January 2014 Doc.: 15-13-0746-00-wng0

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Augmented Reality standards, use cases and requirements: How can 802.15 contribute?

Date Submitted: January 21, 2014

Source: Christine Perey, PEREY Research & Consulting Address: Route de Chernex 2B Montreux, Switzerland

E-Mail: <cperey@perey.com>

Abstract: Mobile Augmented Reality will be ubiquitous and put new requirements on mobile, personal networks. In this submission, we introduce the field, provide some requirements and recommend that mobile AR use cases and community members be involved in future 802.15 specs.

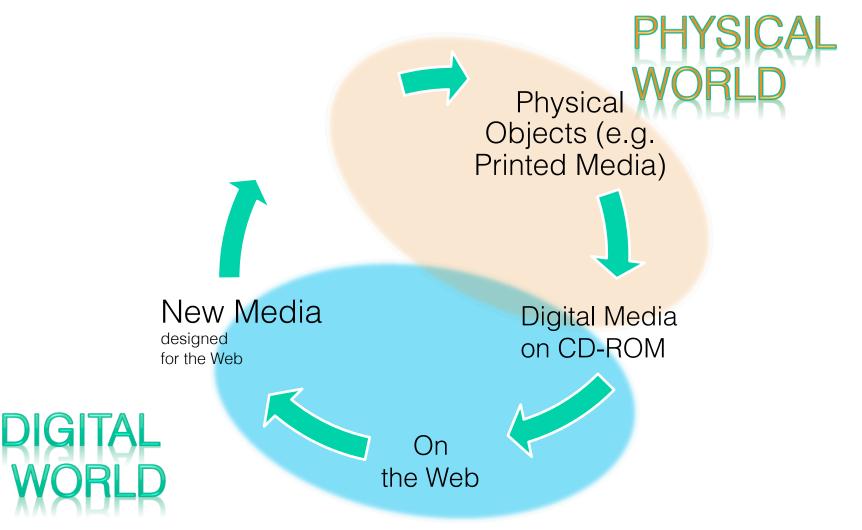
Purpose: Input for WNG discussion

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

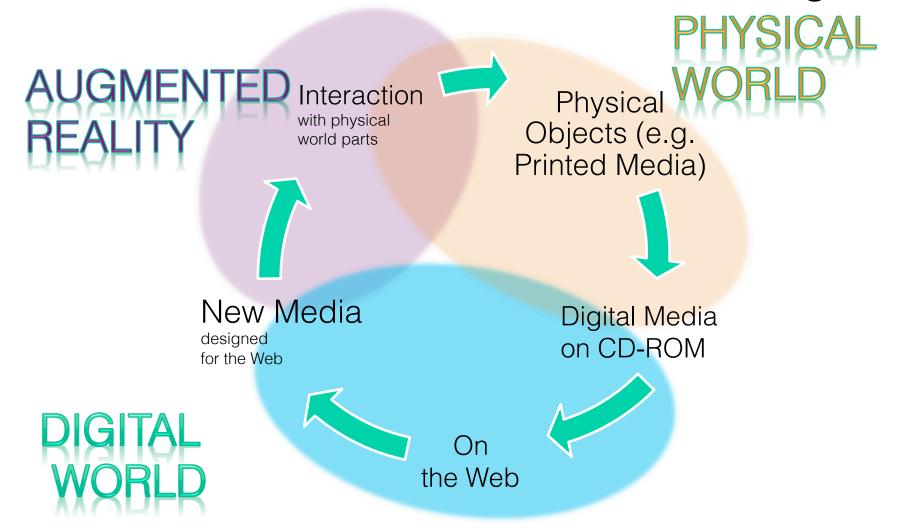
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Augmented Reality How can 802.15 contribute?

