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Channel Models for IEEE 802.15.4q
1. Introduction

There have been numerous contributions made capturing the large scale fading and small scale fading characteristics in the literature for the target frequency bands in TG4q PAR namely sub-1 GHz and 2.4 GHz. This document recommends the path loss and impulse response models most relevant to scenarios encountered by applications discussed in TG4q. The channel models are recommended for the bands of interest namely 902-928 MHz and 2400-2483.5 MHz bands.

[bookmark: _Toc292353315]1.1 Purpose

The purpose of the document is to create a reference specifying the path loss models and the impulse response models relevant to TG4q for system evaluation and fair comparison of PHY proposals
[bookmark: _Toc292353316]1.2 Methodology

The typical application scenarios described in TG4q [1]-[4] are characterized based on the channel parameters namely the range, the environments encountered namely outdoor or indoor, the presence or absence of line of sight (LOS) components, the extent of shadowing, and also the impact of multipath fading. Based on this characterization, the channel models most appropriately capturing these scenarios are identified from the existing literature and recommended for TG4q. 

2. Large Scale Fading 

The typical application scenarios relevant to TG4q are smart utility, building automation, inventory and warehouse management, medical and healthcare applications, retail services, telecommunication services, industrial and infrastructure monitoring and environmental monitoring. 
From the application scenarios it is observed that the maximum range that needs to be supported is around 100 m. This comes from applications like inventory and warehouse management, industrial and infrastructure monitoring and environmental monitoring. However, in most cases the range that needs to be supported is below 30 m. Also, for a good number of applications, the range is below 10 m. As regards the environment encountered, both outdoor and indoor scenarios are observed in most cases. The LOS scenarios exist in all the applications mentioned and NLOS scenarios although not that common are nevertheless observed in many scenarios.  Moreover, shadowing is low to moderate in most cases and is high in applications like retail outlets. 

2.1 Outdoor Path Loss Models

The outdoor path loss models are relevant to scenarios like smart utility, telecom services and industrial and environmental monitoring. The outdoor path loss models presented here is based on ITU-R P.1411-6 “Propagation data and prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100 GHz” [5]. This effectively covers the UHF, SHF and EHF frequency bands. It provides an up to date recommendation for propagation over paths of length less than 1 Km, which is affected primarily by buildings and trees. 

ITU-R P.1411-6 divides the physical environments typically encountered in short range communications into four categories namely urban, sub-urban, residential and rural environments. TG4q applications fall under all these categories. For each of the categories, two possible scenarios of the mobile are considered namely pedestrian and vehicular. TG4q applications can be either fixed or at the most pedestrian. The type of propagation mechanism that dominates depends also on the height of the base station antenna relative to the surrounding buildings. Depending on the range and relative antenna heights, outdoor environments are further classified into micro-cell, dense urban micro-cell and pico-cell. Under this classification the TG4q applications fall under dense urban micro-cell and pico-cell scenarios. 

Based on this, we specify a LOS path loss models for 900 MHz and 2.4 GHz bands. Two separate NLOS models once each for 900 MHz and 2.4 GHz bands are also specified. 

2.1.1 LOS Path Loss Models for 900 MHz and 2,4 GHz bands

The path loss is characterized by two slopes and a single break point. Although approximate lower bounds and upper bounds are specified, we adopt the median path loss model for outdoor environments. The path loss in dB at a distance  is given by



Here   is the break-point distance given by 



Here  the height in meters of the base station,  is the height in meters of the mobile station, and  is the wavelength in meters.  is a value for the basic transmission loss at the break point defined as 



2.1.2 NLOS Path Loss Models

The figure below depicts the situation for a typical dense urban micro-cellular NLOS case. This is called NLoS2. 

The relevant parameters for this situation are 

 Street width at the position of the BS (m)
 Street width at the position of the MS (m)
 Distance of BS  to street crossing (m)
 Distance of BS  to street crossing (m)
 is the corner angle (rad.)



