluation stage is triggered for qualification check. The evaluation process is to check if the detected peer meets the discovery criteria, such as the signal strength. The qualified peer(s) is added to the candidate list. The last step in the evaluation stage is to determine if the peer will continue to discover more peers. If yes, the peer repeats the scan stage; otherwise the candidate list is passed to the Peering procedure. If no peer is detected during the scan stage for a configured period of time, the peer switches to “To Be Discovered” process for the desired service or application, and enters the peer discovery request stage. The peer periodically broadcasts the discovery message (e.g., beacon or discovery request frame) with the context information during the request stage. The peer continues broadcasting until either it is discovered by the required number of peers or exits this stage due to a configured timeout or policy.

The context-aware peer discovery procedure above requires scanning the context information during the peer discovery stage to determine if any peer with desired service or application is in proximity. However, the context information could contain lots of information, and scanning such information may take too much time. To reduce the overhead caused by checking each of the context components during discovery, a hierarchical Context-Aware Identifier (CAID), is used for fast context-aware peer discovery. For example, the peer checks the context category first during scan stage. If context category matches the context category of the desired service or application, then the process continues to check service ID, user ID, etc. in a sequential manner; otherwise, the peer immediately stops decoding the rest of CAID if any element does not match the desired service or application. Therefore, the peer does not need to go through all the elements of the context information for discovery.

380r2(end)

[bookmark: _Toc391476580]Peering

380r2 (beginning)

[bookmark: _Toc391476581]Single Hop Peering
Peering Identifier (PID) is the identity of each established link or peering relationship between two or more PDs. Considering different types of applications, link(s) may be established at different levels of peering:
· Device-based peering
· Service-based peering
· User-based peering

Peering Procedure

Figure 5-5-1: Peering Procedure

The peering procedure is initiated by sending a peering request message including requested peering information. Acknowledgement to peering request message may be optional for responder. Responder may send a peering response message to requestor for indicating if the peering request is accepted or not. The response message may include peering information as well as the peering ID if the request is accepted. Acknowledgement to response message may be optional as well.

Re-peering procedure:

Figure 5-5-2: Re-peering Procedure

Re-peering procedure is similar to peering procedure. The main difference is: 1) the peering ID should be included in request message since the re-peering is to re-establish a link or links among PDs that peered previously; 2) the PD(s) receives the request need to check the peering log before making decision if accepts the re-peering request.

De-peering procedure:

Figure 5-5-3: De-peering Procedure

De-peering procedure starts with a de-peering request, which is replied by a de-peering response message. Both acknowledgement and de-peering response may be optional. Accordingly, the peer may triggers peer discovery process with updated parameters after de-peering procedure.

[bookmark: _Toc391476582]Multi-hop Peering
Note that the contribution of multi-hop Peering is in final contribution document # 15-14-0260-00-0008.

380r2(end)

[bookmark: _Toc391476583]Communications

5.4.1 Unicast

0. [bookmark: _Toc391476584]Multicast

380r2 (beginning)

Note that the contribution of reliable multicast is in final contribution document # 15-14-0262-00-0008.

380r2(end)

[bookmark: _Toc391476585]Multi-application Data Transmitting and Receiving
A peer may participate in multiple P2P services or applications. The proposed context-aware architecture enables multi-application capability for P2P communications in proximity. Examples of procedures and call flows for multi-application data transmitting and receiving are detailed in this section.

Multi-application Data Transmitting
A multi-application data transmitting is illustration in Figure 5-6-2, which may contain the following steps.
0. Peer1 – Peer3 & Peer2 & Peer1: “ Start a P2P Session”
Peer1, Peer2, and Peer3 follow the procedure of initiating a P2P session, described in Section 5.3.2.1 Initiation of P2P Communication, for Application1 and Application2 separately.
Peer1 – Peer3: Application1
A P2P session for Application1 is initiated with
0A. Peer1’s Upper Layer sending MLME-START-APP1.request
, and confirmed with
0B. Peer2’s Peering Function responding Upper Layer with MLME-Peering-APP1.confirm.
Peer2 – Peer1: Application2
A P2P session for Application2 is initiated with
0C. Peer2’s Upper Layer sending MLME-START-APP2.request
, and confirmed with
0D. Peer1’s Peering Function responding Upper Layer with MLME-Peering-APP2.confirm.
1. Application1 Peer1: Data Transmission Request
A. Upper Layer sends trigger or request to the Data Transceiving Function with MCPS-DATA-APP1.request.
B. Upper Layer down loads context related to Application1 via the Context Management Function.
2. Application1 Peer1- Peer3: Data Transmitting
The Data Transceiving Function sends Application1 Data1 to Peer3 via air interface.
3. Application1 Peer3: Data Receiving
A. Peer3 receives the data and notices the Upper Layer with MCPS-DATA-APP1.indication.
B. Peer3 sends ACK for Application1 Data1 to Peer1 via air interface.
4. Application1 Peer1: Data Transmission Confirmation
A. Peer1 receives the ACK and notices the Upper Layer with MCPS-DATA-APP1.confirm.
B. Peer1 may update the context and upload the updated Application1 context to the Upper Layer via the Context Information Management.
5. Application2 Peer1: Data Transmission Request
A. Upper Layer sends trigger or request to the Data Transceiving Function with MCPS-DATA-APP2.request.
B. Upper Layer down loads context related to Application2 via the Context Management Function.
6. Application2 Peer1- Peer2: Data Transmitting
The Data Transceiving Function sends Application2 Data1 to Peer2 via air interface.
7. Application2 Peer2: Data Receiving
A. Peer2 receives the data and notices the Upper Layer with MCPS-DATA-APP2.indication.
B. Peer2 sends ACK for Application2 Data1 to Peer1 via air interface.
8. Application2 Peer1: Data Transmission Confirmation
A. Peer1 receives the ACK and notices the Upper Layer with MCPS-DATA-APP2.confirm.
B. Peer1 may update the context and upload the updated Application2 context to the Upper Layer via the Context Information Management.

[bookmark: _Ref358289620][bookmark: _Ref358289589]Figure 5-6-2 Multi-application Data Transmitting

Multi-application Data Receiving
A multi-application data transmitting and receiving is illustration in Figure 5-6-3, which may contain the following steps.
0. Peer1 – Peer3 & Peer2 & Peer1: “ Start a P2P Session”
Peer1, Peer2, and Peer3 follow the procedure of initiating a P2P session, described in Section 5.3.2.1 Initiation of P2P Communication, for Application1 and Application2 separately.
Peer1 – Peer3: Application1
A P2P session for Application1 is initiated with
0A. Peer1’s Upper Layer sending MLME-START-APP1.request
, and confirmed with
0B. Peer2’s Peering Function responding Upper Layer with MLME-Peering-APP1.confirm.
Peer2 – Peer1: Application2
A P2P session for Application2 is initiated with
0C. Peer2’s Upper Layer sending MLME-START-APP2.request
, and confirmed with
0D. Peer1’s Peering Function responding Upper Layer with MLME-Peering-APP2.confirm.
1. Application1 Peer1: Data Transmission Request
Upper Layer sends trigger or request to the Data Transceiving Function with MCPS-DATA-APP1.request for Application1 Data1.
2. Application1 Peer1 - Peer3: Data Transmitting
The Data Transceiving Function sends Application1 Data1 to Peer3 via air interface.
3. Application2 Peer2: Data Transmission Request
Upper Layer sends trigger or request to the Data Transceiving Function with MCPS-DATA-APP2.request for Application2 Data1.
4. Application2 Peer2 - Peer1: Data Transmitting
The Data Transceiving Function sends Application2 Data1 to Peer1 via air interface.
5. Application1 Peer3: Data Receiving
A. Peer3 receives the Application1 Data1from Peer1 and notices the Upper Layer with MCPS-DATA-APP1.indication.
B. Peer3 sends ACK for Application1 Data1 to Peer1 via air interface.
6. Application2 Peer1: Data Receiving
A. Peer1 receives the Application2 data1 from Peer2 and notices the Upper Layer with MCPS-DATA-APP2.indication.
B. Peer1 sends ACK for Application2 Data1 to Peer2 via air interface.
7. Application1 Peer1: Data Transmission Confirmation
Peer1 receives the ACK from Peer3 for Application1 Data1 and notices the Upper Layer with MCPS-DATA-APP1.confirm.
8. Application2 Peer2: Data Transmission Confirmation
Peer2 receives the ACK from Peer1 Application2 data1 and notices the Upper Layer with MCPS-DATA-APP2.confirm.

[bookmark: _Ref358301165]Figure 5-6-3 Multi-application Data Transmitting and Receiving

[bookmark: _Toc391476586]MPDU structure
380r2 (beginning)

[bookmark: _Toc391476587]General MAC Frame:

Figure 5-7-1 MPDU frame structure.

Frame Type and Subtype fields together indicate the type of a frame, i.e., the function of a frame.
Required ACK Type field in frame control specifies what type of acknowledge frame is expected. For example, no ACK or aggregated ACK.
Addressing field Indication field indicates the presence of the transmitting hop address and receiving hop address in the addressing fields.
Addressing fields consist of the following addresses: source address, destination address, transmitting hop address and receiving hop address. Transmitting hop address and receiving hop address are optional.
P2PNW/APP ID field shows the P2P network ID or application ID in the MHR. All the peers joining a P2PNW will have a locally unique P2PNW/APP ID. If P2PNW ID is not determined when a frame is sent, this field will carry application ID.
Application Type field indicates the application/service category, such as emergency service, social networking, smart office, etc.
Hopper Indication is used to indicate if the frame sender is willing to relay other frames for the multi-hop discovery.

[bookmark: _Toc391476588]Beacon Frame
Beacon frame plays an important role in forming a P2PNW and enabling the P2P communication. It could be used to carry context information for the discovery procedure, to define a new superframe and/or application frame through channel management process, to determine the frame/slot boundary for synchronization and to facilitate the power control procedure.

Figure 5-7-2 Beacon frame structure

Frame information is a part of the beacon payload, and consists of two components:
· Superframe information: defines a new superframe
· Application frame information: defines the structure of an application frame.

[bookmark: _Toc391476589]Peering Related Frame Structure
Peering Request Frame
The format of Peering Request frame is shown in Figure 5-7-3, where all the listed fields as part of MAC payload are mandatory. The optional fields are grouped in other MAC payload.

Figure 5-7-3 Peering Request frame structure.

Device capability could be the different types of capability of the peer that is sending the request. For example, the transmission data rate capability, battery/power consumption capability or security capability.

The Peering type field indicates what type of Peering is expected to establish. The Peering is classified as device-based, service-based and user-based Peering. A peer may maintain multiple applications, and therefore may maintain multiple different types of Peering connections.

Required duration field is set by the requestor to indicate how long the Peering connection is expected to be active.

VL indication explicitly shows if the sender of the request is VL or not.

Response type field is used to indicate what optional fields are required in other MAC payload as part of the corresponding Peering Response message.

Multi-hop indication indicates if the Peering Request is relayed for a peer outside one-hop range of receiver, i.e., multi-hop association.

Peering Response Frame

Figure 5-7-4 Peering Response frame structure

Peering ID is the identifier that identifies an association between two peers.

Peering decision indicates if the Peering Request is accepted or not.

Assigned duration indicates the lifetime of the Peering to establish. The responder makes the decision based on the required duration in Peering request. It could be different with the required duration.

Assigned short address contains the short address if short address required field is true in the request message.

Re-Peering Request Frame
Re-Peering Request frame has the very similar structure with the Peering Request.

Re-Peering Response Frame
Re-Peering Response frame shares the same structure and fields with Peering Response frame.

De-Peering Request Frame

Figure 5-7-5 De-Peering Response frame structure

De-Peering Request is sent to notify the other side of the association that the association will be shut off soon. The required ACK type in frame control will indicate if the De-Peering Response message is required or not.

De-Peering reason field indicates why the Peering is going to be shut off. The possible reason includes: link failure, application termination or resource limitation.

De-Peering duration field indicates the time duration of the De-Peering. This means that after the time duration, the association will be active.

De-Peering Response Frame
De-Peering Response frame is to confirm that the association is disconnected after receiving the De-Peering Request.

Figure 5-7-6 De-Peering Response frame structure

De-Peering status indicates the association is disconnected permanently or just for a time period, which means the association will be activated then.

Peering Update Notification Frame
Peering Update Notification frame is to notify the other side that some attributes of an existing Peering needs to update.

Figure 5-7-7 Peering Update Notification frame structure

Updated Peering information field may include one or multiple information fields about an existing Peering that needs to update. Any field either mandatory or optional in Peering Request and Response frames could be included in the updated Peering information field.

Peering Update Response Frame

Figure 5-7-8 Peering Update Response frame structure

Peering Update Response is used to confirm the update of some Peering attributed noted by Peering Update Notification frame.

Updated status field indicates if all of the requested updated Peering information is updated or not. It could be fully updated, partially updated or rejected at all.

Updated Peering information field includes two parts of Peering information:
· the request updated Peering information in Peering Update Notification frame but not updated
· the Peering information that is required to update by the sender of Peering Update Response.