January 22, 2014

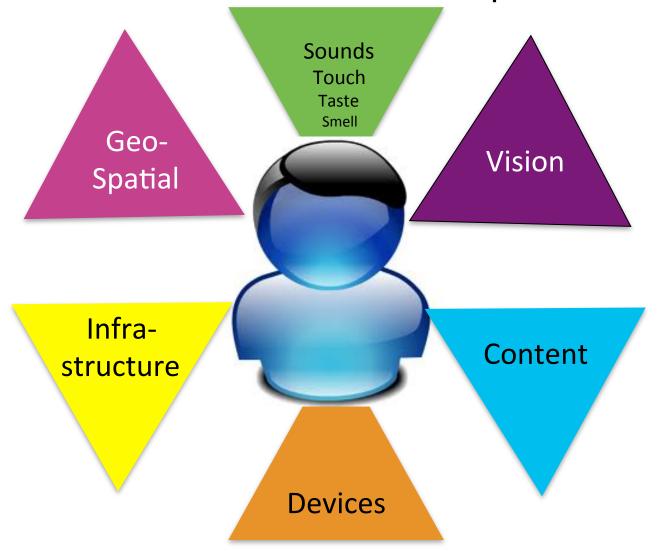

This Session will

- Prepare the "ground" for discussion with some terminology and frameworks
 - Enablers
 - Use Case Categories
 - Standards activities
- Provide some parameters that could be relevant to 802.15
- Recommend that AR use cases be part (or the focus of) future 802.15 work


Information and Physical World

Physical Objects (e.g. Printed Media)

The Internet Came



AR Continues what the Internet Began

AR Enhances User Experiences

Perceptions of reality altered using information synchronized with reality

Three Categories of AR Use Cases

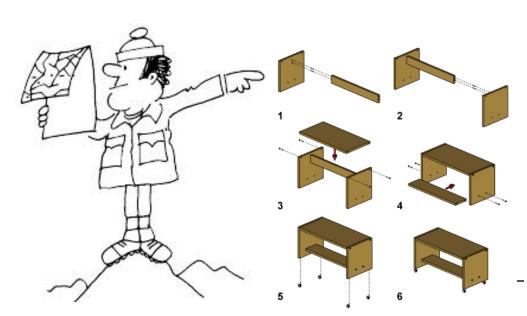
<u>Guide</u>

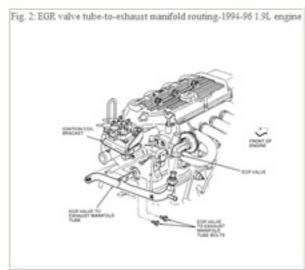
- Simplest
- Largest

Publish

- AR married with Web 2.0 tools
 - aka "Social AR"

Collaborate


- Complex
- Future of games


The "Guide" Use Cases

 System leads the user through a path or process in step-by-step (sequential) manner

See Figures 2 through 12

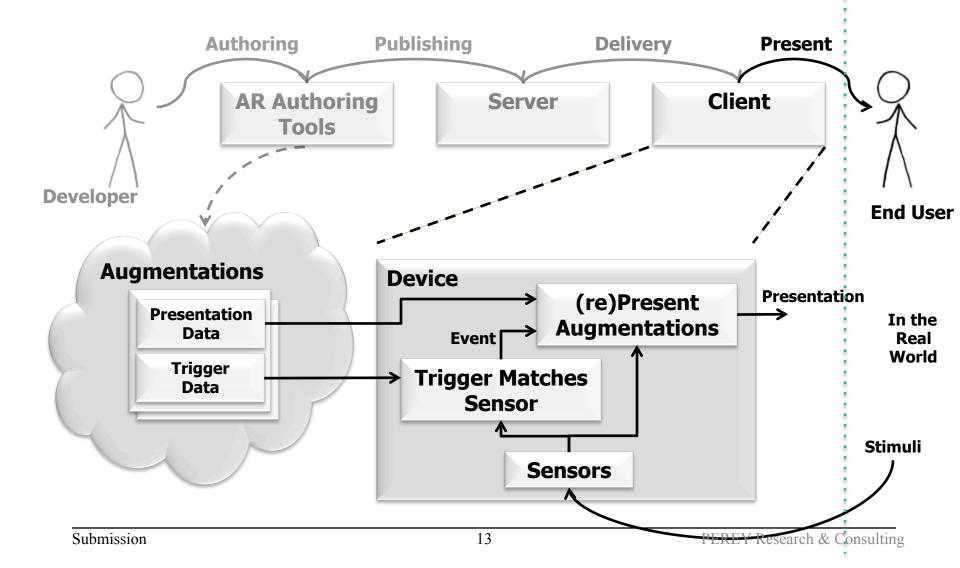
- 1. Disconnect the negative battery cable.
- Remove the accessory drive belt.
- Remove the alternator.
- 4. Remove the radiator cooling fan motor and the shroud assembly.
- On 1991-93 models, remove the exhaust manifold heat shield.