[image: ]
Fig.1 Definition of parameters for the NLoS2 case

2.1.2.1 NLOS Path Loss Model for 900 MHz band 

Refer Fig. 1. In this model, the diffracted and reflected waves at the corners of the street crossings have been considered. 



Where  is the reflection path loss defined by 


Where 


Where 

And   is the diffraction path loss defined by 







2.1.2.2 NLOS Path Loss Model for 2.4 GHz band 

Refer Fig. 1. This model is derived based on measurements with the corner angle  and  is up to 10 m. The path loss characteristics can be divided into two parts namely corner loss region and the NLOS region. The corner loss region extends for  from the point which is 1 m down the edge of the LOS street into the NLOS street. The corner loss  is expressed as the additional attenuation over the distance. The NLOS region lies beyond the corner loss region, where a co-efficient parameter  applies. The overall path loss  in dB beyond the corner region  is found using 


Where 





Where  is the path loss in the LoS street for (>20m) is as calculated in (1). In equation (10)  is given as 20 dB in an urban environment and 30 dB in a residential environment. is 30 m in both environments. In equation (11), is given by 6 in both environments. 

2.2 Indoor Path Loss Models

All applications discussed in TG4q except for environmental monitoring have indoor scenarios. The Recommendation ITU-R P.1238-7 “Propagation and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz” is employed [6]. This effectively covers the UHF, SHF and EHF frequency bands. It provides an up to date recommendation for propagation over paths of length less than 1 Km.

 A general model is specified applicable for NLOS/LOS and for 900 MHz and 2.4 GHz frequency bands depending on the choice of parameters. The propagation model accounts for the loss through multiple floors to allow for such characteristics as frequency reuse between floors. When this component is absent, the model reduces to the case with LOS propagation.  

2.2.1 Indoor Path Loss Model for 900 MHz and 2.4 GHz bands

The basic model has the following form

(12)
Where
 Distance power loss co-efficient 
  Frequency in MHz
 Separation distance (m) between the base station and the portable terminal ()
Floor penetration loss factor
   Number of floors between the base station and the portable terminal ()

Table 1:  Values of N and Lf in different scenarios

	Parameter
	Frequency
	Residential
	Office
	Commercial

	N
	2.4 GHz
	28
	30
	-

	Lf
	2.4 GHz
	10(Per concrete wall in apartment)
5 (house)
	14
	-

	N
	900 MHz
	33
	33
	20

	Lf
	900 MHz
	9 (1 Floor)
19 (2 Floors)
24 (3 Floors)
	9 (1 Floor)
19(2 Floors)
24 (3 Floors)
	-



The values to be chosen for the various parameters are shown in Table 1. 

Paths with a LOS component are dominated by free space loss and have a distance power loss co-efficient of around 20. Also in the absence of any floors, Lf (n)=0. 
Large open rooms have a distance power loss co-efficient of 20. This may be due to strong LOS component in most areas of the room. These situations are prevalent in open rooms in offices, factories, sports arenas and retail stores. Corridors have a typical distance power co-efficient o around 18. Corridors with their long linear aisles exhibit the corridor loss characteristic. 
Propagation around obstacles and through walls increases the distance power loss co-efficient to around 40 for a typical environment. Examples include paths between rooms and in closed plan office buildings. 
For long unobstructed paths the first Fresnel’s zone breakpoint may occur. At this distance, the distance power loss co-efficient may change from about 20 to about 40. 

3. Small Scale Fading

Small scale fading models are described here for indoor and outdoor scenarios. Models based on the channel delay spread and power delay profiles are specified. Typically the bandwidth of legacy IEEE 802.15.4 systems is around 3 MHz. Assuming a 75% coherence bandwidth of 3 MHz, the associated delay spread is   ≈ 1/(30 ×3 ×106) ≈ 10ns [9]. So as the dominant multipath components begin to appear beyond 10 ns, the frequency selectivity of the channel begins to affect the signals. The associated distances at which this happens is beyond 3 m ( d =st = 3×108×10×10-9). 