Channel Management Frame
0.0.0.1.1. Inter-P2PNWs Channel Allocation Request

Inter-P2PNWs channel allocation request frame as shown in Figure 5-7-9 is used to broadcast a request on the CCDCH in the proximity for radio resource allocation.

Figure 5-7-9 Inter-P2PNWs Channel Allocation Request Frame

VL indication field shows whether the sender is VL or not. In distributed control, this field is always false.

Desired application frame length indicates the desired time duration of the application frame that the sender is trying to construct.

SuperVL willingness indicates if the sender is willing to act as SuperVL. This field is mandatory

Desired application beacon location is an optional field, which indicates when the application beacon is broadcast. This field is present only when the sender has the knowledge of the superframe structure and already synchronizes with the P2PNW.

0.0.0.1.2. Inter-P2PNWs Channel Allocation Response

Figure 5-7-10 Inter-P2PNWs Channel Allocation Response Frame

Inter-P2PNWs channel allocation response comes after with Inter-P2PNWs channel allocation request frame on CCDCH shown in Figure 5-7-10.

SuperVL indication shows if the response is sent from a superVL or not. In hybrid and distributed control, this field is always false.

Response decision explicitly indicates if the corresponding Inter-P2PNWs channel allocation request is accepted or not.

Reject reason is to indicate the reason why the request is rejected. For example, the requested time period is totally or partially overlapped with a time period that has been allocated to an application frame.

Adjustment suggestion is an optional field, and could include the suggestion on where the available time period is. The adjustment suggestion will be given higher priority if the response is from the SuperVL.

0.0.0.1.3. Intra-P2PNWs Channel Allocation Request

Figure 5-7-11 Inter-P2PNWs Channel Allocation Request Frame

Intra-P2PNWs channel allocation request frame sent over DCDCH is used to request one or more time slots in an application frame, as shown in Figure 5-7-11.

It is assumed that the sender knows the application frame specification when broadcasting the Intra-P2PNWs channel allocation request.

SubVL indication field shows if the requestor is the SubVL or a peer. In distributed control, this field is always setup as a peer.
Desired number of slots indicated how many time slots the sender requests. The slot size is fixed during the whole application frame, a peer could only request for different number of slots for transmission.

Desired slot location is an optional field, which indicates the position of the desired time slots in the application frame.

0.0.0.1.4. Intra-P2PNWs Channel Allocation Request

Figure 5-7-12 Inter-P2PNWs Channel Allocation Response Frame

Intra-P2PNWs channel allocation response message shown in Figure 5-7-12 is sent as reply to the Intra-P2PNWs channel allocation request.

VL indication shows if the response message is sent by the VL or not. In distributed control, this field is always false.

Response decision, reject reason and adjustment suggestion fields have the same usage as those in Inter-P2PNWs channel allocation response frame.

380r2(end)

[bookmark: _Toc391476590]Multiple access
380r2 (beginning)
NOTE: this is the procedure for channel management is considered as part of Multiple Access .

0. [bookmark: _Toc391476591]Fast Channel Accessing
As illustrated in Figure 5-8-1, the fast CCDCH accessing scheme may be conducted in the following steps as an example.
1. Fast CCDCH accessing is triggered either by the application from a higher layer or by other logical functions such as Peer Discovery (PD), Peering, Synchronization Request (SR), Channel Accessing (CAc), Power Control (PC) and Interference Management (IntM), etc.
2. Scan if CCDCH is occupied for a predefined time window tScanCCDCH (across the superframe boundary).
3. If CCDCH is occupied, wait for tCCDCH and then check if predefined timer, tOutCCDCH, has timed out. If not timed out, go back to step 2 and check if CCDCH is occupied again; if timer has expired, abort and notify the high layer or logical function(s) which triggered the fast CCDCH accessing.
4. If CCDCH is not occupied
· If the SuperVL requested the fast CCDCH accessing for a centralized inter-P2PNWs control in proximity, the SuperVL can access the CCDCH immediately, as shown in dotted lines in Figure 5-8-1, with SuperVL info, its CCDCH usage, and control/data messages etc. – highest priority.
· If the VLi of P2PNWi requested the fast CCDCH accessing for a centralized or hybrid inter-P2PNWs control, VLi shall wait for tVLi (tVLi > 0, defined for VLi based on channel accessing priority, QoS of application i, etc.) and then scan if CCDCH is available for accessing.
· If available, the requesting VLi accesses the CCDCH with VLi info, its CCDCH usage, and control/data messages etc.
· If not available, checks if predefined timer has timed out, defined by tOutVLi for VLi.
· If timer has not expired, continues scanning the CCDCH until either CCDCH is available or timed out;
· if timer has expired, the VLi has the option of broadcasting on its DCDCHi (following the DCDCH accessing procedure depicted in Figure 5-8-2) if necessary, aborts CCDCH accessing and notifies the higher layer or logical function(s) which triggered the fast CCDCH accessing.
· If the SubVLik of P2PNWi requested the fast CCDCH accessing for a centralized or hybrid inter-P2PNWs control, SubVLik shall wait for tSubVLik (tSubVLik > tVLi, defined for SubVLik based on channel accessing priority, QoS of application i, etc.) and then scans if CCDCH is available.
· If available, the requesting SubVLik accesses the CCDCH with SubVLik info, its CCDCH usage and control/data messages etc.
· If not available, checks if predefined timer has timed out, defined by tOutSubVLik for SubVLik.
· If timer has not expired, continues scanning the CCDCH until either CCDCH is available or timed out;
· If timer has expired, the SubVLik has the option of broadcasting on the DCDCHi of P2PNWi (following the DCDCH accessing procedure depicted in Figure 5-8-2) to request VLi to access CCDCH with higher priority, aborts CCDCH accessing and notifies the higher layer or logical function(s) which triggered the fast CCDCH accessing.
· [bookmark: OLE_LINK6]If the Peerip of P2PNWi requested the fast CCDCH accessing for a centralized, hybrid or distributed inter-P2PNWs control, Peerip shall wait for tPeerip (tPeerip > tSubVLik > tVLi, defined for Peerip based on channel accessing priority, QoS of application i, etc.) and then scans if CCDCH is available.
· If available, the requesting Peerip accesses the CCDCH with Peerip info, its CCDCH usage, and control/data messages etc.
· If not available, checks if predefined timer has timed out, defined by tOutPeerip for Peerip.
· If timer has not expired, continues scanning the CCDCH until either CCDCH is available or timed out;
· If timer has expired, the Peerip has the option of broadcasting on DCDCHi of P2PNWi (following the DCDCH accessing procedure depicted in Figure 5-8-2) to request VLi to access CCDCH with higher priority, aborts CCDCH accessing and notifies the higher layer or logical function(s) which triggered the fast CCDCH accessing.

[bookmark: _Ref335815097] Figure 5-8-1 Fast Channel Accessing for Inter-P2PNWs Communications through CCDCH

As illustrated in Figure 5-8-2, the fast DCDCH accessing scheme may be conducted in the following steps as an example.
1. Fast DCDCHi accessing is triggered either by the application from a higher layer or by other logical functions such as PD, PA, SR, CAc, PC, IM, etc.
2. Scan if DCDCHi is occupied within P2PNWi for a predefined time window tScanDCDCHi (across framei boundary).
3. If DCDCHi is occupied, wait for tDCDCHi and check if predefined timer tOutDCDCHi has timed out. If timer has not expired, go back to step 2 and check if DCDCHi is occupied again; if timer has expired, abort and notify the high layer or logical function(s) which triggered the fast DCDCHi accessing.
4. If DCDCHi is not occupied
· If the VLi requested the fast DCDCHi accessing for a centralized intra-P2PNW control, as shown in dotted lines, the VLi can access DCDCHi immediately with VLi info, its DCDCHi usage, and control/data messages etc. – highest priority.
· If SubVLik of P2PNWi requested the fast DCDCHi accessing for a centralized intra-P2PNW control with multi-hops, as shown in dotted lines, SubVLik shall wait for tDSubVLik (tDSubVLik > 0, defined for SubVLik based on channel accessing priority, QoS of application i, etc.) and then scan if DCDCHi is available.
· If available, the requesting SubVLik accesses DCDCHi with SubVLik info, its DCDCHi usage and control/data messages etc.
· If not available, checks if predefined timer has timed out, defined by tDOutSubVLik for SubVLik.
· If timer has not expired, continues scanning the DCDCHi until either DCDCHi is available or timed out;
· If timer has expired, aborts DCDCHi accessing and notifies the higher layer or logical function(s) which triggered the fast DCDCHi accessing.
· If the Peerip of P2PNWi requested the fast CCDCH accessing for a centralized or distributed intra-P2PNW control,, Peerip shall wait for tDPeerip (tDPeerip > tDSubVLik, defined for Peerip based on channel accessing priority, QoS of application i, etc.) and then scan if DCDCHi is available.
· If available, accesses DCDCHi with Peerip info, its DCDCHi usage, and control/data messages etc.
· if not available, checks if predefined timer has timed out, defined by tDOutPeerip for Peerip.
· If timer has not expired, continues scanning DCDCHi until either DCDCHi is available or timed out;
· If timer has expired, aborts DCDCHi accessing and notifies the higher layer or logical function(s) which triggered the fast DCDCHi accessing.

[bookmark: _Ref335316681]Figure 5-8-2 Fast Channel Accessing for Intra-P2PNW Communications through DCDCH

[bookmark: OLE_LINK13]As illustrated in Figure 5-8-3, CA with P2PNW detection for a centralized control scheme (centralized inter-P2PNWs and intra-P2PNW as shown in Figure 4) may be conducted in the following steps as an example.
1. CA with P2PNW detection is triggered either by the application from a higher layer or by other logical functions such as Peer Discovery (PD), Peering, Channel Accessing (CAc) request, etc.
2. SuperVL Detection: the VL requesting CA (VLreq) scans the beacon/paging/broadcast for an existing SuperVL, for centralized P2PNWs control in proximity, until the SuperVL is found or a predefined timer tOutScanSpVL has expired, .
3. CA by SuperLV: if the SuperVL is detected in proximity, the SuperVL will manage the CA – centralized inter-P2PNWs control.
· The VLreq defines its proposed superframe/frame, slot/code/subcarriers etc. based on its application, QoS etc., and then broadcasts the request on the CCDCH (following the fast CCDCH accessing scheme defined in section 5.2.1.1) to the SuperVL. The VLreq then waits for the SuperVL’s response on the CCDCH or for the predefined timer tOutChReq to expire.
· If the predefined timer, tOutChReq, expires, the VLreq aborts the CA request and reports to the higher layer or function(s) that triggered the CA request.
· If the VLreq receives an “accepted” response by the SuperVL, the VLreq accesses the channel allocated by the SuperVL, and broadcasts with superframe/frame, slot/code/subcarriers etc., on the beacon/paging/broadcasting - indicating the newly formed P2PNW in the proximity logically led by VLreq as centralized intra-P2PNW control.
· If the VLreq receives a “rejected” response by the SuperVL, the VLreq may adjusts the requested superframe/frame, slot/code/subcarriers etc., based on SuperVL’s rejection response, and re-broadcasts the request to SuperVL on CCDCH and then wait for the response from SuperVL if the predefined timer, tOutChReq, has not expired.
1.
2.
3.
4. CA for SuperVL or First VL with Collision Avoidance: if no SuperVL is detected in proximity, VLreq may assign itself as the SuperVL (the first VL in proximity as the default SuperVL) and insert the CCDCH. But there may be a collision scenario, if there are other VL(s) assuming the SuperVL claim and starts to insert the CCDCH at the same time. To avoid this possible collision, the VLreq shall conduct a Collision Avoidance procedure outlined below.
· Collision Avoidance: the VLreq defines the CCDCH and its superframe/frame, slot/code/subcarriers etc. based on its application, QoS etc., and then scans the CA request on CCDCH for a time window of tScanCCDCH.
· If CCDCH is detected, VLreq updates its CCDCH based on the detection, and check if it’s from the SuperVL.
· If the SuperVL sent the CCDCH (just formed while the VLreq is planning to do so), VLreq conducts CA by SuperLV as described in step 3.
· If a VL sent the CCDCH (the first VL chose not to be the default SuperVL), the VLreq responds with “accept” to the first VL’s request, updates its VL list with the first VL detected, adjusts its superframe/frame, slot/code/subcarriers etc. based on the detection, assigns itself as the SuperVL if it wishes, and broadcasts the updated CA request on CCDCH until the predefined time tOutChReq has expired or receives a responses from other VL(s).
· If no CCDCH is detected, the VLreq is the first VL in proximity, and may assign itself as the default SuperVL if it wishes and then inserts the CCDCH with the CA request.
· If no response (there is no other VL(s) or P2PNW(s)) or “accept” response(s) from other VL(s) are received, the VLreq is granted with CA as the SuperVL as centralized inter-P2PNWs control.
· If the response is “reject” from other VL(s), VLreq updates its VL list and its superframe/frame, slot/code/subcarriers etc. based on the rejection(s) and continues the CA request until timed out by tOutChReq or receives “accept” from all the VLs on its VL list.
· If granted the CA, the VLreq accesses the channel allocated, and broadcasts the superframe/frame, slot/code/subcarriers etc. on the beacon/paging/broadcasting - indicating the newly formed P2PNW in the proximity logically led by VLreq, as well as itself as the SuperVL if accepted by all VLs in proximity.
· If the predefined time tOutChReq expires, the VLreq aborts the CA request and reports to the higher layer or function(s) that triggered the CA request.

