December, 1012 doc.: IEEE 802. 15-12-0687-00-004k

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Document for DSSS OVSF Specification

	Date Submitted
	[27 December 2012]

	Source
	Kyung Sup Kwak [Inha Univ.]
Jaedoo Huh [ETRI]

M. Al Ameen [Inha Univ.]
	E-mail: [kskkwak@inha.ac.kr]

E-Mail: [jdhuh@etri.re.kr]

E-Mail: [m.ameen@hotmail.com]

	Re:
	[TG4k LECIM PHY Draft development]

	Abstract
	LECIM TG4k DSSS OVSF Code Generator

	Purpose
	Draft standard development

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

The following is to be incorporated by replacing existing section19.1.2.6.2 of the TG4k draft.
19.1.2.6.2 OVSF Code Generator
Orthogonal variable spreading factor (OVSF) code is the same as Walsh code, except that each sequence has different index number in the code set, which results from their different generator algorithms.
In LECIM system, Gold code is used inside a CLON as the primary code. OVSF code is used to identify the CLONs and clusters to provide double protection from the outside interference.
The OVSF codes can be defined recursively by a tree structure, as shown in Figure 159.

[image: image1.emf]0

1

[1] C



0

2

[1 1] C



1

2

[1 -1] C



0

4

[1 1 1 1] C



1

4

[1 1 -1 -1] C



2

4

[1 -1 1 -1] C



3

4

[1 -1 -1 1] C



0

8

[1 1 1 11 1 1 1] C



1

8

[1 1 1 1 -1 -1 -1 -1] C



2

8

[1 1 -1 -1 1 1 -1 -1] C



3

8

[1 1 -1 -1 -1 -1 1 1] C



4

8

[1 -1 1 -1 1 -1 1 -1] C



5

8

[1 -1 1 -1 -1 1 -1 1] C



6

8

[1 -1 -1 1 1 -1 -1 1] C



7

8

[1 -1 -1 1 -1 1 1 -1] C



0 r



1 r



2 r



3 r



Root:

Figure 159 –OVSF code tree
The OVSF Code Generator block outputs can be specified by two parameters in the block's mask: the Spreading factor and the Code index. In Figure 66,
[image: image2.wmf]i

N

C

 is a code of length
[image: image3.wmf]2

r

N

=

at depth
[image: image4.wmf]r

 in the tree. The Code index
[image: image5.wmf]i

 has the range of
[image: image6.wmf]{0,1,,1}

N

-

L

, , which specifies how far down the column of the tree at depth
[image: image7.wmf]r

 the code appears. The root code
[image: image8.wmf]0

1

C

 has the length of
[image: image9.wmf]1

N

=

, the Code index
[image: image10.wmf]0

i

=

, and the depth
[image: image11.wmf]0

r

=

. Two branches, which have the length of
[image: image12.wmf]1

2

r

+

, leading out of
[image: image13.wmf]i

N

C

 are labeled by the sequences
[image: image14.wmf][]

ii

NN

CC

 and
[image: image15.wmf][]

ii

NN

CC

, where
[image: image16.wmf]ii

NN

CC

=-

.
To recover the code from the Spreading factor and the Code index, the following procedures are applied. Convert the Code index i into the binary form. If
[image: image17.wmf]1

iN

<-

, add zeros to the left side of this binary code index to make it have the
[image: image18.wmf]-bits

N

 form. To choose the specific code in the tree, the path is determined using the binary path sequence in the form of
[image: image19.wmf]12

[,,,]

r

xxxx

=

L

. This binary path sequence describes the path from the root to the specific code according to the rule as follows: the path takes the upper branch from the code at depth
[image: image20.wmf]r

¢

 if
[image: image21.wmf]0

r

x

¢

=

, or the lower branch if
[image: image22.wmf]1

r

x

¢

=

 for
[image: image23.wmf]1

rr

¢

££

. For example, with the root
[image: image24.wmf]0

1

[1]

C

=

 and
[image: image25.wmf]2

log

rN

=

 of
[image: image26.wmf]i

N

C

, then
[image: image27.wmf]2

2

i

N

C

 and
[image: image28.wmf]21

2

i

N

C

+

 can be defined as:
[image: image29.wmf]221

2121

[] if 0, and [] if 1.

iiiiii

NNNrNNNr

CCCxCCCx

+

++

====

To make the above procedures more clear, a specific example is given below. Assuming the finding code has the Spreading factor
[image: image30.wmf]16

N

=

 and Code index
[image: image31.wmf]6

i

=

, then the following steps need to be done:

1. Convert
[image: image32.wmf]6

i

=

 to the binary number 110.

2. Add one 0 to the left to obtain 0110, which has the length of
[image: image33.wmf]2

log164

r

==

.

3. Construct the sequences
[image: image34.wmf]i

N

C

 according to the following table.