The "Publish" Use Cases

 System furnishes the user the ability to attach or introduce (annotate) personal digital data in association with people, places and things in the real world

Doc.: 15-13-0746-00-wng0

The "Collaborate" Use Cases


 System permits two or more people to interact with one another at a distance and some digital data in the real world in real time

https://www.youtube.com/watch?v=X-GXO_urMow (6min 30 sec)

Experience Presentation

Digitally Mapping User Context

Feature Extraction

Recognition

Matching digital asset

Capturing the unique features in the physical world as stimuli

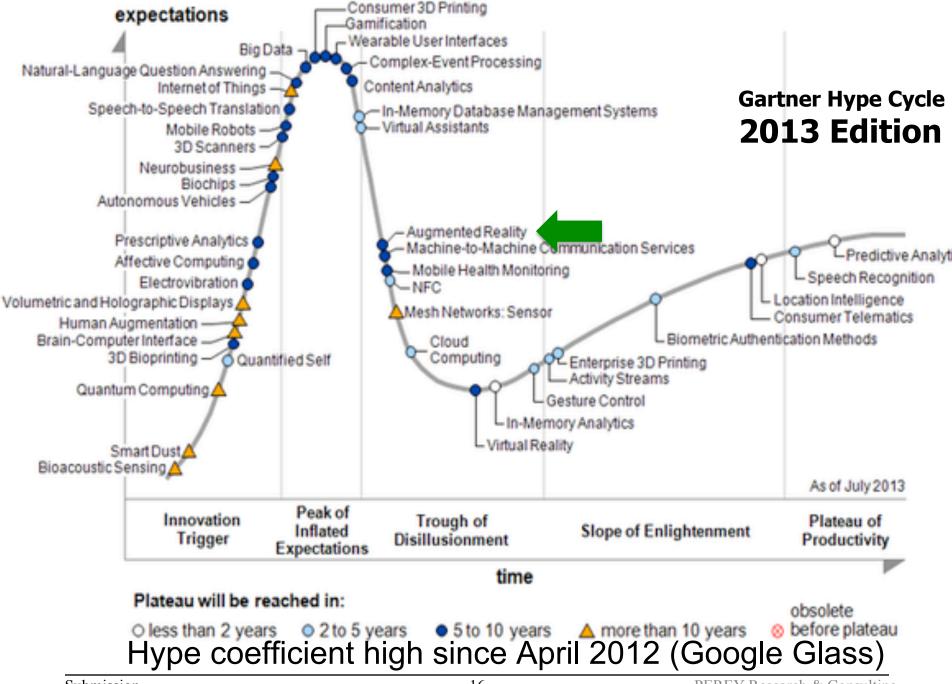
Looking for triggers (any pattern previously detected and stored in digital world)

Retrieving the augmentation

Producing the AR Experience

Registration

Rendering digital asset


Tracking the real world

User Experience

Matching features to digital asset

Accounting for distance, occlusions, light and other factors

Correcting, refreshing or "locking" the digital asset on physical world

Segment by End User Classes

	Consumers	Professional Users
Tolerance for latency	Medium (500ms)	Low (300ms)
Need for precision	Depends on use case	Higher (<10 cm)
Willingness to pay	Cost sensitive	Based on ROI