[bookmark: OLE_LINK30]Figure 5-8-3 Inter-P2PNWs CA with P2PNW Detection for Centralized Control

The CA with P2PNW cooperation for distributed control is illustrated in Figure 5-8-4 and the following steps may be conducted as an example.
1. CA with P2PNW cooperation is triggered either by the application from higher layer or by other logical functions such as PD, PA, CAc request, etc.
2. P2PNW Peer Detection: the Peer Requesting CA (PeerReq) scans peer(s) with a fully distributed P2PNW control in proximity until the Peer(s) are found or a predefined timer, tOutScanP2P, has expired.
3. CA for the First Peer with Collision Avoidance: if no peer is detected in proximity, PeerReq may set itself as the first peer in proximity and insert the CCDCH. But there may be a collision scenario, if there are other peers conducting the CCDCH insertion at the same time. To avoid the possible collision, the PeerReq conducts a Collision Avoidance procedure as outlined below.
· Collision Avoidance: the PeerReq defines the CCDCH and its superframe/frame, slot/code/subcarriers etc. based on its application, QoS etc., and then scans the CA request on CCDCH for a time window of tScanCCDCH.
· P2PNW Cooperation: If CCDCH is detected, PeerReq updates it’s CCDCH based on the detection, responds to the request with “accept” to the first peer’s request, updates its peer list with the first peer detected, adjusts superframe/frame, slot/code/subcarriers etc. for peer(s) to make adjustments based on the detection, and broadcasts the updated CA request on CCDCH until timed out or receives “accept” from all the peers on its peer list.
· If no CCDCH is detected, the PeerReq is the first peer in proximity and inserts the CCDCH with its CA request.
· If no response (there is no other peer(s) or P2PNW(s)) or “accept” response(s) are received from other peer(s), the PeerReq is granted with CA.
· [bookmark: OLE_LINK33]P2PNW Cooperation: If the response is “reject” from other peer(s), PeerReq updates the peer list and superframe/frame, slot/code/subcarriers etc. for peer(s) to make adjustments based on the rejection(s) and broadcasts the updated CA request until timed out by tOutChReq or receives “accept” from all the peers on its peer list.
· If granted CA, the PeerReq accesses the channel allocated, and broadcasts the superframe/frame, slot/code/subcarriers etc. on the beacon/paging/broadcasting – indicating itself in proximity. The other peers also make adjustment with the superframe/frame, slot/code/subcarriers etc. accordingly
· If timed out with tOutChReq, the PeerReq aborts the CA request and reports to the higher layer or function(s) that triggered the CA request.
4. CA for a New Peer: if a peer or peer(s) are detected, the PeerReq may conduct the CA request as a new peer in the proximity.
· The PeerReq defines superframe/frame, slot/code/subcarriers etc. for peer(s) based on its application, QoS etc., and detected usage of them. Then PeerReq broadcasts the request on the CCDCH (following the fast CCDCH accessing scheme defined in section 5.2.1.1) and waits for other peer’s response on CCDCH or until a predefined timer tOutChReq has expired.
· If timed out by tOutChReq, the PeerReq aborts the CA request and reports to the higher layer or function(s) that triggered the CA request.
· If responded with “accepted” by all peers on its peer list, the PeerReq accesses the channel allocated and broadcasts with superframe/frame, slot/code/subcarriers etc. on beacon/paging/broadcasting - indicating itself in proximity. The other peers also make adjustment with the superframe/frame, slot/code/subcarriers etc. accordingly
· P2PNW Cooperation: If responded with “rejected” by peer(s), the PeerReq adjusts the requested frame, slot/code/subcarriers for peer(s) to make adjustments based on peer’s rejection response, and re-broadcasts the request on CCDCH to peer(s) if not timed out by tOutChReq.

[bookmark: _Ref336169484]Figure 5-8-4 Inter-P2PNWs CA with P2PNW Cooperation for Distributed Control

380r2(end)

[bookmark: _Toc391476592]Synchronization procedure
380r2(beginning)
Figure 5-9-1 illustrates the Context Aware Initial Synchronization (CAIS) under virtually centralized control. The following are some more details about the CAIS:
· If a beacon is received successfully, it will be processed according to the beacon type. If the beacon is a super beacon, the superframe boundaries and the AOL in Frame Map are extracted and passed to the triggering entity. If the beacon is an application beacon, the SBO is extracted to search the super beacon. If a super beacon is not found, the scan will repeat maximum times and then scan the application beacons without AOL. Otherwise, a super beacon is processed as described above. If a received beacon is neither a super beacon nor an application beacon, it shall continue to scan if the maximum scan number is not reached.
· The Application Indicator (AI) is to indicate the criterion/result of selecting applications. For example, if CAIS is triggered by PD, PD can indicate the desired application or application ID to CAIS. The AI can be passed from the triggering entity as a part of the context information at the beginning of CAIS, or received through the interaction between CAIS and the triggering entity. The AI can also indicate whether the applications are desired or not based on AOL. The part in blue is optional if AI is a parameter accessible by CAIS.
· If the AOL is extracted from the super beacon, the scan with AOL is performed. Based on the AI, the time offsets of the desired applications are extracted and the scan function is triggered to find the desired application beacons. The frame/slot boundaries of these applications are extracted passed to the triggering entity.
· The CAIS can be terminated by the triggering entity through the synchronization acknowledgement if the desired application beacon has been found.
· If the desired application is not found during scan, the peer gets synchronized with a beacon according to some criteria. For example, the peer can synchronize with the super beacon or the strongest beacon detected. The criteria can be per-determined or a result of the acknowledgement received from the triggering entity.
Note: the CAIS procedure also applies to the multi-hop scenarios.

Figure 5-9-1: Context Aware Initial Synchronization (CAIS) under Virtually Centralized Control
	
CAIS procedure under hybrid control is presented in Figure 5-9-2.

Figure 5-9-2: CAIS Procedure for Hybrid Control
380r2(end)

[bookmark: _Toc391476593]Discovery procedure

380r2(beginning)
To further speed up the PD Scan in the PD process, a hierarchical CAID scanning approach for service-based is detailed in Figure 5-10-1. For user-based, or device-based, the corresponding ID of each level will be used in Figure 5-10-1.

Figure 5-10-1: Fast scan procedure for Discovery

380r2 (end)

[bookmark: _Toc391476594]QoS

[bookmark: _Toc391476595]Interference management

[bookmark: _Toc391476596]Power control

380r2 (beginning)

Note that the contribution of power control is in final contribution document # 15-14-0266-00-0008.

380r2(end)

[bookmark: _Toc391476597]Multi-hop

[bookmark: _Toc391476598]Relative positioning

[bookmark: _Toc391476599]Power management

380r2 (beginning)
A typical power management for P2P communications may contain the following operational states as shown in Figure 5-16-1.

Figure 5-16-1: The state machine of the power management

1. Idle: The Peer waits for data transceiving request at this state after a successful Peering, Peering Update, Re-Peering, or data transceiving.
Exit the “Idle” State
a. The Peer exits the “Idle” state and transitions to the “Data Transceiving” state after receiving data transmitting or receiving signal from Higher Layer.
b. The Peer exits the “Idle” state and transitions periodically (i.e. either provisional or defined at “Peering” state) to the “Peering Update” state for maintaining the association with current peer while not transceiving data.
c. The Peer exits the “Idle” state and transitions to the “Sleep” state for saving power as a result of Higher Layer’s “Sleep” command.
d. The Peer exits the “Idle” state and transitions to the “De-Peering” state as a results of a “De-Peering” Request from either Higher Layer or Air Interface due to the peer’s mobility, channel condition, etc.
2. Data Transceiving: The Peer enters “Data Transceiving” state from the “Idle” state. The Peer conducts data transmitting or receiving with the other peer via Air Interface at this state.
Exit the “Data Transceiving” State
a. The Peer exits the “Data Transceiving” state and transitions back to the “Idle” state after a successful data transmitting or receiving;
b. The Peer exits the “Data Transceiving” state and transitions to the ‘De-Peering” state after low QoS or a failure of data transceiving due to the peer’s mobility, channel condition, etc.
3. RE-PEERINGPeering Update: The Peer enters the “Peering Update” state from the “Idle” state or the “Sleep” state. The Peer updates the current association with the Peering Update request and/or response with the current peer via the Air Interface.
Exit the “Peering Update” State
a. The Peer exits the “Peering Update” state and transitions back to the “Idle” state after a successful “Peering Update” requested from the “Idle” state to wait for next data transceiving.
b. The Peer exits the “Peering Update” state and transitions to the “Idle” state after a successful “Peering Update” requested from the “Sleep” state as a result of a Higher Layer’s “Wake up” request.
c. The Peer exits the “Peering Update” state and transitions back to the “Sleep” state after a successful “Peering Update” requested from the “Sleep” state as a result of timed “Wake up”.
d. The Peer exits the “Peering Update” state and transitions to the “Re-Peering” state to establish a new link after an unsuccessful “Peering Update” with the current link.
4. Sleep: The Peer enters the “Sleep” state from the “Idle” state either due to a timed out while in the “Idle” state (i.e. after a predefined time interval at the “Idle” state), or as directed by a Higher Layer’s “Sleep” command.
a. The Peer may periodically enter the “Peering Update” state defined by a wake up timer, or enter the “Peering Update” state as a result of a Higher Layer’s “Wake up” command.
b. The Peer may transition to the “De-Peering” state after a predefined time interval without any data transceiving activity (i.e. after the sleep mode is expired), or as a result of a Higher Layer’s “De-Peering” command.
5. De-Peering: The Peer conducts De-Peering request and/or response with the current peer via Air Interface at the “De-Peering” state, and requests “Channel De-allocation” to release the link resources through the “Channel Management” state.
The Peer enters “De-Peering” state
a. from the “Data Transceiving” state due to low QoS or a failure of data transceiving;
b. from the “Idle” state due to a De-Peering request from Higher Layer or Air Interface;
c. from the “Sleep” state due to an expiration of sleep mode or a Higher Layer’s De-Peering request.
The Peer exits the “De-Peering” state
a. to the “Re-Peering” state as a result of a Higher Layer’s “Resume” (i.e. Re-Peering) command;
b. to the “To Discover” state as a result of a Higher Layer’s “Discover New Peer” command;
c. to “End” Application i as a result of a Higher Layer’s “End Application i” command.
6. Channel Management: de-allocates or releases the channel per the request from “De-Peering” state.
7. Re-Peering: The Peer conducts Re-Peering request and/or response with the current peer via Air Interface. The Peer may request “Channel Allocation” for sending Re-Peering messages or re-establishing the link or channel with the current peer for data transceiving through the “Channel Management” state if needed.
The Peer enters the “Re-Peering” state
a. from the “Peering Update” state due to a failure of updating the current link, i.e. the current association;
b. from the “De-Peering” state as a result of a “Resume” command from Higher Layer.
Channel for Re-Peering Request
a. Designated Channel: The Peer may request a designated channel to send the “Re-Peering” message through the “Channel Management” state.
b. Common, Dedicated or Public Channel: The Peer may send “Re-Peering” message on a known or predefined common, dedicated, or public channel and may skip the “Channel Management” state for channel allocation.
Channel for Data Transceiving
a. The Peer may request a radio link or channel for the P2P data transceiving during the Re-Peering through the “Channel Management” state for intra-P2PNW channel accessing. The previously allocated channel needs to be de-allocated before a new channel is assigned for the data transceiving.
b. The Peer may also use predefined or previously used radio link or channel for the P2P data transceiving and skip the “Channel Management”.
The Peer exits the “Re-Peering” state
a. to the “Idle” state after a successful Re-Peering;
b. to the “To Discover” state to find a new peer after an unsuccessful Re-Peering with the current peer.

As shown in Figure 5-16-2, the power management call follow for updating connections with idle mode are exampled in the following call flow.
0. Peer1 & Peer2: Idle
Peer1 and Peer2 have a P2P session, i.e. Application 1, established and are in the Idle mode after a successful data transceiving.
1. Peer1: Peering Update Request
An Peering Update is inserted either by a predefined Peering Update timer or a High Layer’s Peering Update Request as shown in Figure 6.
2. Peer1 – Peer2: Peering Update Request
Peer1 sends an Peering Update request to Peer2 via Air Interface.
3. Peer2: Peering Update Indication
Peer2’s Peering Function indicates to its Higher Layer that an Peering Update request is received.
4. Peer2: Peering Update Response
Peer2’s Higher Layer returns an Peering Function Response to its Peering Function that the Peering Update request is acknowledged.
5. Peer2 – Peer1: Peering Update Response
Peer2 sends an Peering Update response to Peer1 via Air Interface to acknowledge the Peering Update.
6. Peer1: Peering Update Confirmation
Peer1’s Peering Function confirms to its Higher Layer that the Peering Update is successful.
7. Peer1 & Peer2: Idle
Peer1 and Peer2 return back to Idle.

