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1. Definitions:

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	


2. General Guidelines
This technical expectations document (TED) describes the technical expectations for a THz standard, such as performance-related issues, reliability issues and availability issues. These types of issues are often called quality of service (QoS). Technical expectations are documented in the same manner as any specifications, including a description, an example, a source or references to related technical documents.

Difference between Expectations and Requirements (TED vs. TRD)
The THz IG group decided to use the term “expectations” instead of “requirements” in order to adopt a less rigid, informal process with the intention to be able to quickly develop actual requirements when the transition to a task group occurs. This document serves to provide guidance for development of IEEE802 THz technical contributions. 
3. Protocol Reference Model
The communication protocol reference model used for this document is shown in Figure 1. 
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4. Use case summary

The following six use case summaries were extracted from document 802.15-11-0749-00-0thz.

1.1 Outdoor Fixed Wireless Links

· Operational environment: Links of backbone network; static use
· Typical range: A few hundred meters up to several kilometers

· Specific propagation conditions: LOS; Atmospheric attenuation becomes important

· Requirements for the antenna alignment: Highly directive antennas; alignment during the installation process by radio engineers

1.2 Indoor Fixed Wireless Links

· Operational environment: Links of backbone network; static use

· Typical range: Up to a few hundred meters or more
· Specific propagation conditions: LOS/Obstructed LOS; Atmospheric attenuation becomes important

· Requirements for the antenna alignment: Highly directive antennas; alignment during the installation process by radio engineers

1.3 Nano Cells

· Operational environment: Part of a hierarchical cellular network; potentially mobile users; indoor as well as outdoor

· Typical range: < 200m

· Specific propagation conditions: LOS/NLOS; dynamically changing conditions

· Requirements for the antenna alignment: automatic beamsteering required

1.4 WLAN Types of Applications

· Operational environment: Connection to access points; nomadic users; mainly indoor

· Typical range: < 100m

· Specific propagation conditions: LOS/NLOS; heavily dynamically changing
· Requirements for the antenna alignment: automatic beamsteering required
1.5 WPAN Types of Applications

· Operational environment: Adhoc networks; nomadic users; mainly indoor

· Typical range: < 10m

· Specific propagation conditions: LOS/NLOS; static to moderately dynamically changing
· Requirements for the antenna alignment: automatic beamsteering required
1.6 Connecting devices on short ranges

· Operational environment: indoor (typically on a desktop), nomadic use

· Typical range: a few cm

· Specific propagation conditions: LOS, multi paths from nearby objects and multiple reflections from Tx and Rx

· Requirements for the antenna alignment: ideally by automatic beamsteering but with Gbps-Link, manual alignment may be possible

1.7  Kiosk Downloading

· Operational environment: indoor, nomadic use

· Typical range: a few cm

· Specific propagation conditions: LOS, multiple reflections from Tx and Rx

· Requirements for the antenna alignment: automatic beamsteering (manual alignment may be very difficult)

1.8 Board-to-Board Communications

· Operational environment: inside computers and inside devices, fixed use

· Typical range: a few cm

· Specific propagation conditions: LOS/NLOS, potentially strong multi paths

· Requirements for the antenna alignment: fixed alignment during design process possible (automatic beamsteering as an option)

1.9 Data Center/Server Farm Wireless Data Distribution
· Enterprise type environment, less sensitivity to complexity issues

· Typical range: up to 100 meters

· Specific propagation conditions: LOS, Obstructed-LOS
· Requirements for the antenna alignment: switched beam, spatial separation for frequency reuse

· Network is self-organizing, fixed node
5. TED Summary

This clause contains an overall summary of the rest of the document, mentioning the highlights such as PHY types (assuming multiple options), data rates, topology options (e.g. star, point-to-point, etc.), and MAC frame formats.
6. Topology

This clause identifies operational topologies such as point-to-point, star, uni-cast, multi-cast, etc.  This clause also includes topologies that require packet forwarding between nodes.  These operational topologies are use case driven and reference should be included to the pivotal use case documents.
1.10 Outdoor Fixed Wireless Topology
e.g. point-to-point access connections (could include hub-and-spoke (star) topologies), relay connections, repeater connections
1.11 Indoor Fixed Wireless Topology

1.12 Nano Cell Topology
1.13 WLAN Topology
1.14 WPAN Topology
1.15 Connecting devices on short range Topology
1.16  Kiosk Download Topology
1.17 Board-to-Board Communications Topology
1.18 Data Center/Server Farm Wireless Data Distribution
The following information is taken from [31]. 

