September 2010
 doc.: IEEE P02.15-10-0814-00-0006

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Proposed Resolutions to Comments on Unscheduled Polling

	Date Submitted
	September 27, 2010

	Source
	Rick Powell

Zarlink Semiconductor, Inc.

15822 Bernardo Center Dr, Ste B,

San Diego, CA, 92127
858-675-3485

rick.powell@zarlink.com
	

	Re:
	LB# 55 comment resolution

	Abstract
	This submission describes proposed resolutions to MAC related LB#55comments of IEEE P802.15.6/D01, related to unscheduled polling. It provides proposed text to define a field in the header which will allow the node to communicate how much time it needs in a poll or improvised allocation.

	Purpose
	To facilitate resolution of LB#55 comments

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Summary:

This text proposes a new field to be defined in the MAC Header and/or the Data Payload, based on comments regarding the More Data bit and its use. Currently, the node can indicate that it has “more” data by setting the “More Data” bit to 1 in the MAC header, but the node does not have a means of telling the hub how much data it needs. This is complicated by the fact that the More Data bit is also used to terminate and Uplink or Type-I Polled allocation when set to zero.
Analysis:

There are circumstances when it would be an advantage for the node to communicate to the hub how much time it needs after the current frame to transfer the balance of its uplink data. This applies to Scheduled Uplink, Type-I Polling (Scheduled and Unscheduled), and Improvised Access.

Figure 1 illustrates a Scheduled Uplink Allocation Interval, where enough time has been allocated the send 3 frames of a specific size, plus a retransmission of one frame on the same or smaller size. On the last frame, the node sets the More Data bit to zero to indicate that the node has no more data, thereby terminating the allocation after receiving the last I-Ack frame.

[image: image1.emf]Scheduled Uplink

Allocation Interval

Data0

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data1

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data2

(I-Ack)

I

-

A

c

k

More

Data

= 0

More

Data

= 0

Successful transmit and reception

of 3 Data Frames

Figure 1 -- Scheduled Uplink with 3 frames transmitted.
Figure 2 illustrates the same allocation, but showing a retransmission of Data Frame 1 as a result of the node not receiving the I-Ack after the first transmission of that frame. The node keeps the More Data bit set to 1 until it has successfully transmitted all frames. This works fine, as long as the node receives the I-Ack on Data Frame 2

[image: image2.emf]Scheduled Uplink

Allocation Interval

Data0

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data1

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data1

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data2

(I-Ack)

I

-

A

c

k

More

Data

= 0

More

Data

= 0

Successful transmit and reception

of 3 Data Frames with retransmission

of Data Frame 1

Figure 2 -- Scheduled Uplink with 3 frames transmitted, with one retransmission

Figure 3 illustrate the case where an Improvised Allocation is required to complete the transaction of all 3 frames. In the Scheduled Allocation Interval, the node does not receive the I-Ack on the first transmission of Data Frame 1. On the second transmission of Data Frame 1, the hub does not receive the frame, so once again, no I-Ack. The third attempt to transmit Data Frame 1 is successful, but there is not enough time in the Scheduled allocation to transmit Data Frame 2.

Here is where the difficulty starts. Because the node has another frame to send, it sets the More Data bit on the last and successful transmission of Data Frame 1. As such, the node has not terminated the allocation interval. At this point, the hub must decide if there is enough time for the node to attempt another transmission, or if the hub should schedule a “future” Improvised Allocation. The first problem is that the hub does not know how much time is required for the node to transmit its next frame. It could have a very short data frame, shorter than the previous 2 data frames, or it could possibly have a longer frame. The second problem is that if the hub decides to give an Improvised Allocation, it does not know how long to make it. It can assume that the next Data Frame will be no longer than the previous, but there is no guarantee that this is the case (and no requirement in the draft that this is the case).
If the node could communicate how much time it needs for the “Next” transaction, then the hub could decide if the transaction could complete in the current Scheduled Allocation Interval, and if not, the hub could decide on how long to make the Improvised Allocation.

[image: image3.emf]Scheduled Uplink

Allocation Interval

Improvised

Allocation

Interval???

Data0

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data1

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data1

(I-Ack)

More

Data

= 1

Data1

(I-Ack)

More

Data

= 1

More

Data

= 1

Data2

(I-Ack)

More

Data

= 0

More

Data

= 0

More

Data

= 0

I

-

A

c

k

+

P

o

l

l

I

-

A

c

k

P

o

l

l

1. Successful transmit of Data Frame 0,

2. Failed reception of I-Ack on Data Frame 1

3. Failed retransmission of Data Frame 1

4. Successful retransmission of Data Frame 1

5. Successful transmission of Data Frame 2

 in Improvised Allocation Interval

 Figure 3 -- Scheduled Uplink with 3 frames transmitted, with two retransmissions, one in Improvised

Figure 4 Illustrates a similar Uplink scenario, except that in this example, the frame sizes are variable. There is enough time to retransmit a small frame, but not enough time for the larger frame.

[image: image4.emf]Scheduled Uplink

Allocation Interval

Data0

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data1

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data2

(I-Ack)

I

-

A

c

k

More

Data

= 0

More

Data

= 0

Successful transmit and reception

of 3 Data Frames

Figure 4 -- Scheduled Uplink with 2 small frames, one large frame transmitted

[image: image5.emf]Scheduled Uplink

Allocation Interval

I

-

A

c

k

Improvised

Allocation

Interval???