Figure 5-16-2: The power management call follow for updating connections with idle mode.

As shown in Figure 5-16-3, the power management call follow for updating connections with sleep mode are exampled in the following call flow.

Figure 5-16-3: The power management call follow for updating connections with sleep mode.

8. Peer1: Sleep Request
A Sleep is enabled either by a predefined Idle monitoring timer (i.e. the Idle is expired), or a High Layer’s Sleep Request as shown in Figure 6.
9. Peer1 – Peer2: Sleep Request
Peer1 sends Sleep request to Peer2 via Air Interface.
10. Peer2: Sleep Indication
Peer2’s Higher Layer is notified that a Sleep request is received.
11. Peer2: Sleep Response
Peer2’s Higher Layer returns Sleep Response to acknowledge it.
12. Peer2 – Peer1: Sleep Response
Peer2 sends Sleep response to Peer1 via Air Interface to acknowledge the Sleep request.
13. Peer1: Sleep Confirmation
Peer1’s Higher Layer is confirmed about the Sleep request.
14. Peer1 & Peer2: Sleep
Peer1 and Peer2 set their sleep timers accordingly and enter into Sleep for some time.
15. Peer1 & Peer2: Timed Wake Up
Peer1 and Peer2 wake up by the sleep timers’ expiration.
16. Peer1 & Peer2: Peering Update
Peer1 and Peer2 performs Peering Update as described above in step 1 ~ 6 .
17. Peer1 & Peer2: Sleep
Peer1 and Peer2 return back to Sleep.

380r2(end)

[bookmark: _Toc391476600]Security

[bookmark: _Toc391476601]Coexistence

[bookmark: _Toc391476602]Upper layer interaction
380r2 (beginning)

Context Management
One-Hop Remote Context Exchange

Figure 5-19-1 One-hop remote context exchange architecture

Figure 5-19-1 illustrates the proposed basic context management architecture for proximity communications, where:
· Context Manager (CM) is a MAC-layer function and resides in each peer.
· The CM in a peer maintains a context database which may contain context information about this peer and other peers. The CM can issue context management related requests to other CMs. The CM can also receives requests from other CMs and make responses. The CM can also receives requests from local higher layer, local MAC functions, and local PHY layer, and make responses.
· CM can be directly accessed by other MAC functions such as dicoverty, Peering, relaying, etc.
· CM can also directly interract to higher layer (e.g. applications) and/or PHY layer through inter-layer primitives
· The CM in one peer can communication to the CM in another peer through MAC layer frames over the interface “Icm” as indicated in Figure 5‑1. When two CMs talk to each other, client/server model may be used.Basically, one CM acts a Client and the other CM acts as a Server The client CM sends request to and waits for response from the server CM.
· One CM (e.g. a CM Server) can simultaneously talk multiple other CMs (e.g. CM Clients) on other peers via multicast/broadcast.
· If higher layer, PHY layer, or MAC-layer functions can not find the required context information from the local CM (i.e. the CM on the same peer), the local CM can contact the remote CM (i.e. the CM on another peer) by sending a request for the required context information.
· The CM is able to perform context analytics or operations such as context filtering, context summarization, context aggregation, etc.

Figure 5-19-2 One-hop remote context exchange procedure

The procedures for One-hop remote context exchange procedure is illustrated in Figure 5-19-2, where,
· Step 1: CM 1 sends Context Request frame to CM 2. This message may contain the following fields/parameters:
· List of Context Operations: to indicate the operations to be performed in CM 2. CM 1 may contain multiple operations in one Context Request frame.
· List of Context ID: to indicate the context IDs which the operations will be operated on.
· Response Indication: to indicate if the responses should be sent back in one MAC frame or can be in separate MAC frames.
· Step 2: CM 2 sends Context Response frame back to CM 1. Note that the response for CM 1 may be too long to be included in one MAC frame. Instread, multiple MAC fames are needed. In this message, the following fields/parameter may be included:
· Number of Remained Responses: to indidate how many responses (i.e. Context Response frame) are left to be transmitted after the response in Step 2.
· ACK Indication: to indicate if an ACK is required for the Context Response frame. This ACK indication can also indicate if the required ACK is for each left responses or one ACK for certain number of responses.
· List of Operations: to indidate the operation(s) which this response is for.
· List of Context ID: to indicate the context IDs which this response is for.
· Context Values: to contain the values of related context.
· Step 3: CM 1 sends Context Response ACK frame to CM 2 if Step 2 requires such an acknowledgement.
· Step 4: CM 2 sends the left Context Response to CM 1, similar to Step 2.
· Step 5: CM 1 sends Context Response ACK to CM 2, similar to Step 4.
· More steps may be repeated until all responses for Step 1 are transmited from CM 2 to CM 1.

Multi-Hop Remote Context Exchange

Figure 5-19-3 Multi-hop remote context exchange architecture
Figure 5-19-3 illustrates proxy-based context management architecture where,
· Context Manager Client (CMC) indirectly communicates to Context Manager Server (CMS) via Context Manager Proxy (CMP).
· CMC, CMS, and CMP are MAC-layer function. The CM in one peer may act as any combination of CMC, CMP, and CMS.
· CMC issues requests to CMP and receives response from CMP
· CMP receives the request from CMC and it may perform:
· Translate the request to the format which CMS can understand if needed, and forward the translated request to CMS.
· Optionally, CMP may send response to CMC directly without contacting CMS.
· CMS receives translated request from CMP and sends response back to CMC.
· For example, one game player in a group of players (peers) may act as CMP
· to manage and control context information exchanging among other players, or
to collect context information about some peers which can be shared and discovered by other peers.

 Figure 5-19-4 Multi-hop proxy-based remote context exchange procedure

Figure 5-19-4 illustrates the procedures for proxy-based context exchange, where:
· Step 1: The CMC on peer 1 sends Context Request frame to the CMP on peer 2.
· Step 2: The CMP looks up its local context database. If there are enough context information to answer the Context Request in Step 1, it sends Context Response Frame to CMC and the following steps may not be required; otherwise, it may translate the Context Request into the format which CMS can understand.
· Step 3: The CMP sends Context Request frame to CMS on the peer 3.
· Step 4: The CMS on peer 3 sends Context Response frame to the CMP.
· Step 5: The CMP sends Context Request frame to CMS on the peer 4.
· Step 6: The CMS on peer 4 sends Context Response frame to the CMP.
· Step 7: The CMP aggregates the responses received from both CMSs and sends Context Response frame to the CMC.

Local Context Exchange

(a)

(b)
Figure 5-19-5 Local context operations

Figure 5-19-5 illustrates the procedures for local context operations. In Figure 5-19-5 (a)
· Step 1: Higher layer, PHY layer, and/or MAC functions issues Context Request Primitive to CM 1 on the same peer. This primitive may contain the following information:
· Primitive ID: to indicate the type of this primitive.
· List of Context Operations: to indicate the operations to be performed in CM 2. CM 1 may contain multiple operations in one Context Request frame.
· List of Context IDs: to indicate the context IDs which the operation will be operated on.
· Step 2: CM 1 sends Context Confirmaiton Primitive to higher layer, PHY layer, and/or MAC functions. This primitive may contain the following information:
· Primitive ID: to indicate the type of this primitive
· Context Values: to indicate the values of requested context.
Figure 5-19-5 (b),
· Step 1: CM 1 sends Context Indicaiton Primitive to higher layer, PHY layer, and/or MAC functions. This primitive may contain the following information:
· Primitive ID: to indicate the type of this primitive
· List of Context Operations: to indicate the operations to be performed in CM 2. CM 1 may contain multiple operations in one Context Request frame.
· List of Context IDs: to indicate the context IDs which the operation will be operated on.
· Step 2: Higher layer, PHY layer, and/or MAC functions issues Context Response Primitive to CM 1 on the same peer.
· Primitive ID: to indicate the type of this primitive
· Context Values: to indicate the values of requested context.

Session-based Context Operations

Figure 5-19-6 Session-based context operations

Figure 5-19-6 illustrates the procedures for Session-based Context Operations, where:
· Step 1: CM 1 sends Context Begin frame the CM 2 to request the beginning of a context exchange session.
· Step 2: CM 2 sends Context Begin Approval frame to CM 1 to approve CM 1’s request for the context exchange session.
· Step 3: CM 1 sends Contex Request frame to CM 2.
· Step 4: CM 2 sends Context Response frame to CM 1.
· The following Step 5 and Step 6 just repeat Step 3 and Step 4.
· Step 5: CM 1 sends Contex Request frame to CM 2.
· Step 6: CM 2 sends Context Response frame to CM 1.
· Step 7: CM 2 sends Contex Request frame to CM 1.
· Note that CM 2 can piggyback Context Request in Step 6 when it sends Context Response to CM 1.
· Optionally, CM 2 can also send Context Request before CM 1 finishes its turn (i.e. request context information from CM 2).
· Step 8: CM 1 sends Context Response frame to CM 2.
· Step 9: CM 1 sends Context End frame to CM 2 to request to stop the current context exchange session.
· Step 10: CM 2 sends Context End ACK frame to CM 1 as an acknowledgement.

[bookmark: _Toc388952057][bookmark: _Toc391476603]Cross-Layer Context Management
Note that the contribution of cross layer context management is in final contribution document # 15-14-0264-00-0008.

[bookmark: _Toc388952058][bookmark: _Toc391476604]Cross-Layer Data Acknowledgement
380r2(beginning)

ACK-based retransmission mechanisms exist in most MAC protocols such as IEEE 802.15 and IEEE 802.11 series to provide reliable transmission in MAC layer. In the meantime, higher layer protocols (e.g. TCP) also provide ACK-based reliable transmission based. However, the MAC-layer re-transmission and higher-layer retransmission have been treated independent of each other, which introduce extra overhead and latency. For PAC applications, it turns out that the independently-treated MAC-layer retransmission and higher-layer retransmission are inefficient and could be redundant.

Cross-layer data acknowledgement aims to reduce the number of messages by allowing “application data” to be piggybacked in the MAC-layer ACK; here, “application data” could be an application ACK. The problem is how to coordinate and optimize MAC-layer (re-)transmission and higher-layer (re-)transmission mechanisms for PAC applications.

Basic Cross-Layer Data Acknowledgement
 Figure 5-19-9 illustrates the scenario where the sender and receiver are within one-hop. In addition, application response will be piggybacked in application ACK; in other words, the application ACK contains both ACK information and application-related response.

 Figure 5-19-9 (a) depicts existing case without using cross-layer ACK, where two MAC data frames contain application data (i.e. App Data) and application ACK (i.e. App ACK) respectively. As a result, two MAC ACK frames are required for those two MAC data frames. In total, there are four messages between the sender and receiver. Note that the application data could be an application request and application ACK could be an application response.

The New MAC ACK in Figure 5-19-7 (b) (i.e. Integrated MAC ACK) contains not only the normal MAC ACK but also the application ACK. In other words, the Integrated MAC ACK serves two purposes simultaneously: 1) To acknowledge the previous MAC data frame from the sender to the receiver; 2) To acknowledge the application data contained in the previous MAC data frame. With cross-layer ACK, the number of total messages is greatly reduced with the following benefits:
· It reduces the overall power consumption and make the system more energy-efficient.
· The reduction of required messages also reduces the number of bits to be transmitted over the air since each message needs MAC header, MAC footer, PHY header, and PHY footer.
· The reduction of required messages can mitigate and reduce potential channel collision over the air and in turn improve performance in terms of latency, throughput, and energy-consumption, etc.

(a). Without Cross-Layer ACK

(b). With Cross-Layer ACK
[bookmark: _Ref335074915]Figure 5-19-7. Cross-Layer ACK for Piggybacked Application Response

 Figure 5-19-8 illustrates the flow chart of the Sender for “Cross-Layer ACK” operation:
· [bookmark: OLE_LINK11][bookmark: OLE_LINK12][bookmark: OLE_LINK9][bookmark: OLE_LINK10]When receiving an application message from higher layer, if the message needs ACK and is not fragmented, “Cross-Layer ACK” should be enabled with following new operations to perform (see Figure 21 (a)):
· Disable MAC fragmentation and mark a flag in the MAC frame to request “integrated ACK from the receiver”, or enable MAC fragmentation but only mark the flag for “integrated ACK” for the last fragment.
· Maintain mapping relationship between MAC frame and application message.
· When receiving an “Integrated MAC ACK” from PHY layer (i.e. from the receiver), “Cross-Layer ACK” should be enabled with following new operations to perform (see Figure 5-19-8 (b)):
· Map “Integrated ACK” to MAC data frame.
· Map “Integrated ACK” to application data.
· Re-construct normal App ACK.
· Forward the re-constructed App ACK to application layer.
· If the Sender does not receive an expected Integrated MAC ACK or a normal MAC ACK from the Receiver for a previously sent MAC frame, it shall re-transmit the MAC frame when the retransmission time gets expired.