Segment by Delivery Platforms

Projection AR

Desktop & Kiosk AR

Mobile AR

Doc.: 15-13-0746-00-wng0

Mobile AR Segments

Uses built-in GPS and compass signals for

position and orientation respectively

Computer Vision-based AR

Extracts "patterns" (also called "features") of the real world from the live video signal (frames)

Both also use smartphone's built-in gyroscope and accelerometer

18

Key Mobile AR Enablers

- Low cost, high performance, low power
 - Sensors
 - Compute power (devices)
 - High speed networks
- Cloud and content management systems
- Personal and shared display technology
- Mobile application distribution platform (aka "the AppStore")

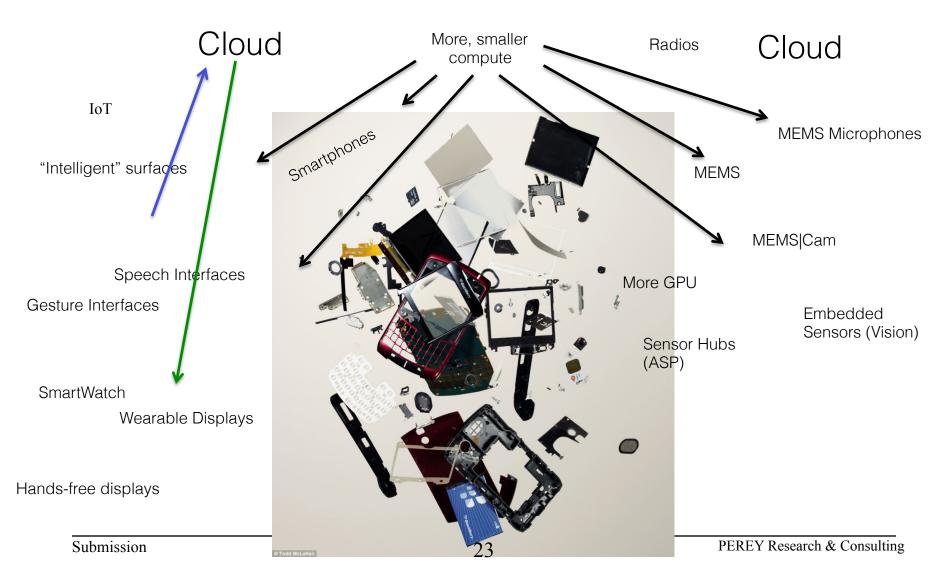
Doc.: 15-13-0746-00-wng0

Key Mobile AR Enablers

- Low cost, high performance, low power
 - Sensors
 - Compute power (devices)
 - High speed networks
- Cloud and content management systems
- Personal and shared display technology
- Mobile application distribution platform (aka "the AppStore")

Doc.: 15-13-0746-00-wng0

Mobile Handsets for AR


- Multi-core CPU smartphones with GPU acceleration are capable of
 - Tracking physical world in 3D
 - Rendering 3D digital assets in real time
- Problems remain with
 - Sensor quality, stability, reliability
 - Interference of natural world with sensors
 - User interaction
 - Power consumption (battery life)
 - Thermal threshold

Device + Network Requirement: Capture the Physical World

- Sensors (observation streams)
 - 300-500 ms latency
 - In 3D (where possible)
 - Lighting
- Leverage what may be available from IoT

Doc.: 15-13-0746-00-wng0

Mobile Computing is Fragmenting

Doc.: 15-13-0746-00-wng0

Mobile Networks for AR

- Many AR platforms use cloud-based processing and data, via mobile networks
 - Mobile AR can also be developed for use "off line"
- Lack of value-added role for network operator reduces their motivation and does not address the user needs

