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• Ultra-high-speed 
cellular networks 
– Terahertz Band 

communication 
can be used in 
future small-cell 
systems, i.e., as 
a part of 
hierarchical 
cellular networks 

Terahertz Band Communication Applications 
in the Macroscale (1) 
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• Terabit/second 
(Tbps) short-range 
interconnected 
devices  
– Tbps links among 

devices in close 
proximity are 
possible with 
Terahertz Band 
communication 
(e.g., multimedia 
kiosks). 

Terahertz Band Communication Applications 
in the Macroscale (2) 
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• Nanoscale machine 
communication and 
networks 
– The state of the art in 

nanoscale antennas 
and transceiver 
design points to the 
Terahertz Band as the 
frequency range for 
nano-machines 
communication 

Terahertz Band Communication Applications 
in the Nanoscale 
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• Multi-path is present in many scenarios 
– both in classical networking scenarios, such as in small cell 

systems, as well as novel networking paradigms at the nanoscale 
 

• High-directivity/gain antennas (e.g., 35 dBi) are advocated  
– Combat the channel impairments 
– Infeasible for mobile devices 
– Impossible for nano-antennas 

 
We need generic multi-path channel model for  

Terahertz Band 
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• Rayleigh and Rician fading models assume that 
– There is a large number of statistically independent 

reflected and scattered path 
– Each tap gain is modeled as a circular symmetric 

Complex Gaussian random variable 
The magnitude of each channel tap follows a 

Rayleigh distribution when LOS is absent and a 
Rician distribution when LOS is dominant 
 

• However, these models neglect the high 
propagation loss and scattering loss of THz Band 
communication 

 

Relevant Multi-path Channel Model (1) 
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• Existing Terahertz multi-path channel models 
– Capture the peculiarities of the EM wave transmission in Terahertz 

Band 
– Conduct ray-tracing techniques to measure the channel response at 

300 GHz 
 

• However, these models are subject to specific experimental 
settings and focus on the single transmission window (300 GHz) 
instead of the entire Terahertz Band 
 

• Therefore, an analytical multi-path channel model that is adaptive 
for stochastically varying scenarios and generic for the entire 
Terahertz Band is demanded 

Relevant Multi-path Channel Model (2) 
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• Due to the very high attenuation created by 
molecular absorption, current efforts both on: 
– device development and 
– channel characterization      
   are focused on the absorption-defined window at 

300 GHz with transmission distance in the order of 
meters 

 
• However, some of the properties of this band in 

the very short range and higher frequencies 
need to be better understood and analyzed 

Motivation for Free Space Channel 
Model in Terahertz Band 
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• Based on the radiative transfer theory, the free space 
frequency response consists of 
– Spreading loss: accounts for the attenuation due to the 

expansion of the wave as it propagates in the medium 
– Absorption loss: accounts for the attenuation that the 

propagating wave suffers because of molecular absorption, 
i.e., the process that the EM wave energy is converted into 
vibrational kinetic energy in gaseous molecules 

Terahertz Band Free Space Channel Model 
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J. M. Jornet and I. F. Akyildiz, “Channel Modeling and Capacity Analysis of Electromagnetic Wireless 
Nanonetworks in the Terahertz Band”, IEEE Trans. On Wireless Communications, October 2011 
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•         : spreading loss 
•     : molecular absorption loss 
•     : speed of light 
•    : signal frequency 
•     : transmission distance (Tx-Rx) 
•       : frequency-dependent medium absorption coefficient, dependent  

   on the system pressure in atm, the temperature in Kelvin, the   
   molecular volume density in molecules/m3 and the molecular    
   absorption cross-section m2/molecule 

Parameter Notations 
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• The Terahertz Band communication channel has a strong 
dependence on: 
– Signal frequency 
– Transmission distance 

LOS Path-loss in dB 
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• In Terahertz Band, free space channel path-loss 
increases with frequency due to the spreading loss 
 

• The path-loss can easily go above 100 dB for 
transmission distances in the order of just a few meters 
 

• The molecular absorption defines several transmission 
windows (w1, w2, w3, w4), whose position and width 
depend on the transmission distance  
– For longer transmission links, more molecular resonances 

become significant, and the windows become narrower 
– For short range (less than 1m) communication, Terahertz 

Band offers incredibly huge bandwidth (almost a 10 THz 
wide window) 

 

Terahertz Band Free Space Channel Properties 
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• Obtain realistic numbers for the achievable transmission 
rates of different transmission windows 
– account for the transmitter and the receiver antenna 

directivity as well as for the gain and noise factor 
 

• Locate the best transmission windows in Terahertz Band in 
light of information capacity for communication with 
different transmission distances 

Terahertz Band LOS Channel Additional Challenges 
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• When the LOS is blocked by moving people or 
obstacles, NLOS scenario is considered 
– Introduces the rough surface scattering loss in addition 

to the free space propagation loss 
 

• Origin: wavelength of EM wave in the Terahertz 
Band is [0.03 mm, 3 mm] 
 

• Any surface with roughness comparable to the 
wavelength 
– Scatters the EM wave 
– Has to be considered as rough surface 