 Figure 5-19-9 illustrates the flow chart of the Receiver for “Cross-Layer ACK” operation:
· When receiving an MAC data frame from the PHY layer, if “Integrated ACK” flag is set, “Cross-Layer ACK” shall be enabled with following new operations to perform:
· Hold MAC-layer ACK
· If the receiver finds that it needs to wait for long time to get application ACK, the receiver may disable “Cross-Layer ACK” and just use normal MAC ACK procedures.
· Pass application data to high layer and get application ACK/response back from high layer.
· Generate “Integrated MAC ACK” MAC frame: The Integrated ACK frame should contain the following new information/fields/parameters:
· Integrated ACK Flag: to indicate this ACK is an Integrated ACK,
· Application ACK Information Element (IE): to contain the corresponding application ACK. Optionally, this IE can contain and carry application data especially when the size of the application data is small.
· Optionally, the receiver can independently determine to use Normal ACK or Cross-Layer ACK.

 Figure 5-19-10 shows an example of Cross-Layer ACK operations including both the Sender and the Receiver.

Overall, the following changes (See Table 3) should be introduced to MAC data frame and MAC ACK frame to support “Cross-Layer ACK”
· Changes to MAC Data Frame:
· Add one “Cross-Layer ACK” bit in MAC data frame header to indicate that this MAC data frame expects or requests an “Integrated MAC ACK”.
· Changes to MAC ACK Frame:
· Add one “Cross-Layer ACK” bit in MAC ACK frame header to indicate that this ACK is an Integrated MAC ACK frame,
· Embed or contain “App ACK” (or even App Data) in MAC ACK frame to formulate Integrated ACK. A new MAC-layer IE (i.e. App IE) is introduced to contain the App ACK (or even App Data).
· Note that if there is no segmentation, the application ACK may not be needed via the proposed cross-layer ACK mechanism.

[bookmark: _Ref358368218]Table 3. New Fields/Parameters to MAC Data Frame and MAC ACK Frame
	New Field of MAC Data Frame
	New Field of MAC ACK Frame

	Cross-Layer ACK Flag: to indicate if this MAC data frame expects or requests an “Integrated MAC ACK” or not.
	Cross-Layer ACK Flag: to indicate if this ACK is an Integrated MAC ACK frame or not.
App IE: to contain the App ACK or App Data.

(a). When Receiving Messages from Higher Layer

(b). When Receiving MAC ACK Frames from PHY Layer
[bookmark: _Ref335080046]Figure 5-19-8. Flow Chart of Cross-Layer ACK at the Sender

[bookmark: _Ref335080432]Figure 5-19-9. Flow Chart of Cross-Layer ACK at the Receiver

[bookmark: _Ref335080629]Figure 5-19-10. An Example of Cross-Layer ACK Operations

Streamlined Cross-Layer Data Acknowledgement
[bookmark: OLE_LINK31][bookmark: OLE_LINK32]In Figure 5-19-7 (b), it may take the Receiver certain time to calculate App ACK and in turn the Integrated MAC ACK cannot be issued until the App ACK becomes available. Thus, the App ACK is not necessarily paired with the MAC ACK that is associated with the MAC frame that carried Application Data. This constraint can be alleviated by using the “Streamlined Cross-Layer ACK” approach as illustrated in Figure 5-19-11, where:
· Step 1: The Sender sends MAC Data Frame 1 to the Receiver.
· Step 2: The Receiver sends normal MAC ACK 1 back to the Sender to acknowledge the receiving of MAC Data Frame 1.
· Step 3: The Sender sends MAC Data Frame 2 to the Receiver.
· Step 4: The Receiver sends Integrated MAC ACK 1 to the Sender. This Integrated MAC ACK also contains an App ACK for App Data 1 received from Step 1. As a result, this integrated ACK acknowledges the receiving of both MAC Data Frame 2 and App Data 1.
· Note that the Receiver may already calculate the App ACK for App Data 1 and in turn it can issue this Integrated ACK immediately after receiving MAC Data Frame 2 in Step 3.
· [bookmark: _Ref358038231]Step 5: The Sender sends MAC Data Frame 3 to the Receiver.
· Step 6: The Receiver sends Integrated MAC ACK 2 to the Sender. This Integrated MAC ACK also contains an App ACK for App Data 2 received from Step 3. As a result, this integrated ACK acknowledges the receiving of both MAC Data Frame 3 and App Data 2.
· Note that the Receiver may already calculate the App ACK for App Data 2 and in turn it can issue this Integrated ACK immediately after receiving MAC Data Frame 3 in Step 5.
· Step 7: The Sender sends MAC Data Frame 4 to the Receiver.
· Step 8: The Receiver sends Integrated MAC ACK 3 to the Sender. This Integrated MAC ACK also contains an App ACK for App Data 3 received from Step 5. As a result, this integrated ACK acknowledges the receiving of both MAC Data Frame 4 and App Data 3.
· Note that the Receiver may already calculate the App ACK for App Data 3 and in turn it can issue this Integrated ACK immediately after receiving MAC Data Frame 4 in Step 7.
· Notes:
· In Figure 5-19-13, optionally, the Receiver can hold multiple App ACKs and piggyback them together in one immediate MAC ACK.
· Step 7&8 can be repeated if there are more App Data and MAC Data Frames to be transmitted from the Sender to the Receiver.

[bookmark: _Ref358297091]Figure 5-19-11. Streamlined Cross-Layer ACK for Piggybacked Application Response

380r2(end)

[bookmark: _GoBack]
image45.emf
Sender Receiver

Step 1: MAC Data Frame 1 (App Data)

Step 2: MAC ACK 1

Step 3: MAC Data Frame 2 (App ACK)

Step 4: MAC ACK 2

oleObject45.bin
Sender

Receiver

Step 1: MAC Data Frame 1 (App Data)

Step 2: MAC ACK 1

Step 3: MAC Data Frame 2 (App ACK)

Step 4: MAC ACK 2

image46.emf
App ACK for

App Data

becomes

available

Sender Receiver

Step 1: MAC Data Frame (App Data)

Step 2: Integrated MAC ACK (=Normal MAC ACK + App ACK)

oleObject46.bin
As you add text, the rectangle's height increases. Vary the width by stretching a side.

image47.emf
Receives messages from higher layer

Higher layer

message needs

ACK?

Is this message the whole

message or fragmented

Enable “Cross-Layer ACK” Disable “Cross-Layer ACK”

Whole

Message

Yes

No

Fragmented

Assemble and Transmit PHY Frame

Perform normal MAC procedures

·

Assemble MAC frame

·

May or may not conduct

MAC Fragmentation

Perform improved MAC procedures

·

Disable MAC fragmentation and mark a flag in MAC

frame for requesting “integrated ACK from the

receiver”,

·

or enable MAC fragmentation but only mark the flag for

“integrated ACK” for the last fragment

·

Maintain mapping relationship between MAC frame and

application data

oleObject47.bin
Receives messages
from higher layer

Higher layer
message needs
ACK?

Is this message the whole message or fragmented

Enable “Cross-Layer ACK”

Disable “Cross-Layer ACK”

Whole Message

Yes

No

Fragmented

Assemble and Transmit PHY Frame

Perform normal MAC procedures
Assemble MAC frame
May or may not conduct MAC Fragmentation

Perform improved MAC procedures
Disable MAC fragmentation and mark a flag in MAC frame for requesting “integrated ACK from the receiver”,
or enable MAC fragmentation but only mark the flag for “integrated ACK” for the last fragment
Maintain mapping relationship between MAC frame and application data

image48.emf
Receives MAC ACK frame from PHY layer

Is it “Integrated MAC ACK”

Perform improved MAC procedures

·

Map “Integrated ACK” to MAC data frame

·

Map “Integrated ACK” to application data

·

Re-construct normal Application ACK

·

Forward the re-constructed application

ACK to application layer

Perform normal MAC procedures

·

Pass ACK indication to

higher layer if needed

·

Remove retransmission timer

Yes

No

oleObject48.bin
Receives MAC ACK frame from PHY layer

Is it “Integrated MAC ACK”

Perform improved MAC procedures
Map “Integrated ACK” to MAC data frame
Map “Integrated ACK” to application data
Re-construct normal Application ACK
Forward the re-constructed application ACK to application layer

Perform normal MAC procedures
Pass ACK indication to higher layer if needed
Remove retransmission timer

Yes

No

image49.emf
Receives an MAC frame

from PHY layer

Has “Integrated ACK” flag set

Enable “Cross-Layer ACK”

Perform improved MAC procedures

·

Hold MAC ACK

·

Pass application data to high layer

·

Get application ACK/response from high layer

·

Generate “Integrated ACK” MAC frame

Assemble and Transmit PHY Frame

Perform normal MAC procedures

·

Generate normal MAC ACK

No

Yes

oleObject49.bin
Receives an MAC frame
from PHY layer

Has “Integrated ACK” flag set

Enable “Cross-Layer ACK”

Perform improved MAC procedures
Hold MAC ACK
Pass application data to high layer
Get application ACK/response from high layer
Generate “Integrated ACK” MAC frame

Assemble and Transmit PHY Frame

Perform normal MAC procedures
Generate normal MAC ACK

No

Yes

image50.emf
Step 1: MAC DATA Frame (MAC Seq #m1; App Request Msg #a1)

Step 2: Integrated MAC ACK Frame (MAC Seq #m1; Integrated App/MAC ACK)

New Operations:

· Store App Data msg #a1

· Store the relationship between #m1 and #a1

New Operations:

· Map MAC ACK frame to MAC DATA frame #m1

· Leverage extra information contained in the integrated App/

MAC ACK to map to App Data msg #a1

· Re-construct normal App ACK

· Forward the re-constructed App ACK to App layer

New Operations:

· Generate Integrated App/MAC ACK

· Generate App ACK

New Opeations

· Hold MAC ACK

Sender Receiver

oleObject50.bin
Step 1: MAC DATA Frame (MAC Seq #m1; App Request Msg #a1)

Step 2: Integrated MAC ACK Frame (MAC Seq #m1; Integrated App/MAC ACK)

New Operations:
Store App Data msg #a1
Store the relationship between #m1 and #a1

New Operations:
Map MAC ACK frame to MAC DATA frame #m1
Leverage extra information contained in the integrated App/MAC ACK to map to App Data msg #a1
Re-construct normal App ACK
Forward the re-constructed App ACK to App layer

New Operations:
Generate Integrated App/MAC ACK

Generate App ACK

New Opeations
Hold MAC ACK

Sender

Receiver

image51.emf
Sender Receiver

Step 1: MAC Data Frame 1 (App Data 1)

Step 4: Integrated MAC ACK 1

(=Normal MAC ACK 2 + App ACK for App Data 1)

Step 2: MAC ACK 1

Step 3: MAC Data Frame 2 (App Data 2)

Step 5: MAC Data Frame 3 (App Data 3)

Step 6: Integrated MAC ACK 2

(=Normal MAC ACK 3 + App ACK for App Data 2)

Step 7: MAC Data Frame 4 (App Data 4)

Step 8: Integrated MAC ACK 3

(=Normal MAC ACK 4 + App ACK for App Data 3)

App ACK for

App Data 1

becomes

available

App ACK for

App Data 2

becomes

available

App ACK for

App Data 3

becomes

available

oleObject51.bin
As you add text, the rectangle's height increases. Vary the width by stretching a side.

Sender

Receiver

Step 1: MAC Data Frame 1 (App Data 1)

Step 4: Integrated MAC ACK 1
(=Normal MAC ACK 2 + App ACK for App Data 1)

Step 2: MAC ACK 1

Step 3: MAC Data Frame 2 (App Data 2)

Step 5: MAC Data Frame 3 (App Data 3)

Step 6: Integrated MAC ACK 2
(=Normal MAC ACK 3 + App ACK for App Data 2)

image1.emf
Discovery Peering

Power

Control

Data

Transceiving

Synchronization

M

e

a

s

u

r

e

m

e

n

t

s

&

R

e

p

o

r

t

i

n

g

P

D

M

a

n

a

g

e

m

e

n

t

E

n

t

i

t

y

(

P

D

M

E

)

Channel

Management

Scheduler

Higher Layer

PHY & MAC

Appi

PHY

MAC

MLME SAP

PLME SAP

PD SAP

MCPS SAP

App2

App1

Upper Layers

Appi

App2

App1

Encoder Modulator Demodulator Decoder

oleObject1.bin
Discovery

Peering

Power Control

Data
Transceiving

Channel Management

Synchronization

Scheduler

Measurements & Reporting

Higher Layer

PD Management Entity (PDME)

PHY & MAC

Appi

PHY

MAC

MLME SAP

PLME SAP

PD SAP

MCPS SAP

App2

App1

Upper Layers

Appi

App2

App1

Encoder

Modulator

Demodulator

Decoder

image2.emf
Peer1

Peer2

Peer3

Peer4

Peer5

Peer3-1

Peer3-2

Peer5-1

Peer5-2

Peer5-3

Peer9

Peer10

Peer8

Peer12

Peer11

Peer6

Peer7

Application1:

Advertisement

Application2:

Chat

Application3:

Keep Alive

Application4:

Game

Distributed Group

Communication

Centralized Group

Communication

Pair

Communication

Pair

Communication

Downlink:multicast/broadcast

Uplink:unicast

oleObject2.bin
Peer1

Peer2

Peer3

Peer4

Peer5

Peer3-1

Peer3-2

Peer5-1

Peer5-2

Peer5-3

Peer9

Peer10

Peer6

Peer8

Peer12

Peer11

Peer7

Application1: Advertisement

Application2: Chat

Application3: Keep Alive

Application4: Game

Distributed Group Communication

Centralized Group Communication

Pair Communication

Pair Communication

Downlink: multicast/broadcast
Uplink: unicast

image3.emf
Hyperframe

Common

Application Frame 1 Application Frame 2

Reserved Inactive

Superframe

Beacon 1

App2

Beacon

Superframe 1 Superframe 2 Superframe 3

Superframe

Dedicated

Slot

Contention

based

Contention

free

Application Frame

Contention

based

App1

Beacon

Application

Beacon

Note: the beacons may be used as the time boundary

reference, i.e. synchronization reference.

oleObject3.bin
Hyperframe

Superframe

Dedicated

Slot

Contention
based

Contention
free

Application Frame

Contention based

Application
 Beacon

Common

Application Frame 1

Application Frame 2

Reserved

Inactive

image4.emf
CCDCH

Application

Period

Hyperframe 1

Superframe 1

(Control Scheme A)

Superframe Beacon

(Hyperframe Indicator

= TRUE)

Inactive

Period

CCDCH

Application

Period

Superframe 2

(Control Scheme B)

Inactive

Period

Superframe 2

(Control Scheme B)

Superframe 3

(Control Scheme C)

CCDCH

Application

Period

Superframe 1

(Control Scheme B)

Inactive

Period

CCDCH

Application

Period

Superframe 3

(Control Scheme C)

Inactive

Period

Hyperframe 2

Superframe Beacon

(Hyperframe Indicator

= TRUE)

Superframe Beacon (Hyperframe Indicator

= FALSE)

Superframe Beacon (Hyperframe Indicator

= FALSE)

oleObject4.bin
CCDCH

Application Period

Inactive Period

Hyperframe 1

CCDCH

Application Period

Superframe 2
(Control Scheme B)

Inactive Period

Superframe 1
(Control Scheme A)

Superframe 2
(Control Scheme B)

Superframe 3
(Control Scheme C)

CCDCH

Superframe Beacon
(Hyperframe Indicator
= TRUE)

Application Period

Superframe 1
(Control Scheme B)

Inactive Period

CCDCH

Application Period

Superframe 3
(Control Scheme C)

Inactive Period

Hyperframe 2

Superframe Beacon
(Hyperframe Indicator
= TRUE)

Superframe Beacon
(Hyperframe Indicator
= FALSE)

Superframe Beacon
(Hyperframe Indicator
= FALSE)

image5.emf
CCDCH

(1

st

i slots)

App1

DCDCH

(1

st

i

1

slots)

App2

DCDCH

(1

st

i

2

slots)

App Frame 1

App3

DCDCH

(1

st

i

3

slots)

App Frame 2 App Frame 1 App Frame 2 App Frame3

Superframe1

Superframe

Beacon 1

App Beacon2

(App2)

App Beacon3

(App3)

App Beacon2

(App2)

App Beacon3

(App3)

Superframe2

App Beacon1

(App1)

Superframe

Beacon 2

App Beacon1

(App1)

Common

Period

Application

Period

Common

Period

Application

Period

oleObject5.bin

image6.emf
Super beacon

...

App 3 beacon frame

App n beacon frame

...

...

App 2 beacon frame

...

App 2

frame

App 3

frame

App n

frame

Frame

Map

App 1

frame

Super beacon, also

App 1's beacon

oleObject6.bin

Super beacon

...

App 3 beacon frame

App n beacon frame

...

...

App 2 beacon frame

...

App 2 frame

App 3 frame

App n frame

Frame Map

App 1 frame

Super beacon, also App 1's beacon

image7.emf
Frame Map

AOL

Other

IEs

oleObject7.bin

Frame Map

AOL

Other IEs

image8.emf
Super beacon

...

App 2 beacon frame

App n beacon frame

...

...

App 2 beacon frame

...

App 2

frame

App 3

frame

App n

frame

Frame

Map

App 1

frame

Super beacon, also

App 1's beacon

Super beacon

App 2 beacon frame

App 2

frame

App 1

frame

...

SBO

Frame

Map

oleObject8.bin

Super beacon

...

App 2 beacon frame

App n beacon frame

Super beacon

...

App 2 beacon frame

App 2 frame

App 1 frame

...

App 2 beacon frame

...

App 2 frame

...

App 3 frame

App n frame

Frame Map

App 1 frame

Super beacon, also App 1's beacon

SBO

Frame Map

image9.emf
App 1

frame

...

App 2

frame

App n

frame

Guard interval

App 1 beacon App 2 beacon App n beacon

Guard interval

...

...

AEO

oleObject9.bin
App 1 frame

...

App 2 frame

App n frame

Guard interval

App 1 beacon

App 2 beacon

App n beacon

Guard interval

...

...

AEO

image10.emf
Start Discovery for An

Application

Peer(s) detected?

Yes

Yes

Criteriamet?

Evaluate the detected candidate(s)with the

PD Criteria related to desired application

Yes

No

No

Put the qualified candidate(s) on PD List

with related PD Parameters

Find required

number of peers?

Yes

No

Pass PD List to Peering Function, and/or other

functions/higher layers

End PD for the

application

Broadcast PD Request periodically

PD Request

time out?

Yes

Set Frequency Channel related to the desired

application

Scan for available peer(s) for desired application

Higher

Layer

Associa

-tion

Others

PD Request

To Discover?

Yes

No

PD Scan

No

PD Evaluation

To Discover

To Be Discovered

To Be Discovered?

Found enough

peer(s)?

No

No

Yes

oleObject10.bin

image11.wmf
PD

1

PD

2

Peering Response

Acknowledgement

Peering Request

Acknowledgement

oleObject11.bin
PD 1

PD 2

Peering Response

Acknowledgement

Peering Request

Acknowledgement

image12.wmf
PD

1

PD

2

Re

-

peering Response

Acknowledgement

Re

-

peering Request

Acknowledgement

An Inactive Peering Link

oleObject12.bin
PD 1

PD 2

Re-peering Response

Acknowledgement

Re-peering Request

Acknowledgement

An Inactive Peering Link

image13.wmf
PD

1

PD

2

De

-

peering Response

Acknowledgement

De

-

peering Request

Acknowledgement

Peering Link Established Already

P

2

P Peer Discovery

Adjust

P

2

P Peer Discovery

Adjust

oleObject13.bin
PD 1

PD 2

De-peering Response

Acknowledgement

De-peering Request

Acknowledgement

Peering Link Established Already

P2P Peer Discovery

Adjust

image14.emf
Peer2

Upper Layer

Data

Transceiving

Upper Layer

Data

Transceiving

Upper Layer

Data

Transceiving

0A.MLME_START_App1.request

(after some time)

Peer1 Peer3

(after some time)

0C.MLME_START_APP2.request

0D.

MLME_ASSOCIATION_APP2.confirm

(Peer1 & Peer3: Application 1)

(Peer1 & Peer2: Application 2)

1A. MCPS-DATA-APP1.request

3A. MCPS-DATA-APP1.indicate

4A. MCPS-DATA-APP1.confirm

1B. Load context for App1

5A. MCPS-DATA-APP2.request

7A. MCPS-DATA-APP2.indicate

2. Send App1Data1 (air interface)

3B. Send ACK forApp1Data1 (air interface)

4B. Update context for App1

5B. Load context for App2

6. Send App2Data1 (air interface)

7B. Send ACK for App2Data1 (air interface)

8A. MCPS-DATA-APP2.confirm

8B. Update context for App2

0A. MLME_START_APP1.request

(after some time)

0B.

MLME_ASSOCIATION_APP1.confirm

T

r

a

n

s

m

i

t

t

i

n

g

A

p

p

l

i

c

a

t

i

o

n

1

D

a

t

a

T

r

a

n

s

m

i

t

t

i

n

g

A

p

p

l

i

c

a

t

i

o

n

2

D

a

t

a

oleObject14.bin
Peer2

Upper Layer

Data Transceiving

Upper Layer

Data Transceiving

Upper Layer

Data Transceiving

0A.MLME_START_App1.request

(after some time)

Peer1

Peer3

(after some time)

0C.MLME_START_APP2.request

0D. MLME_ASSOCIATION_APP2.confirm

(Peer1 & Peer3: Application 1)

(Peer1 & Peer2: Application 2)

1A. MCPS-DATA-APP1.request

3B. Send ACK forApp1Data1 (air interface)

3A. MCPS-DATA-APP1.indicate

5B. Load context for App2

4B. Update context for App1

4A. MCPS-DATA-APP1.confirm

6. Send App2Data1 (air interface)

7B. Send ACK for App2Data1 (air interface)

8A. MCPS-DATA-APP2.confirm

8B. Update context for App2

Transmitting Application 1 Data

1B. Load context for App1

5A. MCPS-DATA-APP2.request

Transmitting Application 2 Data

7A. MCPS-DATA-APP2.indicate

2. Send App1Data1 (air interface)

0A. MLME_START_APP1.request

(after some time)

0B. MLME_ASSOCIATION_APP1.confirm

image15.emf
Peer2

Upper Layer

Data

Transceiving

Upper Layer

Data

Transceiving

Upper Layer

Data

Transceiving

(after some time)

Peer1 Peer3

1. MCPS-DATA-APP1.request

5A. MCPS-DATA-APP1.indicate

7. MCPS-DATA-APP1.confirm

3. MCPS-DATA-APP2.request

6A. MCPS-DATA-APP2.indicate

8. MCPS-DATA-APP2.confirm

2. Send App1Data1 (air interface)

5B. Send ACK for App1Data1 (air interface)

4. Send App2Data1 (air interface)

6B. Send ACK for App2Data1 (air interface)

0A.MLME_START_App1.request

(after some time)

0C.MLME_START_APP2.request

0D.

MLME_ASSOCIATION_APP2.confirm

(Peer1 & Peer3: Application 1)

(Peer1 & Peer2: Application 2)

0A. MLME_START_APP1.request

(after some time)

0B.

MLME_ASSOCIATION_APP1.confirm

oleObject15.bin
Peer1

Peer2

Peer3

Upper Layer

Data Transceiving

Upper Layer

Data Transceiving

0A.MLME_START_App1.request

Upper Layer

Data Transceiving

(after some time)

1. MCPS-DATA-APP1.request

2. Send App1Data1 (air interface)

5A. MCPS-DATA-APP1.indicate

0C.MLME_START_APP2.request

0D. MLME_ASSOCIATION_APP2.confirm

7. MCPS-DATA-APP1.confirm

3. MCPS-DATA-APP2.request

4. Send App2Data1 (air interface)

6A. MCPS-DATA-APP2.indicate

(Peer1 & Peer3: Application 1)

5B. Send ACK for App1Data1 (air interface)

6B. Send ACK for App2Data1 (air interface)

(Peer1 & Peer2: Application 2)

0A. MLME_START_APP1.request

(after some time)

0B. MLME_ASSOCIATION_APP1.confirm

8. MCPS-DATA-APP2.confirm

(after some time)

image16.wmf
Frame

Type

Frame

Subtype

Address

Mode

Required

ACK Type

Frame

Pending

Frame

Version

Security

Enabled

IE

Present

Application

Type

Hopper

Indication

MAC Header

Frame

Control

Sequence

Number

MAC Payload

Addressing

Fields

P

2

PNW

ID

Auxiliary

Fields

Aux

Security

Header

Frame

Payload

FCS

MFR

Information

Elements

(

IE

)

Header

IEs

Payload

IEs

Addressing

Fields

Indication

MPDU

PSDU

PHY Header

Preamble

PPDU

oleObject16.bin
Application Type

Hopper
Indication

Frame
Type

Frame
Subtype

Address
Mode

Required ACK Type

Frame Pending

Frame Version

Security Enabled

IE
Present

MAC Header

Frame Control

Sequence Number

MAC Payload

Addressing Fields

P2PNW ID

Auxiliary
Fields

Aux Security Header

Frame Payload

MPDU

FCS

MFR

Information Elements (IE)

Header IEs

Payload IEs

Addressing Fields Indication

PSDU

PHY Header

Preamble

PPDU

image17.emf
Beacon Header

Frame

Control

Sequence

Number

Beacon Payload

P2PNW/

APP ID

Context

Category

Aux

Security

Header

FCS

MFR

Information

Elements (IE)

Header

IEs

Payload

IEs

Address

Fields

Frame

Information

Other

Beacon

Payload

Hopper

Indication

oleObject17.bin
Beacon Header

Frame Control

Sequence Number

Address
Fields

Beacon Payload

Frame Information

Hopper Indication

Other Beacon Payload

P2PNW/APP ID

Context Category

Aux Security Header

FCS

MFR

Information Elements (IE)