Doc.: 15-13-0746-00-wng0

Network Requirement: Deliver and Render Digital Assets

- Low latency
- In 3D (if available)
- Progressive (Adaptive)
- Caching likely

Doc.: 15-13-0746-00-wng0

Displays for Mobile AR

- Personal
 - Wearable computing/technology
- Shared
 - Windows (car windshields, buildings)
 - Digital signage
 - Anything on which we can project digital assets (requires projector)

Known Smart Glasses Manufacturers

LiteEYE
Lockheed Martin
SBG Labs
Rockwell Collins
Osterhout Design Group
Trex Enterprises
MicroVision
Six-15 Technologies
Physical Optics Corp
Innovega
ARA
Silicon Micro Display

Thales Visionix

Commercial Markets

Optinvent

Kopin

Epson

Silicon Micro Display

Google

Microsoft

Recon Instruments

Scalar

Brother

Sony

Oakley

Laster Technologies

EyeTap

Canon

Olympus

eMagine

Samsung

MetaView

Vuzix

Innovega

CastAR

Lumus Vision

GlassUp

PEREY Research & Consulting

High Diversity

Software

- Each has unique SDK
- Very rudimentary
 - Not well integrated with AR authoring and SDKs
- Some companies are developing middleware and publishing platforms
 - Generic control
 - Interface with radios and other shared resources

Hardware

- Field of View
- Camera
- Adjustability of position (hinge)
- Gyro
- Brightness, transparency
- Focal plane
- Weight
- Industrial design
- Battery life

User Control Interface Technologies

Software

- Gesture tracking
- Speech recognition

Hardware

- Tactile ("pad")
- IR Pointer
- Depth sensing camera
- Video camera
- Microphone
- User focus (gaze)

Hands-Free Displays for AR

- Subsegments
 - Displays for information snacking, not "true" AR
 - Displays designed to provide "True" AR
 - Accessories to mobile (+ cloud) system that does "the rest"
 - Sports
 - Defense
 - First Responders
 - Stand-alone, fully-integrated systems
 - Group
 - Automotive
 - Airplanes and helicopters
 - Personal and wearable *replacements for smartphones*

Personal Hands-free AR Display is often confused with Google Glass

 Google Glass is part of a new platform for information search, presentation (display)

and capture

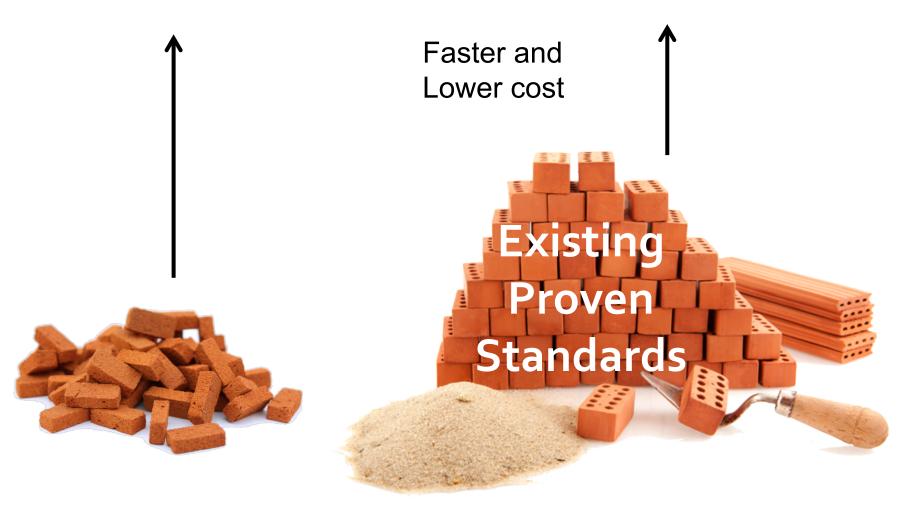
Information appears

- Interaction
- Capture
- When you turn or the real world context changes, information remains the same

What is Open and Interoperable AR?