In order to apply wireless links in data centers beamforming capabilities are  required, see Fig. 6-1 inclusding the following feature:

· Beamforming capabilities both in azimuth and elevation 

· Ceiling reflectors (aluminium plates or other good reflecting materials)

· Electromagnetic absorbers on top of the racks to prevent local reflection/scattering around the antenna
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Fig. 6-1 LOS and Indirect LOS Paths [33,34]

Traditional DCN architectures are based on layered 2-tier (3tier-) architectures with core, (aggregation) and access layers [32] A couple of specific arrangements of the servers racks exploring the possibilities to introduce wireless links are proposed as well. 

In Fig. 6-2 to 6-4  some of these proposals are presented. 
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Fig. 6-2 Node Arrangements – Two Parallel Rows [32]
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Fig. 6-3: Node Arrangements – Hexagonal Shape [32]
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Fig. 6-4: Node Arrangements in a Cayley Data Center [35]

1.18.1 Data center infrastructure [29]
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1.18.2 3-Tier Data center Infrastructure [29]
1.18.2.1 Core Layer 

The data center core is a Layer 3 domain built with high-bandwidth links (10 GE or a bunch of 10GE)
1.18.2.2 Aggregation Layer 

Supports Layer 2 and Layer 3 functionality; using 10 Gbps links.
1.18.2.3 Access Layer/ToR
A Layer 2 domain

ToR using 1Gbps links

1.18.2.4 Topology is tradeoffs

Emerging 40G Ethernet , performance bottlenecks
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7. Data Rates 

The data rates should be sufficient to support the proposed use cases in conjunction with the operational frequency plan and channel model.  This section discusses the data rates, which usually is the bases for different PHY type classes.  The data rates are use case driven.
1.19 Outdoor Fixed Wireless Rates
1.20 Indoor Fixed Wireless Rates

1.21 Nano Cell Rates
1.22 WLAN Rates
In reference [30] some first thoughts about modulation schemes and forward error corrections are presented based on link level simulations with realistic devices.  In particular phase noise will probably only allow for easy modulation schemes like BPSK or QPSK in the THz range.  Nevertheless, with a bandwidth of 50 GHz and QPSK, a gross data rate of 100 Gbit/s can be reached.  The forward error correction schemes will reduce the throughput significantly since the most advanced and efficient techniques may be too power (thermal problem) and chip area consuming. Some simple examples can also be found in reference [30], achieving a bit error rate of 10^-9 for a reasonable SNR in the order of 10dB.
1.23 WPAN Rates
1.24 Connecting devices on short range Rates
1.25  Kiosk Download Rates
1.26 Board-to-Board Communications Rates
1.27 Data Center/Server Farm Wireless Data Distribution Rates
The intended target data rate is 10 Gbps, 40 Gbps, and 100 Gbps [30].  The expected BER for data center applications is 10^-12.
8. Operational frequency bands 
The THz frequency range is quite large, with some frequencies exhibiting better propagation qualities than others.  Also influencing this issue are practical limits on implementation physics.  In this section the operational frequency bands are discussed.  Each use case may operate in a different band.
1.28 Outdoor Fixed Wireless Frequencies 
The atmospheric attenuation related to the different frequencies is shown in Figure 2 with respect to reference [22]
1.28.1 Outdoor attenuation profile
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The attenuation of electromagnetic waves in the atmosphere occurs due to interactions and resonances with the molecules of the atmosphere[22, 23]. Especially the water vapour has an important influence on THz-waves. 
The specific attenuation can be calculated with the ITU-R [24] and am [25] models. The result up to a frequency of 1 THz at sea level, for an air pressure of 1013 hPa, a temperature of 15°C and a water vapor density of 7.5 g/m3 can be seen in Figure 3. 
[image: image9.emf]

However, fog and especially rain can lead to a scattering of the THz-waves at the water droplets, which reduces the power at the receiver [26, 27].

