Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Summary of ETRI NB PHY proposal]Date Submitted: [2 November, 2011]Source: Mi-Kyung Oh, Sangsung Choi, Kwang-Roh Park (ETRI)

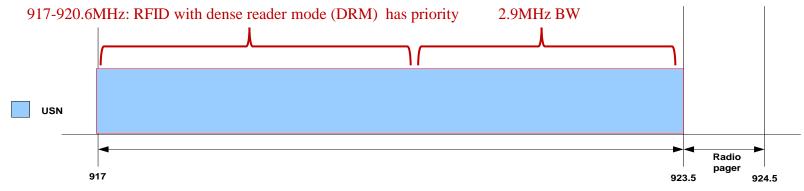
```
Voice: +82 42 860 5680, FAX: +82 42 860 5218, E-Mail: ohmik@etri.re.kr
```

Re: [802.15.TG4k]

Abstract: This contribution is prepared to summarize the ETRI NB PHY for LECIM networks

Purpose:

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

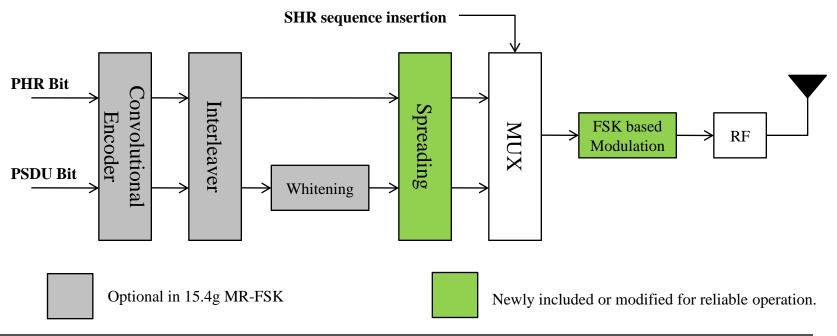

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Contents

- Motivation of NB FSK PHY
- Proposed NB FSK PHY
- Packet format
- Preamble and SFD
- PHR & PSDU
- P-FSK Modulation
- Data rate
- Key aspects of PHY proposal

Motivation of NB FSK PHY (1)

• 900MHz channel plan for USN in Korea (doc. 15-10-0335)

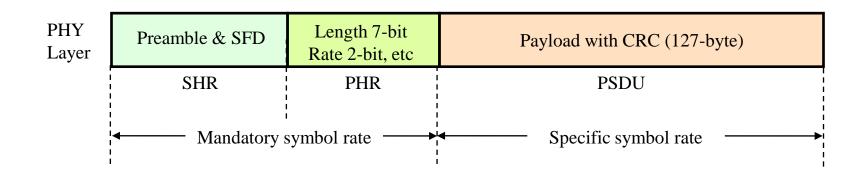

- RFID and USN devices can use this band.
- RFID with DRM has priority in 917-920.6MHz band.
- Max. EIRP: 10dBm
- It is hard to allocate the wideband PHY in Korea USN band and the NB PHY would be adequate for this band.

Motivation of NB FSK PHY (2)

- Benefits of Narrowband FSK PHY
 - Lower the noise level
 - No need of high-linearity power amplifier (PA)
 - Non-coherent receiver: low-power consumption
 - No need to track the phase of the carrier
 - Performance difference between coherent receiver and non-coherent receiver: roughly 1dB
 - Suitable for battery-powered endpoint devices
 - Simple, cheap and proven technology

Proposed NB FSK PHY (1)

- System block diagram
 - Basically, the architecture is same as 15.4g MR-FSK.
 - The colored blocks are required for reliable operation in harsh LECIM environments



Proposed NB FSK PHY (2)

- Functional blocks for reliable operation
 - Regulation issue
 - With the low EIRP (e.g., 10dBm in Korea 900MHz band), it is hard to satisfy the link budget
 - Considering 900MHz large urban channel, the RX power is calculated as -118.4dBm@10dBm EIRP
 - Harsh LECIM channel environments

Packet Format

• PHY packet format

- SHR & PHR: transmitted at mandatory data rate
- PSDU: transmitted at data rate specified in PHR