Terahertz Band Reflection Challenge 
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• Scattered rays have no 
significant contribution to the 
received signal 
 

• Rays which suffer from multiple 
consecutive reflections have no 
significant contribution to the 
received signal 
 

• No cross-polarization occurs in 
forward scattering directions 
(including the specular direction) 
 

• We consider the specular 
scattering only (              ) 
 

Terahertz band Specular Scattering 
Model Considerations 

November 2012 

Slide 20 Chong Han, Georgia Tech 

IN OUTθ θ=

Notations: 
r: transmission distance between Tx and Rx 
r1: distance between Tx and the scatter 
r2: distance between the scatter and Rx 
    : incident angle of the transmission wave 
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• Definition: the received signal amplitude loss with reference to the 
incident signal at the scattering point 
 

• Includes the scattering loss as well as the propagation loss between 
the scatter and the receiver 
 

• The assumptions are 
– In practice when the scattering surface area is large 
– The specularly reflected signal is contained in a single reflected ray as if 

there is no scattering occurred due to edge effects 
– The effect of the surface roughness is captured in the Rayleigh roughness 

coefficient 
 
 

Reflection Coefficient of Rough Surface 
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• According to Kirchhoff theory for rough surface, the reflection 
coefficient is obtained as the multiplication of the smooth surface 
reflection coefficient derived from the Fresnel equations with the 
Rayleigh roughness factor 
 

Terahertz Band Specular Scattering Model 
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• The complete NLOS channel frequency response is 
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• Reflection loss is dependent on the material of rough surface 
and increases when 
– Angle of incidence wave decreases 
– Frequency increases 

Reflection Coefficient for Different Materials 
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• There is a need to determine the reflection 
coefficients for common materials (e.g., ingrain 
wallpaper and plaster in indoor environments) 
for the entire Terahertz Band, in order to obtain 
realistic values for NLOS path-loss 
 

• NLOS communication deployed with directed 
reflection on dielectric mirrors will be studied as 
supplementary for the case when LOS is 
unavailable 

Terahertz Band NLOS Channel Additional Challenges 
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• The multi-path channel frequency response is  

Statistical Multi-path Channel Model 
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• Aim: validate our channel 
model by verifying in one 
deterministic setting case 
 

• Indoor scenarios with 
scattering on Plaster s2 
– Frequency = 300 GHz  
– Tx location: (0.25 m, 2.5 

m, 2.3 m)  
– Rx location: (1.125 m, 

1.375 m, 2.3 m) 
 

One Static Indoor Scenario 
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Priebe, S., Jacob, M., Kürner, T., “AoA, AoD and ToA Characteristics of Scattered Multipath Clusters for 
THz Indoor Channel Modeling”, 17th European Wireless Conference (EW), April 2011 
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• LOS ray arrives first and has the smallest path-loss in dB 
– Smallest free space propagation loss since it travels the 

shortest distance  
– No scattering loss 

 
• Two rays are resolvable only if the difference of their Time-

of-Arrival (ToA) is larger than 3.33 ps for 300 GHz EM wave 
 

Individual Ray Analysis 
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• Fast fading 
– Due to constructive and 

destructive interference 
of the multiple signal 
paths 

– Characterizes the rapid 
fluctuations of the 
received signal strength 
over short distances or 
short time duration. 

– Path-loss is 83.13 dB at 
300 GHz 
 

Multi-path Channel Loss Analysis  
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Simulation results of our model match with those using 
ray-tracing techniques 
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• The p.d.f. of the multi-path channel is 
 

Expected Multi-path  
Channel Frequency Response 
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• Scatter locations follow Uniform distributions 
 
– When r is large 

 
– When r is small 

 
 

Analytical Form of Expected Channel 
Frequency Response 
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• The total path-loss of the multi-path channel in the Terahertz Band  
– Increases with the transmission distance as well as the system 

frequency 
– Depends on the composition of the transmission medium and the 

properties of the reflected rough surfaces 
 

• For short transmission distances (below one meter) 
– Terahertz Band channel behaves as a single transmission window 

almost 10-THz wide 
– Multi-path fading plays an important role 

 
• With increasing transmission distance (larger than one meter)  

– The impact of scattered rays diminishes 
– Molecular absorption limits the Terahertz Band channel to a set of 

multi-GHz-wide windows 
 

Terahertz Band Multi-path Channel Properties 
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• The proposed multi-path channel model captures 
– Spreading loss and molecular absorption loss in free space 

propagation, by means of radiative transfer theory 
– Reflection loss due to scattering in rough surfaces, by means of 

Kirchhoff theory 
– Multi-path fading loss due to stochastically distributed scatters 

 
• The model is adaptive for stochastically varying scenarios and 

generic for the entire Terahertz Band (0.1 – 10 THz)  
– The simulation is conducted over (0.1 – 1 THz) due to the lack of 

physical characterization for the materials at beyond frequencies 
 

• The distance-dependent channel behavior requires the 
development of dynamic distance-adaptive solutions for 
Terahertz Band communication networks 

Conclusions 
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