The additional attenuation due to fog, for water vapor densities of 0.05 g/m3 (vision range 300 m) and 0.5 g/m3 (vision range 50 m) is shown in Figure 4 .
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Figure 4 – Additional attenuation due to fog
The additional attenuation due to rain depends on the frequency of the wave and the rain rate. As shown in Figure 5, the maximum attenuation is not in the THz band, but between 100 GHz and 200 GHz.

[image: image11.emf]

1.28.2 Attenuation in THz transmission windows
In most cases the atmospheric attenuation adds to the attenuation of either the fog or the rain, but not both together. The over all attenuation can be seen in Figure 6 [ 22,23]
[image: image12.emf]

If it is assumed that the maximum allowed attenuation for a given application amounts to 100 dB/km, 5 different transmission windows (shaded regions in Figure 6) can be allocated in the frequency range between 300 and 900 GHz. The center frequencies and bandwidths of these transmission windows are given in Table 1 [22, 23].
[image: image13.emf]

1.29 Indoor Fixed Wireless Frequencies

1.30 Nano Cell Frequencies
1.31 WLAN Frequencies
1.32 WPAN Frequencies
1.33 Connecting devices on short range Frequencies
1.34  Kiosk Download Frequencies
1.35 Board-to-Board Communications Frequencies
1.36 Data Center/Server Farm Wireless Data Distribution Frequencies
Millimeter wavelength and shorter.
9. Coexistence/protection existing services and other use cases 

The THz bands are currently used for earth science research (mainly passive) and coexistence/protection of these users is necessary to enable the broad acceptance of the technology.  This section discusses coexistence and protection issues [20], [21].
Also, each use case outlined in clause 4.0 must coexist with all other clause 4.0 use cases.  In some instances this coexistence will be explicit (i.e. different operation bands), but in other instances the coexistence mechanism might be more implicit.

1.37 Potentially Critical Interference Scenarios
This is an ideal estimation of maximum occurring interference powers using worst case assumptions throughout all scenarios with no additional attenuation due to the impact of weather.

1.37.1 Nomadic devices operated outdoors in rural environment
The assumptions are that the nomadic TX is accidentally pointed in immediate skyward direction as a satellite is passing overhead, directly looking at the ground (0° zenith angle, shortest path).  Also it is assumed that a ground reflection may superimpose constructively with the direct path towards the satellite
[image: image14.emf]Ground
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1.37.2 Nomadic devices operated outdoors in urban environment
In this scenario we assume that no objects shadow the direct ray path and that additionally the reflections from buildings around the TX coherently combine at the satellite.
[image: image15.emf]
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Indoor-operated devices are not relevant due to transmission losses; therefore, indoor setups are implicitly covered by the outdoor scenario.
1.37.3 Fixed links with scattering objects close to direct ray path
In this scenario, objects close to the direct ray path may scatter/reflect power in a skyward direction towards the satellite.  This scenario is possible despite highly directive antennas.
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1.37.4 Relevant emission from antenna sidelobes
High sidelobe levels may cause non-negligible radiation in a skyward direction with fixed links become especially critical because of potentially high output powers.
[image: image17.emf]
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1.37.5 Airborne operated transmitters
In this scenario, radiation through the fuselage or windows is possible, and the transmitted rays may not be attenuated due to the use of composite fuselages.  At higher altitudes we can hardly expect any atmospheric absorption.

[image: image18.emf]
1.37.6 Satellite in limb scanning mode
THz waves may be radiated in the immediate direction of the limb scanner.  Ground-based transmitters do not become relevant due to the long horizontal path.