	Path depth
 r
	Path sequence
 xr
	Code index
 i
	Code
[image: image35.wmf]i

N

C

	0
	
	0
	
[image: image36.wmf]0

1

[1]

C

=

	1
	0
	0
	
[image: image37.wmf]000

211

[][1][1]

CCC

==

	2
	1
	1
	
[image: image38.wmf]100

422

[][1 1][11]

CCC

== --

	3
	1
	3
	
[image: image39.wmf]311

844

[][1 1 1 1][1 1 1 1]

CCC

==-- --

	4
	0
	6
	
[image: image40.wmf]633

1688

[][1 1 1 1 1 1 1 1][1 1 1 111 1 1]

CCC

==---- ----

Table 159a – Example of OVSF code recovery
From the Table 159a, the code
[image: image41.wmf]6

16

C

 has Spreading factor
[image: image42.wmf]16

N

=

 and Code index
[image: image43.wmf]6

i

=

.
The logical level architecture of OVSF code generator is shown in Figure 159b. There are two inputs for the OVSF code generator: an OVSF Code index
[image: image44.wmf]i

 and Spreading factor
[image: image45.wmf]N

. The Code index
[image: image46.wmf]i

 is stored in the
[image: image47.wmf]-bit

N

 binary representation as
[image: image48.wmf]1210

(...)

NN

VVVV

--

. According to the input Spreading factor
[image: image49.wmf]N

, the chip rate binary counter counts incrementally from 0 to
[image: image50.wmf]1

N

-

 in the
[image: image51.wmf]-bit

N

 binary representation as
[image: image52.wmf]1210

(...)

NN

bbbb

--

.

[image: image53.emf]Spreading factor N

.

.

LSB

2 N

b



1 N

b



3 N

b



4 N

b



1

b

0

b

1 N

V



2 N

V



3

V

2

V

1

V

0

V

MSB

MSB

LSB

 











AND

XOR



OVSFCode index i

i

N

C

OVSFCode

Chip rate

binary counter

Figure 159b – Logical Level architecture of OVSF code generator

[image: image54.emf]LSB

2

b

1

b

0

b

2

V

1

V

0

V

MSB

MSB

LSB

 

AND

XOR



OVSF Code

i

N

C

Chip rate

binary

counter

OVSF

code Index

i

N

Figure 159c –An example of OVSF code generator for LECIM DSSS PHY
For example, to generate the code
[image: image55.wmf]5

8

C

 in Figure 159, considering the digital CMOS logic operation, the mapping {“+1”->”logic 0”}, and {“-1”->”logic 1”} is specified. The participation of the specific bits in the XOR operation according to the OVSF Code index
[image: image56.wmf]i

 is periodic in time and can be controlled by the chip rate binary counter as illustrated in Figure 159c and the following table.
Table 159d – Example of OVSF code output
	Chip rate counter

[image: image57.wmf]210

bbb

	Operation

[image: image58.wmf]012

VVV

with code index
 i= 5
	OVSF code output
[image: image59.wmf]5

8

C

	
	
	CMOS logic mapping form
	 Form in Figure 159

	0 0 0
	0
	0
	1

	0 0 1
	
[image: image60.wmf]2

V

	1
	-1

	0 1 0
	
[image: image61.wmf]1

V

	0
	1

	0 1 1
	
[image: image62.wmf]12

VV

Å

	1
	-1

	1 0 0
	
[image: image63.wmf]0

V

	1
	-1

	1 0 1
	
[image: image64.wmf]02

VV

Å

	0
	1

	1 1 0
	
[image: image65.wmf]01

VV

Å

	1
	-1

	1 1 1
	
[image: image66.wmf]012

VVV

ÅÅ

	0
	1

The PIB attributes phyLECIMDSSSPSDUOVSFSpreadingFactor and phyLECIMDSSSPSDUOVSFCodeIndex specify the OVSF code output. The same values shall be used to recover the OVSF code.
_1410294820.unknown

_1410325334.unknown

_1413122269.unknown

_1413122867.unknown

_1413123106.unknown

_1413123139.unknown

_1413123156.unknown

_1413123032.unknown

_1413122352.unknown

_1413122699.unknown

_1413122739.unknown

_1413122364.unknown

_1413122383.unknown

_1413122291.unknown

_1413122316.unknown

_1413122277.unknown

_1413121335.unknown

_1413121809.unknown

_1413121931.unknown

_1413121756.unknown

_1413025933.vsd
�

. . .

. . .

Spreading factor N

_1413121260.vsd
�

LSB

MSB

MSB

LSB

AND

XOR

 OVSF Code

Chip rate
binary counter

OVSF code Index

_1410325949.vsd
Root:

_1410324755.unknown

_1410325109.unknown

_1410325188.unknown

_1410325297.unknown

_1410325298.unknown

_1410325204.unknown

_1410325296.unknown

_1410325145.unknown

_1410325167.unknown

_1410325113.unknown

_1410325054.unknown

_1410325105.unknown

_1410324759.unknown

_1410322510.unknown

_1410322544.unknown

_1410324736.unknown

_1410324749.unknown

_1410324493.unknown

_1410322560.unknown

_1410322521.unknown

_1410322526.unknown

_1410322534.unknown

_1410294822.unknown

_1410322409.unknown

_1410322505.unknown

_1410294821.unknown

_1410294787.unknown

_1410294792.unknown

_1410294814.unknown

_1410294815.unknown

_1410294799.unknown

_1410294789.unknown

_1410294790.unknown

_1410294788.unknown

_1410294783.unknown

_1410294785.unknown

_1410294786.unknown

_1410294784.unknown

_1410294779.unknown

_1410294780.unknown

_1410294778.unknown

_1410294766.unknown