3.1 Flat Fading Channels

There are many application scenarios wherein the range is below 3 m. In such cases the channel can be considered to be flat Ricean/Rayleigh fading and system evaluation and benchmarking can be based on such channel models. Typical scenarios include medical/healthcare, telecom services, building automation and retail services.

Also there are many scenarios wherein the associated range is beyond 3 m. In such cases, multipath channel models need to be specified. This is described next.

3.2 Delay Spread Models

In such cases, the range dependent parameters are related to the delay spread which may be then employed to specify the channel models.  

3.2.1 Outdoor Channel Models

This model describes the characteristics of the multipath delay spread for the LOS omnidirectional antenna case [5]. The rms delay spread S at a distance d m follows a normal distribution with the mean value given by 



And the standard deviation given by 



Where  depends on the propagation environment and have typical values are given in Table 2. These may be adopted for 900 MHz and 2.4 GHz respectively. 

Table 2
	Sr. No
	Frequency
(GHz)
	
	
	
	

	1
	0.781
	1254.3
	0.06
	102.2
	0.04

	2
	2.5
	55
	0.27
	12
	0.32



The average power delay profile was found to be 


Where 
: Peak Power (dB)
 decay factor and t is in nano-seconds

From the measured data for an r.m.s delay spread S,  can be estimated as



 A linear relationship between  and S is only valid for the LOS case. Also the instantaneous properties of the power delay profile have also been characterized. The energy arriving in the first 40 ns has a Ricean distribution with a K-factor of about 6 to 9 dB, while the energy arriving later has a Rayleigh or Ricean distribution with a K-factor of up to about 3 dB.

3.2.2 Indoor Channel Models

The model is applicable to 900 MHz and 2.4 GHz [6]. The rms delay spread S is roughly in proportion to the area of the floor space  and is given by 



Where, the units of and  are  and nsrespectively. Within a given building, the delay spread tends to increase as the distance between antennas increases and hence the path loss increases. With greater distances between antennas, it is more likely that the path will be obstructed and that the received signal will consist of entirely of scattered paths. 

The rms delay spread may be used in exponentially decaying power delay profiles. The impulse response in this case is 

 

Here  is the maximum delay and S 


 3.3 Power Delay Profiles

In this case the channel impulse response model is assumed to be wide sense stationary with uncorrelated scatterers (WSSUS) [7]. The many scattered paths that may exist in a real channel are replaced with only a few N multi-path components in the model. Then a complex Gaussian time variant process  models the super-position of unresolved multipath components arriving from different angles with delays close to the delay of the th model multipath component and a Doppler spectrum of. Then, the impulse response  is given by 


Where  is the received power from the th model multipath component. Such a statistical model such as this requires appropriate parameters for each component. Since the mobility is at the most pedestrian and there are many scenarios for fixed wireless channels the Doppler spectrum is either flat or classical. 
The flat Doppler spectrum is given by 



The classic Doppler spectrum is given by 




The power  for each realization of (19) may be chosen from the following ITU power delay profiles in Table 3 and Table 4. These are applicable to both 900 MHz and 2.4 GHz frequency bands. 

Table 3   ITU Indoor office
	Tap
	Relative delay (ns)
	Average power (dB)
	Doppler spectrum

	1
	0
	0
	Flat

	2
	50
	-3
	Flat

	3
	110
	-10
	Flat

	4
	170
	-18
	Flat

	5
	290
	-26
	Flat

	6
	310
	-32
	Flat




Table 4  ITU outdoor to indoor and pedestrian
	Tap
	Relative delay (ns)
	Average power (dB)
	Doppler spectrum

	1
	0
	0
	Classic

	2
	110
	-9.7
	Classic

	3
	190
	-19.2
	Classic

	4
	410
	-22.8
	Classic
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