[image: image19.emf]








1.38 Spectral Masks between Active Services and Earth Exploration Services (EESS)

1.38.1 Maximum equivalent isotropically radiated power (EIRP)
The clause shows how to calculate the maximum equivalent isotropically radiated power (EIRP), which is scenario path loss specific, and includes the satellite antenna gain.  If the TX radiated signal does not exceed the maximum allowed interference power mask, then there will be no interference.
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1.38.2 Definition of transmit power spectrum masks
This clause provides the definition of transmit power spectrum masks and constraints for the isotropically radiated power spectral density.  A simple approximation with line segments  (line parameter sets given in [1]) is used to calculate the effective limitation to several 10 dBm EIRP for bandwidths of several 10 GHz.
1.38.2.1 Nomadic devices in rural and urban areas
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1.38.2.2 Fixed links and sidelobes
Fixed links are far less critical than nomadic transmitters and can support higher output powers and longer distances with no significant sidelobe limitations.  These relevant constraints are only applicable below 500 GHz.
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1.38.2.3 Airborne TX and limb scanning 

Airborne transmitters are most critical with constraints in almost the entire THz range resulting in restrictions requiring lower power and shorter ranges.

[image: image23.emf]5.) AirborneTX

6.) Limbscanning

300 475 650 825 1000

-40

0

40

80

120

f [GHz]

Maximum TX Power [dBm/MHz]

 

 

Simulation

Approximation

300 475 650 825 1000

-40

0

40

80

120

f [GHz]

Maximum TX Power [dBm/MHz]

 

 

Simulation

Approximation


10. Regulatory requirements

Devices will need to comply with the regulatory requirements specified for THz devices.  Unique to THz is that these regulatory requirements will be evolving over the next few years.  In this section these issues can be discussed.  All regulatory assumptions should be clearly stated.  

Active THz systems will have to comply with the ITU Radio Regulations footnote 5.565. 

11. Transmission range 
The transmission range is driven by use cases in conjunction with the operational frequency plan and channel model.  This section discusses the transmission range, which often is the justification for different PHY types. 
11.1. Outdoor Fixed Wireless Range
For antenna gains of 70 dBi and an adaptive antenna alignment the range for fixed wireless links with carrier frequencies in the first THz window can be up to 1 km even under worst environmental conditions of a rain rate of 50 mm/h. Even for higher carrier frequencies such link distances are possible, but than the maximum transmissible data rates decrease (see clause 12.1).
11.2. Indoor Fixed Wireless Range

11.3. Nano Cell Range
11.4. WLAN Range
11.5. WPAN Range
11.6. Connecting devices on short range Range
11.7.  Kiosk Download Range
1.39 Board-to-Board Communications Range
1.40 Data Center/Server Farm Wireless Data Distribution Range

12. Antenna gain and required alignment accuracy
The antenna gain and required alignment accuracy is driven by use cases.  This section discusses the antenna gain and required alignment accuracy, which may be part of the justification for different PHY types. 
12.1. Outdoor Fixed Wireless Gain and Accuracy
Due to the very high path loss accompanied with THz transmission, for outdoor applications high antenna gains are required. The antenna gain depends on the distance, transmitted data rate, carrier frequency and application. However, an example for a fixed wireless link with a distance of 1 km under worst environmental conditions of a rain rate of 50 mm/h is given in Figure 7. For shorter distances, or better atmospheric conditions, antennas with lower gain can be used. If a transmit power of 10 dBm, a noise figure of 10 dB, and an ambient temperature of 300 K is assumed, the maximum transmittable data rates per GHz bandwidth in a 1 km link are shown in Figure 7 [23].
[image: image24.emf]
From Figure 7, very high data rates can only be transmitted if the antenna gains are respectively high. For an antenna gain of 50 dBi for the transmitter and receiver antennas a maximum data rate of 25 Gbps can be transmitted in the 76 GHz bandwidth available in the first window. However, if the antenna gain is increased to 70 dBi, the maximum data rate can be increased to about 860 Gbps in the first transmission window. 
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For 70 dBi antenna gain the angle for loss of connectivity due to fluctuation of the pole and the pole twist is just 0.13°. The requirement for adaptive antenna alignments or control mechanisms to compensate for pole sway/twist depends on the grade of sway/twist impairments, given by the antenna installations, e.g. type of pole or building.
12.2. Indoor Fixed Wireless Gain and Accuracy