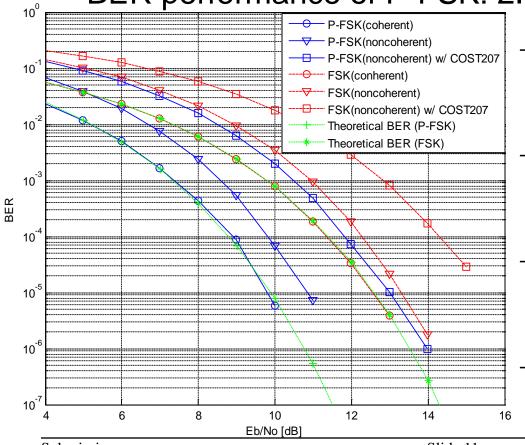
Preamble & SFD

- Long preamble and SFD sequence are necessary due to harsh and high path loss channel environment
- Preamble
 - Multiples of "01010101"
 - Fixed number of preambles is desirable
- SFD
 - Repetition of 15.4g SFD sequence
 - 15.4g SFD sequence: 16-bit
 - Benefit
 - SFD detector can use full SFD sequence or part of SFD sequence according to its capability and channel condition

PHR

• PHR sequence

Octets: 1				1		
Bits: 1	2	3	2	1	7	
OP	IDepth	SF	Rate	EXT	Length	
PHR						


- Length: 7-bit \rightarrow max. PSDU 127-octet
- − Rate: 2-bit \rightarrow Data rate
- Spreading factor (SF): 3-bit
- Interleaving depth (IDepth): 2-bit
- Odd parity (OP): 1-bit
 - Simply detect PHR error to stop demodulation process

PHR & PSDU

- PHR and PSDU are encoded by rate ½ convolutional code with interleaving
 - Different interleaving depth for considering channel coherence time
- Data whitening for PSDU: Same as 15.4g
- Spreading: Simple repetition scheme
 - SF: 1(0dB), 2(3dB), 4(6dB), 8(9dB), 16(12dB), 32(15dB)
 - SF can be selected according to regulation and channel condition
 - The large SF (16 or 32) will generate a packet with long duration. It should be avoided in certain regulatory domain.

Position-based FSK (P-FSK) Modulation

- P-FSK: 4-dimension orthogonal signaling
- BER performance of P-FSK: 2.7dB gain at BER 10⁻⁵

- Mains powered coordinator
 - : recommend the coherent receiver
 - : performance enhancement
- Battery powered endpoint
 - : recommend the non-coherent receiver
 - : low power consumption
- -Non-coherent receiver for P-FSK
 - : same as the conventional FSK
 - : computational overhead is negligible
- Multipath channel model
 - : COST 207 for 900MHz band

Data Rate

• Asymmetric data flow between uplink and downlink

- More data from endpoint device to coordinator

- Data rate: 40Kbps (UL), 20Kbps(DL)
- Data rate depends on coding rate and spreading factor

SF	UL	DL			
1	40 Kbps	20 Kbps			
2	20 Kbps	10 Kbps			
4	10 Kbps	5 Kbps			
8	5 Kbps	2.5 Kbps			
16	2.5 Kbps	1.25 Kbps			
32	1.25Kbps	0.625 Kbps			
32	1.25Kbps	0.625 Kbps			

< Data Rate Table >

Key Aspects of PHY Proposal (1/2)

Parameter	Proposed narrowband PHY
Operating band	Same as 15.4g
Modulation	FSK-based orthogonal signaling
Symbol rate	40Kbps (uplink), 20 kbps (downlink)
Spreading	Spreading factor: 1, 2, 4, 8, 16, 32
FEC	Convolutional code with interleaving
Data whitening	Same as 15.4g
PHY frame structure:	
- SHR	Multiples of "01010101" + 64 bit SFD
- PHY header	16-bit including length 7-bit, rate 2-bit, spreading factor 3-bit, interleaving depth 2- bit, odd parity 1-bit
- Max. PSDU	127-octet
- CRC	Same as 15.4g

Key Aspects of PHY Proposal (2/2)

Parameter	Proposed narrowband PHY
Channel spacing	Same as 15.4g
Transmit Power	As allowed by regulatory regimes
PSD	As allowed by regulatory regimes
Link Quality Indication	RSSI
Co-located networks features	Channel diversity
Co-existence features	Channel diversity
Power efficiency features	FSK-based modulation, parity in PHR,
	low-power consumption endpoint device
Reliability enhancing features	
	preamble & SFD sequence, etc