Complete end-to-end system in which modular components can be supplied by multiple vendors and still have the same workflow and experience quality

(Hint: think of the Web)


In an ideal world AR Systems...

- Consistently receive reliable data (correct observations and/or calibrate sensors) about
 - User context and status
 - Focus of attention in the physical world
 - Position and orientation in the physical world
 - Other relevant physical world landmarks
 - Resources for producing/enhancing experiences

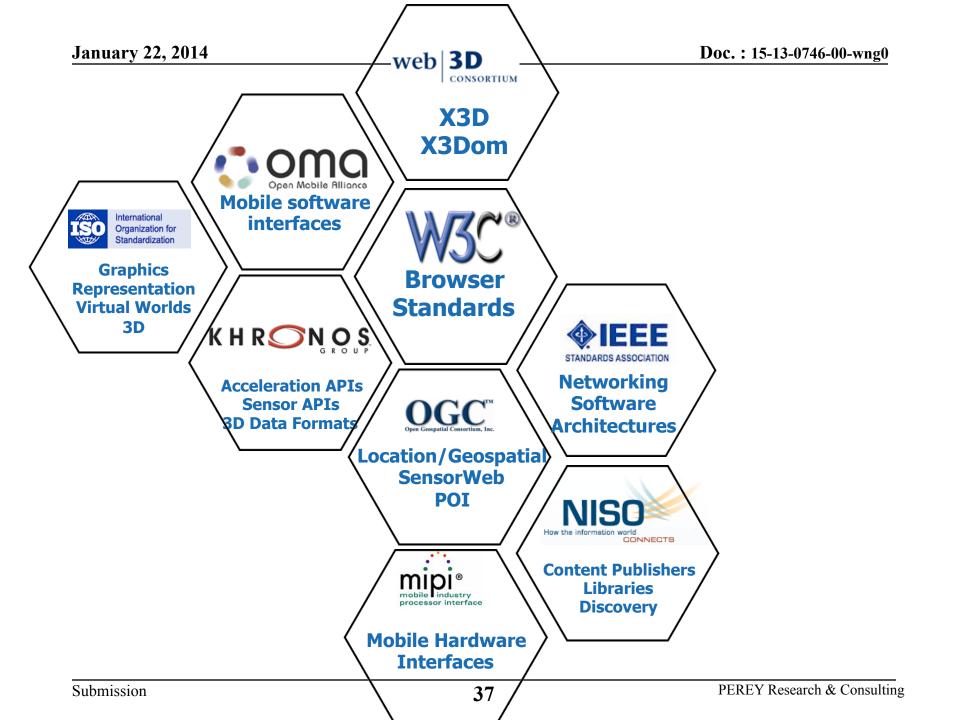
33

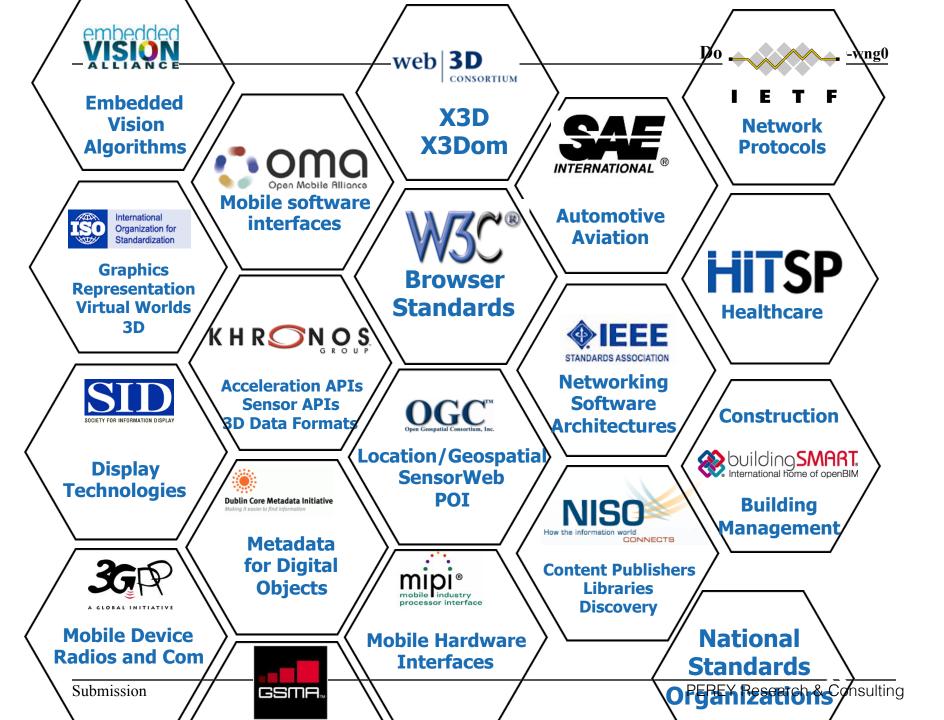
- Data objects
- Computational resources
- Communication resources
- Storage resources
- Display/ presentation resources