12.3. Nano Cell Gain and Accuracy
12.4. WLAN Gain and Accuracy
Simple Link Budget based on realistic components for a direct path only in a wireless lan setup:
	Transmitter power (baseband)
	10 dBm

	Conversion loss
	-7.4 dB

	Antenna gain (transmitter)
	+ Gtx [dBi]

	Free space loss
	- Lfsl [dB]

	Antenna gain (receiver)
	+ Grx [dBi]

	Noise figure
	- 7.6 dB

	Thermal noise
	Pn [dBm]

	Signal to Noise Ratio
	= SNR [dB]


Using a bandwidth of 50 GHz at a center frequency of 325 GHz and a direct path length of aprox. 6m, this leads to a free space loss (Lfsl) of 98.2dB. In order to achieve a reasonable SNR of 10dB a total antenna gain of 46.4 dBi is required.

The following simulations were performed for a very simple empty room (6m x 4m x 2.5m) wireless LAN scenario, c.f. [30]. Assuming antennas with a Gaussian beam shape in the transmitter and the receiver with identical Half Power Beam Widths (HPBWs in azimuth and elevation), a gain suitable gain of 51.2 dBi can be realized.
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As shown in the above figure, a directive antenna can also cancel out the Inter Symbol Interference (ISI) form multipath propagation. A Bit Error Rate (BER) of 10^-4 is defined as Quasi Error Free (QEF) for simulations without Forward Error Correction. Please note that the channel impulse response was normalized, therefore a HPBW of 20° is sufficient to supress ISI for a 16 QAM. Still a HPBW of only 10° is required taking the absolute gain into account.

The perfect alignment of directive antennas is practically impossible. If the HPBW is assumed to be 15° then the next figure shows the impact of an increasing misalignment of the receiver’s antenna. Significant ISI only occurs for a a misaglinment of more than 30° with a 16 QAM. Again the absolute antenna gain is not represented in the simulations. A misalignment of 7.5° (half of the HPBW) means that the SNR will decrease by 3 dB. In a future system design, this will have to be considered in a safety margin for misaglinment in the link budget.
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12.5. WPAN Gain and Accuracy
12.6. Connecting devices on short range Gain and Accuracy
12.7.  Kiosk Download Gain and Accuracy
12.8. Board-to-Board Communications Gain and Accuracy
12.9. Data Center/Server Farm Wireless Data Distribution Gain and Accuracy
13. Channel models

Usually the channel model per sec is a stand-alone document.  This clause contains relevant highlights from the channel model along with a link to the more comprehensive document.  All models must be broadband inasmuch as the required operational bandwidth must be taken into consideration.
1.41 Outdoor Fixed Wireless
1.41.1 Co-channel interference
1.41.2 Fading mechanisms
1.41.2.1 Scintillation
1.41.2.2 Molecular attenuation
1.41.2.3 Doppler
1.41.3 Spatial/temporal properties 
1.41.3.1 Angle of arrival/departure
1.41.3.2 Time of arrival
1.41.3.3 Delay spread

1.41.3.4 Coherence time/bandwidth
13.2. Indoor Fixed Wireless
1.41.4 Co-channel interference
1.41.5 Fading mechanisms

1.41.5.1 Scintillation

1.41.5.2 Molecular attenuation
1.41.5.3 Doppler
1.41.6 Spatial/temporal properties 

1.41.6.1 Angle of arrival/departure
1.41.6.2 Time of arrival
1.41.6.3 Delay spread

1.41.6.4 Coherence time/bandwidth

13.3. Nano Cells
1.41.7 Co-channel interference
1.41.8 Fading mechanisms

1.41.8.1 Scintillation

1.41.8.2 Molecular attenuation
1.41.8.3 Doppler
1.41.9 Spatial/temporal properties 

1.41.9.1 Angle of arrival/departure
1.41.9.2 Time of arrival
1.41.9.3 Delay spread

1.41.9.4 Coherence time/bandwidth

13.4. WLAN Types of Applications
In [36, 37] a stochastic channel model for WLAN/WPAN applications in indoor scenarios is proposed based on a deterministic ray tracing propagation simulator building upon the experimental understanding of the THz indoor radio channel. The model, based upon measurements and calibration described in [38], features broadband channel realizations with 50 GHz bandwidth and  is fully polarimetric, includes spatial channel information and allows for the fast generation of channel realizations. The software for generation of channel model realizations is available on request form the authors, see [36].
13.5. WPAN Types of Applications
1.41.10 Co-channel interference
1.41.11 Fading mechanisms