Header IEs

Payload IEs

image18.emf
MAC

Header

Device

Capability

Required

Duration

VL

Indication

Security

Level

Peering

Type

Short

Address

Required

Multi-hop

Indication

Response

Type

Other MAC

Payload

MAC Payload MFR

FCS

oleObject18.bin
Response Type

Short Address Required

Multi-hop
Indication

MAC
Header

Device Capability

Required
Duration

VL Indication

Security Level

Peering
Type

Other MAC Payload

MAC Payload

FCS

MFR

image19.emf
Assigned

Short

Address

Peering

ID

MAC

Header

Device

Capability

Peering

Decision

VL

Indication

Security

Level

Peering

Type

Other

MAC

Payload

MAC Payload

MFR

FCS

Multi-hop

Indication

Assigned

Duration

oleObject19.bin
Peering
ID

AssignedShort Address

MAC
Header

Device Capability

Peering Decision

VL Indication

Security Level

Peering
Type

Multi-hop
Indication

Other MAC Payload

MAC Payload

MFR

FCS

Assigned Duration

image20.emf
MAC

Header

De-

Peering

Reason

Peering

ID

De-

Peering

Duration

Number of

Associated

Peers

Multi-hop

Indication

Multi-hop

Peer ID

MAC Payload MFR

FCS

oleObject20.bin
De-Peering
Duration

MAC
Header

De-Peering
Reason

Number of Associated Peers

Peering
ID

Multi-hop
Indication

Multi-hop Peer ID

MAC Payload

MFR

FCS

image21.emf
MAC

Header

De-Peering

Status

Peering

ID

MAC Payload MFR

FCS

oleObject21.bin
MAC
Header

De-Peering
Status

Peering
ID

MAC Payload

MFR

FCS

image22.emf
MAC

Header

Updated

Peering Info

Assoc

ID

MAC Payload MFR

FCS

oleObject22.bin
MAC
Header

Updated Peering Info

Assoc
ID

MAC Payload

MFR

FCS

image23.emf
MAC

Header

Updated

Peering Info

Assoc

ID

MAC Payload MFR

FCS

Updated

Status

oleObject23.bin
MAC
Header

Updated Peering Info

Assoc
ID

MAC Payload

MFR

FCS

Updated Status

image24.emf
MAC

Header

VL

Indication

Desired App

Frame Length

Desired App

Beacon

Location

MAC Payload

MFR

FCS

SuperVL

Willingness

oleObject24.bin
MAC
Header

VL
Indication

Desired App Frame Length

Desired App Beacon Location

MAC Payload

MFR

FCS

SuperVL
Willingness

image25.emf
MAC

Header

SuperVL

Indication

Response

Decision

Reject

Reason

MAC Payload

MFR

FCS

Adjustment

Suggestion

oleObject25.bin
MAC
Header

SuperVL Indication

Response Decision

Reject Reason

MAC Payload

MFR

FCS

Adjustment Suggestion

image26.emf
MAC

Header

SubVL

Indication

Desired

Number of

Slots

Desired Slot

Location

MAC Payload

MFR

FCS

oleObject26.bin
MAC
Header

SubVL
Indication

Desired Number of Slots

Desired Slot Location

MAC Payload

MFR

FCS

image27.emf
MAC

Header

VL

Indication

Response

Decision

Reject

Reason

MAC Payload

Adjustment

Suggestion

MFR

FCS

oleObject27.bin
MAC
Header

VL Indication

Response Decision

Reject Reason

MFR

FCS

MAC Payload

Adjustment Suggestion

image28.emf
Start fast CCDCH

accessing

Is the channel

occupied?

No

Is SuperVL

requesting?

No

-Wait for

t

Peerip

-Scan CCDCH

End CCDCH

Accessing

Higher

layer

PD

related

Other

triggers

PA

related

No

Is

VL

i

requesting?

No

Is

SubVL

ik

requesting?

Yes

Access the CCDCH with

the peer info & usage

-Wait for

t

VLi

-Scan CCDCH

Yes

Is occupied?

No

-Wait for

t

SubVLik

-Scan CCDCH

Yes

Yes

Is timed out

?

No

-Abort accessing CCDCH

-Report to the function entity requesting

the CCDCH accessing, i.e. higher layer,

PD, PA, others.

Yes

Is occupied?

No

Yes

Is timed out ?

No

Yes

Request the VL

on DCDCH to

access the

CCDCH with

higher priority.

Is occupied?

No

Yes

Is timed out ?

No

Yes

Wait for

t

CCDCH

Yes

Is timed out ?

Yes

No

Access on its

DCDCH if

available

(

Peer

ip

is

requesting)

Scan CCDCH for t

ScanCCDCH

Request the VL

on DCDCH to

access the

CCDCH with

higher priority.

oleObject28.bin
Start fast CCDCH
accessing

Yes

Access the CCDCH with the peer info & usage

Is the channel
occupied?

- Wait for tVLi
- Scan CCDCH

Yes

Is occupied?

Is occupied?

No

Is SuperVL
requesting?

No

Is SubVLik
requesting?

No

- Abort accessing CCDCH
- Report to the function entity requesting the CCDCH accessing, i.e. higher layer, PD, PA, others.

No

Yes

Yes

No

- Wait for tPeerip
- Scan CCDCH

End CCDCH Accessing

- Wait for tSubVLik
- Scan CCDCH

Yes

Yes

Is timed out ?

Is occupied?

No

No

Yes

Request the VL on DCDCH to access the CCDCH with higher priority.

Is timed out?

No

Yes

Is timed out ?

No

Yes

Request the VL on DCDCH to access the CCDCH with higher priority.

Wait for tCCDCH

Yes

Access on its DCDCH if available

Higher layer

PD
related

Other triggers

Is timed out ?

Yes

PA
related

No

Is VLi
requesting?

No

(Peerip is requesting)

Scan CCDCH for tScanCCDCH

image29.emf
Is

DCDCHi

occupied?

No

Is VLi

requesting?

No

-Wait for

t

DPeerip

-Scan

DCDCHi

End DCDCHi

Accessing

No

Is SubVLik

requesting?

Yes

Access the DCDCHi

with peer info & usage

-Wait for

t

DSubVLik

-Scan DCDCHi

Yes

Is occupied?

No

Yes

Is timed out ?

No

-Abort accessing DCDCHi

-Report to the function entity

requesting the DCDCHiaccessing,

i.e. higher layer, PD, PA, others.

Yes

Is occupied?

No

Yes

Is timed out ?

No

Yes

Wait for

t

DCDCHi

Yes

Is timed out ?

Yes

No

Start fast

DCDCHi

accessing

Higher

layer

PD

related

Other

triggers

PA

related

Scan

DCDCHi

for

t

ScanDCDCHi

(Pee

r

ip

is requesting DCDCHi)

oleObject29.bin
Is DCDCHi
occupied?

No

Is VLi
requesting?

No

- Wait for tDPeerip
- Scan DCDCHi

End DCDCHi Accessing

(Peerip is requesting DCDCHi)

No

Is SubVLik
requesting?

Yes

Access the DCDCHi with peer info & usage

- Wait for tDSubVLik
- Scan DCDCHi

Yes

Is occupied?

No

Yes

Is timed out ?

No

- Abort accessing DCDCHi
- Report to the function entity requesting the DCDCHi accessing, i.e. higher layer, PD, PA, others.

Yes

Is occupied?

No

Yes

Is timed out ?

No

Yes

Wait for tDCDCHi

Yes

Is timed out ?

Yes

No

Start fast DCDCHi accessing

Higher layer

PD
related

Other triggers

PA
related

Scan DCDCHi for tScanDCDCHi

image30.emf
Start CA

Scan the beacon/paging/broadcast for SuperVL

No

End CA

SuperVL

detected?

Yes

No

-Broadcast the request

with superframe/frame &

slot/code/subcarriers

2

on

CCDCH

1

to SuperVL.

-Wait for the response

from SuperVL on CCDCH.

Response?

Yes

Adjust the superframe/frame &

slot/code/subcarriers

2

based on

the SuperVL response.

Access the channel with the superframe/frame slot/code/

subcarriers

2

etc. broadcasted on the beacon/paging/broadcast.

-Abort the channel request

-Report to the function(s) requesting the channel

Decide superframe/frame & slot/code/

subcarriers based on the application and

current superframe/frame & slot/code/

subcarriers

2

usage if detected.

Timed out

t

OutChReq

?

Yes

No

Rejected?

Yes

No

CA by SuperVL

-Decide CCDCH, superframe/frame & slot/code/subcarriers

2

based on the

application and other parameters.

-Scan channel request on CCDCH for t

ScanCCDCH

.

No

CCDCH

detected?

Yes

Rejected?

Yes

Update CCDCH

from detection

-Update the VL list

-Adjust the superframe/frame & slot/code/

subcarriers

2

Response?

Yes

Rejected?

Yes

No

Timed out

t

OutChReq

?

Yes

No

No

-Insert CCDCH

3

with the request,

indicate as the SuperVL if wish to.

-Wait for the response.

No

Response

No

Yes

Is this SuperVL?

Yes

No

-Respond “yes” on CCDCH

1

.

-Indicate as the SuperVL if wish to.

All responses on

VL list?

Yes

No

Update VL list

-Broadcast request on CCDCH

1

-Wait for the response on CCDCH

Higher

layer

PA

Others

PD

CA for SuperVL/1st VL w. Collision Avoidance

Collision Avoidance

Timed out

t

OutScanSpVL

?

SuperVL Detection

(1

st

Vlis not SuperVL)

(Vlreq is the 1

st

VL)

(no P2PNW there)

Yes

No

(

A

s

S

u

p

e

r

V

L

)

Timed out

t

OutChReq

?

No

Yes

(

A

s

V

L

)

(

1

s

t

V

L

i

s

S

u

p

e

r

V

L

)

oleObject30.bin
Start CA

Scan the beacon/paging/broadcast for SuperVL

No

End CA

SuperVL
detected?

Yes

No

- Broadcast the request with superframe/frame & slot/code/subcarriers2 on CCDCH1 to SuperVL.
- Wait for the response from SuperVL on CCDCH.

image31.emf
Start CA

End CA

Access the channel with the superframe/frame slot/code/subcarriers

2

etc. broadcasted on the beacon/paging/broadcast.

-PeerReq aborts its CA

-PeerReq reports to the function(s) requesting the CA

Higher

layer

PA

Others

PD

-PeerReq decides its superframe/frame & slot/code/subcarriers

2

based on the application and other parameters.

-PeerReq scans channel request on CCDCH for t

ScanCCDCH

.

No

DCDCH

detected?

Yes

Rejected?

Yes

PeerReq updates

its CCDCH from

detection

-PeerReq updates its peer list.

-PeerReq adjusts the superframe/frame & slot/

code/subcarriers

2

for peers on its peer list.

Response?

Yes

Rejected?

Yes

No

Timed out

t

OutChReq

?

Yes

No

No

-PeerReq inserts CCDCH

3

with its request

-PeerReq waits for the response on CCDCH.

No

Response

No

Yes

Respond “accept” on

CCDCH

1

to the 1st peer

All responses on

Peer list?

Yes

No

PeerReq updates

its peer list

-PeerReq broadcasts request on CCDCH

1

to

peers for adjustments

-PeerReq waits for peers’ responses on

CCDCH

CA for 1st Peer w. Collision Avoidance

Collision Avoidance

(1

st

Peer)

(PeerReq is the 1

st

Peer)

(no peer there)

Timed out

t

OutChReq

?

No

Yes

(1

st

Peer)

Cooperation

Peer Detection

(No peer detected & PeerReq is the 1

st

peer)

(No more peer detected)

Peer

detected?

Yes

No

PeerReq scans beacon/paging/

broadcast for existing peers

-PeerReq extracts superframe/frame &

slot/code/subcarriers

2

info

-PeerReq updates its Peer list.

Peer list

empty?

No

Yes

Timed out

t

OutScanPeer

?

Yes

No

-PeerReq updates its peer list.

-PeerReq adjusts the superframe/

frame & slot/code/subcarriers

2

for

peers on its peer list to make

changes.

-PeerReq broadcasts its request

with superframe/frame & slot/code/

subcarriers

2

on CCDCH

1

.

-PeerReq waits for peers’ responses

on CCDCH.

PeerReq decides its superframe/frame & slot/code/subcarriers

2

based on the application, current peer list and related

superframe/frame & slot/code/subcarriers

2

usage.

Response?

Yes

Rejected?

Yes

No

Timed out

t

OutChReq

?

Yes

No

No All responses on

Peer list?

Yes

No

CA for a New Peer

(

N

e

w

P

e

e

r

)

Cooperation

oleObject31.bin
Start CA

End CA

Access the channel with the superframe/frame slot/code/subcarriers2 etc. broadcasted on the beacon/paging/broadcast.

image32.emf
Perform scan

CAIS is

triggered

Maximum

scan

reached?

Beacon

found?

No

N

o

CAIS end

Extract the AOL

from Frame Map

for the indicated

apps

Desired app

beacons

found?

Pass super beacon frame

boundaries to the triggering

entity and wait for App

Indicator

Extract the frame and slot

boundaries for the

desired apps and pass to

the triggering entity and

wait for

acknowledgement

Yes

Get synced with a

beacon based on

some criterions and

notify the triggering

entity

Yes

App

Indicator

received?

Yes

Wait timer

expire?

No

Is super

beacon?

Is app

beacon?

Yes

No

Extract the Super

Beacon Offset

from app beacon

Yes

Scan for super

beacon

super

beacon

found?

Yes

Maxmium

scan

reached?

No

No

Sync complete

requested by

triggering entity?