Open and Interoperable AR

AR Standards Community

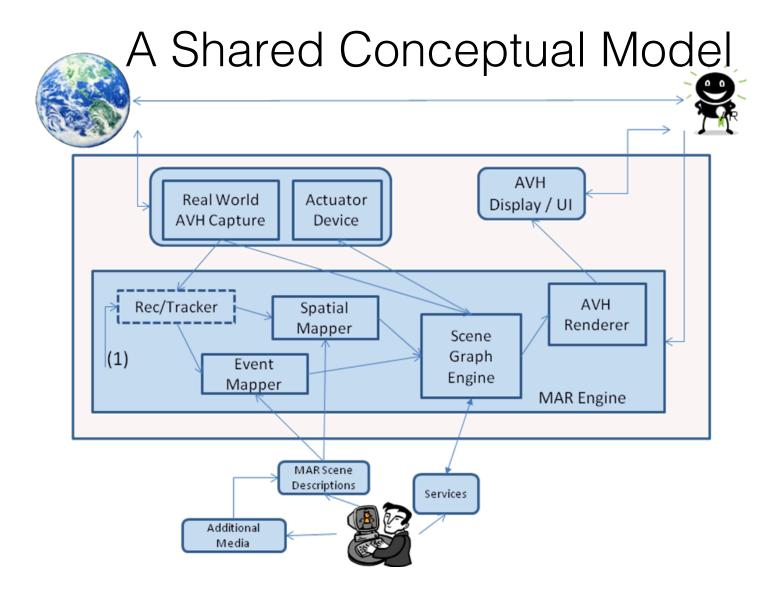
- Identify open interfaces and existing standards
- Assist, where standards are missing and needed, in their development
 - Collect and communicate AR developer and user requirements
 - Define industry- and technology-neutral use cases
- Foster and support the coordination of efforts across multiple Standards Development Organizations
- Detect the emergence of and provide a centralized place/forum for the expression of needs from the community including obstacles to the growth of AR


35


AR Standards Community

The numbers

- 4 years
- 6 archived mailing lists
- 9 in-person meetings
- >10 Standards Development Organizations participating
- >250 people


All resources are on the portal http://www.arstandards.org

Initiatives of AR Standards Community

Glossary and AR Reference Model

Initiatives of AR Standards Community

- Glossary and AR Reference Model
- 3D Transmission and Compression
- 3D tiling and 4D data for mobile AR
- Mobile AR Browser Interoperability

NEXT INITIATIVE?