1.41.11.1 Scintillation

1.41.11.2 Molecular attenuation
1.41.11.3 Doppler
1.41.12 Spatial/temporal properties 

See section 13.4.3
13.6. Connecting devices on short ranges
1.41.13 Co-channel interference
1.41.14 Fading mechanisms

1.41.14.1 Scintillation

1.41.14.2 Molecular attenuation
1.41.14.3 Doppler
1.41.15 Spatial/temporal properties 

1.41.15.1 Angle of arrival/departure
1.41.15.2 Time of arrival
1.41.15.3 Delay spread

1.41.15.4 Coherence time/bandwidth

13.7. Kiosk Downloading
1.41.16 Co-channel interference
1.41.17 Fading mechanisms

1.41.17.1 Scintillation

1.41.17.2 Molecular attenuation
1.41.17.3 Doppler
1.41.18 Spatial/temporal properties 

1.41.18.1 Angle of arrival/departure
1.41.18.2 Time of arrival
1.41.18.3 Delay spread

1.41.18.4 Coherence time/bandwidth

13.8. Board-to-Board Communications
1.41.19 Co-channel interference
1.41.20 Fading mechanisms

1.41.20.1 Scintillation

1.41.20.2 Molecular attenuation
1.41.20.3 Doppler
1.41.21 Spatial/temporal properties 

1.41.21.1 Angle of arrival/departure
1.41.21.2 Time of arrival
1.41.21.3 Delay spread

1.41.21.4 Coherence time/bandwidth

1.42 Data Center/Server Farm Wireless Data Distribution Gain and Accuracy

1.42.1 Co-channel interference
1.42.2 Fading mechanisms

1.42.2.1 Scintillation

1.42.2.2 Molecular attenuation
1.42.2.3 Doppler
1.42.3 Spatial/temporal properties 

1.42.3.1 Angle of arrival/departure
1.42.3.2 Time of arrival
1.42.3.3 Delay spread

1.42.3.4 Coherence time/bandwidth

14. Link budget and SNR analysis
It is likely that each use case will have a unique link budget analysis due to differences in required performance and complexity of modulation formats.  Reference [22] contains useful information in regards to link budget calculations.
1.43 Example Link Budget

[image: image28.emf]Simple AWGN Link Budget

Bit Rate (Gbps) 20

Avg TX Power (dBm) 10

TX Antenna Gain (dBi) 30

EIRP dBm (+40 dBm max) 40

Center Freq (GHz) 1000

Aperature Loss @ 1 meter 92.44177

Standoff Distance (meters) 10

Path Loss at Distance (dB) 20

Obstacle Loss (dB) 0

RX Antenna Gain (dBi) 30

RX Ingested Power (dBm) -42.4418

Eb (energy / bit) -145.452

RX Noise Figure (dB) 10

No (noise power / Hz) -164

Required Eb/No (dB) 10

Implementation Loss (dB) 3

At Distance Link Margin (dB) 5.547928

Zero Margin Distance (meters) 18.94072


14.2. Outdoor Fixed Wireless Link Budget
14.3. Indoor Fixed Wireless Link Budget

14.4. Nano Cell Link Budget
14.5. WLAN Link Budget
14.6. WPAN Link Budget

14.7. Connecting devices on short range Link Budget
14.8.  Kiosk Download Link Budget
	Simple AWGN Link Budget (Kiosk Downloading)

	
	
	