Yes

App Indicator available?

Yes

No

Yes

Yes

Maximum

scan time

reached?

Scan for app

beacons with

AOL

Yes

Yes

No

No

Scan for app

beacons

without AOL

Desired app

beacons

found?

Maximum

scan time

reached?

No

No

Yes

No

No

Extract the frame and slot

boundaries for the

desired apps and pass to

the triggering entity and

wait for

acknowledgement

Yes

Sync complete

requested by

triggering entity?

Yes

Get synced with a

beacon based on

some criterions and

notify the triggering

entity

No

oleObject32.bin
Perform scan

CAIS is triggered

Maximum scan reached?

Beacon found?

No

No

CAIS end

Extract the AOL from Frame Map for the indicated apps

Desired app beacons found?

Pass super beacon frame boundaries to the triggering entity and wait for App Indicator

Extract the frame and slot boundaries for the desired apps and pass to the triggering entity and wait for acknowledgement

Scan for app beacons with AOL

Yes

Sync complete requested by triggering entity?

Get synced with a beacon based on some criterions and notify the triggering entity

Yes

App Indicator received?

Yes

Wait timer expire?

Yes

No

Is super beacon?

Is app beacon?

Yes

No

Yes

Extract the Super Beacon Offset from app beacon

Yes

Scan for super beacon

super beacon found?

Yes

Maxmium scan reached?

No

No

Yes

No

Yes

Maximum scan time reached?

App Indicator available?

Yes

No

Yes

No

No

Yes

Scan for app beacons without AOL

Desired app beacons found?

Maximum scan time reached?

No

Sync complete requested by triggering entity?

No

Yes

Yes

Get synced with a beacon based on some criterions and notify the triggering entity

No

No

Extract the frame and slot boundaries for the desired apps and pass to the triggering entity and wait for acknowledgement

image33.emf
CAIS is

triggered

App beacon

found?

Sync end

No

Response

received?

Wait timer

expire?

Yes

No

Yes

No

Sync complete

requested by the

triggering entity

No

App Indicator received

from triggering entity?

Request AI from

triggering entity

No

Is desired

app?

Yes

Yes

Extract the frame and slot

boundaries for the

desired apps and pass to

the triggering entity and

wait for

acknowledgement

Extract the App

End Offset,

adjust next scan

according to

AEO

Scan for app

beacons

Maximum

scan

reached?

No

Yes

Extract the CBO

from the received

beacon

Yes

Yes

No

Yes

Scan for the CB and

extract CCO for

common channel

CB found?

No

Yes

Synced with the

common channel

Maximum

scan

reached?

No

Adjust

parameters and

scan for CB

oleObject33.bin
Adjust parameters and scan for CB

CAIS is triggered

Yes

No

App beacon found?

Sync end

Extract the App End Offset, adjust next scan according to AEO

Extract the frame and slot boundaries for the desired apps and pass to the triggering entity and wait for acknowledgement

Request AI from triggering entity

No

No

Yes

Response received?

No

Is desired app?

Wait timer expire?

Yes

No

Yes

Yes

Yes

Yes

Extract the CBO from the received beacon

No

Sync complete requested by the triggering entity

No

App Indicator received from triggering entity?

Scan for app beacons

Maximum scan reached?

Yes

Scan for the CB and extract CCO for common channel

CB found?

No

Yes

Synced with the common channel

Maximum scan reached?

No

image34.emf
Start Fast PD Scan

App Type ID matched?

Yes

No

App Type Scan:

· Scan for desired Application Type ID

Stop decoding the rest field(s),

move to next PD Scan

App ID matched?

Yes

No

App Scan:

· Scan for desired App ID

ID matched?

Yes

No

User / Device Scan:

· Scan for User/Device ID, i.e. application specific

Load the parameter values if needed

End PD Scan

Scan additional peer info if needed

oleObject34.bin
Start Fast PD Scan

image35.emf
Data

Transceiving

Idle

Sleep

Dis-

association

Re-

association

R

e

q

:

A

s

s

o

U

A

s

s

o

U

s

u

c

c

e

s

s

(

I

d

l

e

/

W

a

k

e

u

p

H

L

)

Data TxRx

Data TxRx

sucess

A

s

s

o

U

f

a

i

l

Req: Re-asso from

“resume”(HL)

T

x

R

x

l

o

w

Q

o

S

o

r

f

a

i

l

I

d

l

e

t

i

m

e

d

o

u

t

o

r

S

l

e

e

p

(

H

L

)

Wake up

(timer/HL)

Association

Update

S

l

e

e

p

e

x

p

i

r

e

d

o

r

D

i

s

a

s

s

o

(

H

L

)

(HL)

Wake up

(HL / AI)

Req: Disasso

(HL)

Transmit/Receive

(HL)

New peer/Resume

(HL)

End App i

Sync. &

Power

Sync. &

Power

Sync. &

Power

D

i

s

a

s

s

o

.

(

H

L

/

A

I

)

(HL)

Req: Disasso

(HL)

Sleep

AssoU success

(Wakeup by timer)

R

e

-

a

s

s

o

s

u

c

c

e

s

s

Channel

Management

R

e

:

C

h

D

e

-

a l

l

o

c

C

h

D

e

-

a

l

l

o

c

C

h

A

l

l

o

c

R

e

q

:

C

h

A

l

l

o

c

oleObject35.bin
Data
Transceiving

Channel Management

Idle

Sleep

Re: Ch De-alloc

Dis-association

Re-association

Ch De-alloc

Ch Alloc

Req: Ch Alloc

Req: AssoU

AssoU success
(Idle/Wakeup HL)

Data TxRx

Data TxRx sucess

AssoU fail

Req: Re-asso from
 “resume”(HL)

TxRx low QoS or fail

Re-asso success

Idle timed out
or Sleep (HL)

Wake up
(timer/HL)

Association
Update

Sleep expired
or Disasso(HL)

(HL)
Wake up

(HL / AI)
Req: Disasso

(HL)
Transmit/Receive

(HL)
New peer/Resume

(HL)
End App i

Sync. &
Power

Sync. &
Power

Sync. &
Power

AssoU success
(Wakeup by timer)

Disasso. (HL/AI)

(HL)
Req: Disasso

(HL)
Sleep

image36.emf
Peer1

Peer2

Upper

Layer

Channel

Management

Association

Data

Transceiving

Association

Channel

Management

Upper

Layer

1.Start Association Update

3.Report Association Update Request

4.Response Association Request

6.Report Association Update

Data Transceiving

(air interface)

(air interface)

2. Association Update request

PHY/MAC

PHY/MAC

Data

Transceiving

(Peer1 & Peer2: Application 1)

7. Idle for some time

A

s

s

o

c

i

a

t

i

o

n

U

p

d

a

t

e

Idle for some time

I

d

l

e

–

A

s

s

o

c

i

a

t

i

o

n

U

p

d

a

t

e

-

I

d

l

e

5. Association Update response

oleObject36.bin
(Peer1 & Peer2: Application 1)

Peer1

Peer2

Upper Layer

Channel Management

Data Transceiving

Association

Idle for some time

Data Transceiving

Association

Channel Management

7. Idle for some time

Upper Layer

Association Update

1.Start Association Update

3.Report Association Update Request

4.Response Association Request

6.Report Association Update

Data Transceiving

(air interface)

(air interface)

2. Association Update request

5. Association Update response

PHY/MAC

PHY/MAC

Idle – Association Update - Idle

image37.emf
Peer1

Peer2

Upper

Layer

Channel

Management

Association

Data

Transceiving

Association

Channel

Management

Upper

Layer

PHY/MAC

PHY/MAC

Data

Transceiving

7. Idle for some time

S

l

e

e

p

17. Back to sleep for some time

15.Timed wake up

16 Association Update (as step 1 ~ 6)

S

l

e

e

p

–

W

a

k

e

U

p

-

S

l

e

e

p

8.Start Sleep

10. Report Sleep Request

11.Response Sleep Request

13.Report Sleep

(air interface)

(air interface)

9. Sleep request

12. Sleep response

14. Sleep for some time with sleep timer set accordingly

oleObject37.bin
Peer1

Peer2

Upper Layer

Channel Management

Data Transceiving

Association

Data Transceiving

Association

Channel Management

16 Association Update (as step 1 ~ 6)

15.Timed wake up

7. Idle for some time

Upper Layer

8.Start Sleep

10. Report Sleep Request

PHY/MAC

PHY/MAC

14. Sleep for some time with sleep timer set accordingly

Sleep

11.Response Sleep Request

13.Report Sleep

Sleep – Wake Up - Sleep

(air interface)

(air interface)

9. Sleep request

12. Sleep response

17. Back to sleep for some time

image38.emf
MAC Layer

MAC Layer Functions

(e.g. Discovery,

Association, Relaying,

etc)

Context

Manager

(Client)

MAC Layer

MAC Layer Functions

(e.g. Discovery,

Association, Relaying,

etc)

Context

Manager

(Server)

PHY Layer PHY Layer

Higher Layer (e.g. Application) Higher Layer (e.g. Application)

1. Context Request

2. Context Response

oleObject38.bin
MAC Layer

MAC Layer Functions
(e.g. Discovery, Association, Relaying, etc)

MAC Layer

Context Manager (Client)

MAC Layer Functions
(e.g. Discovery, Association, Relaying, etc)

Context Manager (Server)

PHY Layer

PHY Layer

Higher Layer (e.g. Application)

Higher Layer (e.g. Application)

1. Context Request

2. Context Response

image39.emf
Context

Manager

(on PD 1)

Context

Manager

(on PD 2)

Step 1: Context Request Frame

Step 2: Context Response Frame

Step 3: Context Response ACK

Step 4: Context Response Frame

Step 5: Context Response ACK

…

.

.

.

One MAC Request,

Multiple MAC

Responses

oleObject39.bin
As you add text, the rectangle's height increases. Vary the width by stretching a side.

Context Manager
(on PD 1)

Context Manager
(on PD 2)

Step 1: Context Request Frame

Step 2: Context Response Frame

Step 3: Context Response ACK

Step 4: Context Response Frame

Step 5: Context Response ACK

…...

image40.emf
Context

Manager

Client

(CMC)

Context

Manager

Proxy

(CMP)

Context

Manager

Server

(CMS)

1. Context

Request

1. Context

Request

2. Context

Response

2. Context

Response

oleObject40.bin
Context Manager Client
(CMC)

Context Manager Proxy
(CMP)

Context Manager Server
(CMS)

1. Context Request

1. Context Request

2. Context Response

2. Context Response

image41.wmf
Context Manager

(

i

.

e

.

CMP

)

(

on PD

3

)

Context Manager

(

i

.

e

.

CMC

)

(

on PD

1

)

Context Manager

(

i

.

e

.

CMS

)

(

on PD

2

)

Step

1

:

Context Request Frame

Translation

Step

3

:

Context Request Frame

Step

4

:

Context Response Frame

Step

7

:

Context Response Frame

Aggregation

Context Manager

(

i

.

e

.

CMS

)

(

on PD

4

)

Step

5

:

Context Request Frame

Step

6

:

Context Response Frame

Step

2

:

Context Response Frame

oleObject41.bin
Context Manager
(i.e. CMP)
(on PD 3)

Context Manager
(i.e. CMC)
(on PD 1)

Context Manager
(i.e. CMS)
(on PD 2)

Step 1: Context Request Frame

Translation

Step 3: Context Request Frame

Step 4: Context Response Frame

Step 7: Context Response Frame

Aggregation

Context Manager
(i.e. CMS)
(on PD 4)

Step 5: Context Request Frame

Step 6: Context Response Frame

Step 2: Context Response Frame

image42.emf
Higher Layer, PHY Layer,

Other MAC Functions

(on PD 1)

Context Management

Function

(on PD 1)

Step 1: Context Request Primitive

Step 2: Context Confirmation Primitive

oleObject42.bin
Higher Layer, PHY Layer, Other MAC Functions
(on PD 1)

Context Management Function
(on PD 1)

Step 1: Context Request Primitive

Step 2: Context Confirmation Primitive

image43.emf
Higher Layer, PHY Layer,

MAC Functions

(on PD 1)

Context Management

Function

(on PD 1)

Step 1: Context Indication Primitive

Step 2: Context Response Primitive

oleObject43.bin
Higher Layer, PHY Layer, MAC Functions
(on PD 1)

Context Management Function
(on PD 1)

Step 1: Context Indication Primitive

Step 2: Context Response Primitive

image44.emf
Context

Manager

(on PD 1)

Context

Manager

(on PD 2)

Step 1: Context Begin Frame

CM 1 Requests

Contexts from CM 2

Step 3: Context Request Frame

Step 4: Context Response Frame

Step 5: Context Request Frame

Step 6: Context Response Frame

Step 7: Context Request Frame

Step 8: Context Response Frame

…

.

.

.

Step 9: Context End Frame

CM 2 Requests

Contexts from CM 1

Context Exchange

Session

Step 2: Context Begin Approval Frame

Step 10: Context End ACK Frame

oleObject44.bin
As you add text, the rectangle's height increases. Vary the width by stretching a side.

Context Manager
(on PD 1)

Context Manager
(on PD 2)

Step 1: Context Begin Frame