Technologies

Business and Finance

Human Factors

Barriers to Growth

Data

Human Factors

Category	Obstacles
Inherent Human Traits	Low awareness or needBurned once, avoid the riskHabits
Presentation Systems	 Positioning the display with respect to perception Fixed focal distances Weight Fashion
Interactivity	 Too many steps Too many assumptions No support for "peripheral" vision No conventions for gestures

Human Factors

Category	How to Breakthrough
Inherent Human Traits	 Raise Awareness of benefits of AR visualization Don't promise what can't be delivered Use widely-accepted AR terminology
Presentation Systems	 Use eyewear and stationary displays in environment Support variable focal length systems Reduce weight by reducing battery size Provide "invisible" or fashion-friendly displays
Interactivity	 Automate decision Prompt the user to set up preferences Support for "peripheral" vision Develop conventions for gestures

Technologies

Category	Obstacles
User Context Acquisition/ Focus of Attention	 Many sources of interference Urban canyons Reflective surfaces Focus of user attention is not part of the experience Sensor data streams unsynchronized
Tracking	Intermittent especially in highly dynamic environmentHigh power consumption
Display/ presentation	 Loss of calibration, flicker Interference of bright and natural light sources Rendered assets do not appear realistic
Others	WeightNo support for "peripheral" visionNo conventions for gestures

Technologies

Category	How to Breakthrough
User Context Acquisition/Focus of Attention	 Develop methods to reduce interference Alternative positioning technologies (PDR) Distinguish reality from reflection Increase viewing angle to include focus of attention Synchronize sensor data streams
Tracking	Improve in highly dynamic environmentReduce power consumption or use alternate power
Display/ presentation	 Re-calibrate automatically and invisibly Use technology tolerant of bright/natural light sources Develop hardware acceleration for realistic
Others	Reduce weightSupport greater "peripheral" visionDevelop conventions for gestures

Data

Category	Obstacles
Source	 Which data? Creating high quality digital assets and developing experiences is time consuming and expensive No portability/interoperability
Transmission	DelayNetwork service interruption may prevent access
Storage	Limited memoryManagement of updates
Usage	 Lack of policies with respect to interaction (use) records Voting/rating feedback

Data

Category	How to Breakthrough
Source	 Improve data and metadata discovery Reduce cost and time of developing high quality digital assets Adopt standards for data portability/interoperability
Transmission	Reduce delayReduce network service interruption
Storage	Improve memory management systemsAdopt Learning management system solutions
Usage	Develop policies for interaction (use) recordsSupport user voting/rating feedbackVoting/rating feedback

Business and Finance

Category	Obstacles
Policy	 Absence of policy Liabilities Injuries Unintentional capture of identities
	Risk with respect to data security
Costs	 Creating high quality digital assets and developing experiences is time consuming and cost unknown (assumed to be expensive) Purchase of delivery platforms Maintenance
Benefits	To be measured and proven
Business Models	Many availableSpecifics yet to be proven

Business and Finance

Category	How to Breakthrough
Policy	 Develop policies for safety, security and quality Reduce liabilities Injuries Unintentional capture of identities
	Develop secure data display solutions
Costs	 Reduce cost and time required for high quality digital asset and AR experience design Reduce cost of delivery platforms through healthy competition based on standards Increase maintenance at lower cost
Benefits	 Measure and prove, then document, share
Business Models	Explore best business modelsProve new business models

January 2014 Doc.: 15-13-0746-00-wng0

IEEE SA Taking Leadership Role

- IEEE SA is developing assets for education and programs
- IEEE SA seeks, where applicable, to engage with WG chairs to increase the support for AR in existing and future IEEE standards
- IEEE SA is leading AR awareness across IEEE societies and members

January 2014 Doc.: 15-13-0746-00-wng0

IEEE SA Emerging Technologies

- Will publish
 - Information about how IEEE SA specifications can advance AR
 - Domain specific uses for AR
- Organize
 - Information and demonstration events
 - Community and expert discussions

Proposals

- Explore
 - Evaluate where 802.15 may add value
 - Mobile AR use cases in future work
- Collaborate with IEEE SA, the AR Community and AREA
 - Obtain and develop specifications that will meet mobile AR requirements

Christine Perey cperey@perey.com +41 79 436 6869 @cperey