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The following is to be incorporated by replacing existing section19.1.2.6.2 of the TG4k draft.
19.1.2.6.2 OVSF Code Generator
Orthogonal variable spreading factor (OVSF) code is the same as Walsh code, except that each sequence has different index number in the code set, which results from their different generator algorithms. 
In LECIM system, Gold code is used inside a CLON as the primary code. OVSF code is used to identify the CLONs and clusters to provide double protection from the outside interference. 
The OVSF codes can be defined recursively by a tree structure, as shown in Figure 159.
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Figure 159 –OVSF code tree
The OVSF Code Generator block outputs can be specified by two parameters in the block's mask: the Spreading factor and the Code index. In Figure 66, 
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, , which  specifies how far down the column of the tree at depth 
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 the code appears. The root code 
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To recover the code from the Spreading factor and the Code index, the following procedures are applied. Convert the Code index i into the binary form. If 
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, add zeros to the left side of this binary code index to make it have the
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 form. To choose the specific code in the tree, the path is determined using the binary path sequence in the form of 
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. This binary path sequence describes the path from the root to the specific code according to the rule as follows: the path takes the upper branch from the code at depth 
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. For example, with the root 
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To make the above procedures more clear, a specific example is given below. Assuming the finding code has the Spreading factor 
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1. Convert 
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2. Add one 0 to the left to obtain 0110, which has the length of 
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3. Construct the sequences 
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 according to the following table.

	Path depth
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	Path sequence
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	Code index
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Table 159a – Example of OVSF code recovery
From the Table 159a, the code 
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The logical level architecture of OVSF code generator is shown in Figure 159b. There are two inputs for the OVSF code generator: an OVSF Code index 
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Figure 159b – Logical Level architecture of OVSF code generator
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Figure 159c –An example of OVSF code generator for LECIM DSSS PHY
For example, to generate the code 
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 in Figure 159, considering the digital CMOS logic operation, the mapping {“+1”->”logic 0”}, and {“-1”->”logic 1”} is specified.  The participation of the specific bits in the XOR operation according to the OVSF Code index 
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 is periodic in time and can be controlled by the chip rate binary counter as illustrated in Figure 159c and the following table.
Table 159d – Example of OVSF code output
	Chip rate counter
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 i= 5
	OVSF code output 
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The PIB attributes phyLECIMDSSSPSDUOVSFSpreadingFactor and phyLECIMDSSSPSDUOVSFCodeIndex specify the OVSF code output. The same values shall be used to recover the OVSF code.
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