	Bit Rate (Gbps)
	20
	

	Avg TX Power (dBm)
	10
	

	TX Antenna Gain (dBi)
	30
	

	EIRP dBm (+40 dBm max)
	40
	

	Center Freq (GHz)
	300
	

	Aperature Loss @ 1 meter
	81.98419728
	

	Standoff Distance (meters)
	1
	

	Path Loss at Distance (dB)
	0
	

	Obstacle Loss (dB)
	0
	

	RX Antenna Gain (dBi)
	15
	

	RX Ingested Power (dBm)
	-26.98419728
	

	Eb (energy / bit)
	-129.9944972
	

	RX Noise Figure (dB)
	15
	

	No (noise power / Hz)
	-159
	

	Required Eb/No (dB)
	16
	

	Implementation Loss (dB)
	10
	

	At Distance Link Margin (dB)
	3.005502763
	

	Zero Margin Distance (meters)
	1.413432712
	

	
	
	


14.9. Board-to-Board Communications Link Budget
1.44 Data Center/Server Farm Wireless Data Distribution Gain and Accuracy
15. Size, Weight and Power
Size, weight and power (SWaP) concerns arise from use case expectations and influences range and data rate. The antenna is included in the SWaP estimate.   Of primary concern is mobile operation battery life.  This section discusses these issues.  
15.1. Outdoor Fixed Wireless SWaP
15.2. Indoor Fixed Wireless SWaP

15.3. Nano Cell SWaP
15.4. WLAN SWaP
15.5. WPAN SWaP
15.6. Connecting devices on short range SWaP
15.7.  Kiosk Download SWaP
15.8. Board-to-Board Communications SWaP
1.45 Data Center/Server Farm Wireless Data Distribution SWaP
16. Mobility and Link switching
There may be a need to support link switching due to physical movement or interference.  This section discusses these issues.  Obviously this is use case dependent since for some use cases link switching may not be appropriate.

16.1. Outdoor Fixed Wireless Link Switching
16.2. Indoor Fixed Wireless Link Switching

16.3. Nano Cell Link Switching
16.4. WLAN Link Switching
16.5. WPAN Link Switching
16.6. Connecting devices on short range Link Switching
16.7.  Kiosk Download Link Switching
16.8. Board-to-Board Communications Link Switching
16.9. Data Center/Server Farm Wireless Data Distribution Link Switching
17. Beam steered or control channel assisted device discovery

There may be a need to support device discovery, which includes aligning the antenna to close the link.  This section discusses these issues. These parameters may be use case dependent.
17.1. Outdoor Fixed Wireless Device Discovery
17.2. Indoor Fixed Wireless Device Discovery

17.3. Nano Cell Device Discovery
17.4. WLAN Device Discovery
17.5. WPAN Device Discovery
17.6. Connecting devices on short range Device Discovery
17.7.  Kiosk Download Device Discovery
17.8. Board-to-Board Communications Device Discovery
17.9. Data Center/Server Farm Wireless Data Distribution Device Discovery
18. Media access mechanism and superframe expectations 

The following two figures are from [28] and are the basis for much of the MAC section material.
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1.46 Multiband operation

· Antenna alignment

· Fast session transfer, for example from 60 GHz to THz
19. Security mechanisms 

20. I/O Interfaces and Memory Buffer Considerations 
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Figure � SEQ Figure \* ARABIC �1�: Reference partitioning





Figure � SEQ Figure \* ARABIC �2�: Atmospheric attenuation of electromagnetic waves in dB/km versus the Frequency in THz for different atmospheric parameters





Figure � SEQ Figure \* ARABIC �3�: Atten. Specific attenuation of the earths atmosphere at sea level 





Figure � SEQ Figure \* ARABIC �5�: Specific attenuation of electromagnetic waves due to rain 





Figure � SEQ Figure \* ARABIC �6�: Attenuation in a clear atmosphere at sea level (blue), fog with a vision range of 50 m (red) and rain with a rain rate of 50 mm/h (black)





Table � SEQ Table \* ARABIC �1�	Bandwidths and center frequencies of the transmission windows in the frequency range of 330 GHz and 900 GHz with an overall attenuation below 100 dB/km in the worst case





Figure � SEQ Figure \* ARABIC �8�: Ideal antenna diameter (left and blue) and diameter of the radiated area (right and red) in dependence of the antenna gain for the first THz window and a distance of 1 km
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