P

o

l

l

Data0

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data1

(I-Ack)

I

-

A

c

k

More

Data

= 1

More

Data

= 0

Data2

(I-Ack)

I

-

A

c

k

More

Data

= 0

More

Data

= 0

Null

Data

(I-Ack)

More

Data

= 1

I

-

A

c

k

+

P

o

l

l

More

Data

= 1

Data2

(I-Ack)

More

Data

= 0

More

Data

= 0

More

Data

= 0

Successful transmission of Data Frames 0 & 1, with retransmission of

Data Frame 2 in Improved Allocation Interval. Improvised Allocation is

required because of insuffient time remaining in Scheduled Uplink

Allocation Interval to transmit Data Frame 2 and receive the I-Ack.

Figure 5 -- Scheduled Uplink with 2 small frames, one large frame transmitted

Figure 5 illustrates the case where the I-Ack for Data Frame 2 is not received by the node. In this case, the node detects that there is not enough time in the Scheduled Uplink Allocation Interval to retransmit Data Frame 2, so it sends a Null Data Frame with the More Data bit set to 1. Since there is still time in the Allocation Interval, the hub again must decide whether to send an I-Ack and allow another Data Frame in that allocation interval, or send an I-Ack+Poll to schedule Improvised Allocation. However, the hub has no way of knowing how much time is needed for the next frame, so it does not know whether to send an I-Ack or an I-Ack+Poll. If an I-Ack+Poll, it does not know how long to make the Improvised Allocation, so in general, it will have to over allocate thereby wasting bandwidth.
There are similar problems with Polled and Bilink Allocations. When a node sets the More Data bit in and I-Ack or B-Ack frame to indicate that is has data to send, the node has no way to indicate how much time it needs to send the data. The hub will have to allocate as much time a possible in the poll, expecting that the node will terminate the allocation when it completed its polled (uplink) transactions.

Proposed change:

Option 1: Add an octet to the header that allows that node to indicate how many slots it needs to complete it uplink transactions. Advantage: provides best range and resolution for the requested slots. Disadvantage: Adds one octet to the header of all frames.
Option 2: Use the reserved 4 bits in the last octet in the header for the indication of how many slots the node requests, 0 to 16 slots. If this is not enough range, then the number could be scaled by a factor of 2n. Advantage: Does not change the length of the header. Disadvantage: Limits the range/resolution of the requested number of slots
Option 3: For I-Ack or B-Ack frames from the node, use the sequence number / post-poll window octet to indicate how many more slots are needed by the node. For data and management frame from the node to the hub, use the first byte of the payload to indicate the number of slots. Advantage: Does not increase the header size while still providing the best range and resolution for the requested slots. Disadvantage: Creates 2 new set of frame types for node to hub data and management frames, and adds complexity to the frame processing.
Submission
Page

Rick Powell, Zarlink Semiconductor

_1347090529.vsd
Data0
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Data1
(I-Ack)

I-Ack

Scheduled Uplink
Allocation Interval

More
Data
= 1

More
Data
= 0

Data1
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Data2
(I-Ack)

I-Ack

More
Data
= 0

More
Data
= 0

Successful transmit and reception
of 3 Data Frames with retransmission
of Data Frame 1

_1347100837.vsd
Data0
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Data1
(I-Ack)

I-Ack

Scheduled Uplink
Allocation Interval

Data2
(I-Ack)

I-Ack

More
Data
= 0

More
Data
= 1

More
Data
= 0

More
Data
= 0

Successful transmit and reception
of 3 Data Frames

_1347100998.vsd
Data0
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Data1
(I-Ack)

Scheduled Uplink
Allocation Interval

I-Ack

More
Data
= 1

More
Data
= 0

Data2
(I-Ack)

I-Ack

More
Data
= 0

More
Data
= 0

Null
Data
(I-Ack)

More
Data
= 1

More
Data
= 1

I-Ack
+Poll

Data2
(I-Ack)

More
Data
= 0

I-Ack

More
Data
= 0

More
Data
= 0

Improvised
Allocation
Interval???

Poll

Successful transmission of Data Frames 0 & 1, with retransmission of Data Frame 2 in Improved Allocation Interval. Improvised Allocation is required because of insuffient time remaining in Scheduled Uplink Allocation Interval to transmit Data Frame 2 and receive the I-Ack.

_1347091434.vsd
Data0
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Data1
(I-Ack)

I-Ack

Scheduled Uplink
Allocation Interval

Data2
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Data1
(I-Ack)

More
Data
= 0

More
Data
= 0

More
Data
= 0

I-Ack
+Poll

Poll

More
Data
= 1

Improvised
Allocation
Interval???

Data1
(I-Ack)

More
Data
= 1

More
Data
= 1

1. Successful transmit of Data Frame 0,
2. Failed reception of I-Ack on Data Frame 1
3. Failed retransmission of Data Frame 1
4. Successful retransmission of Data Frame 1
5. Successful transmission of Data Frame 2   in Improvised Allocation Interval

_1347090502.vsd
Data0
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Data1
(I-Ack)

I-Ack

More
Data
= 1

More
Data
= 0

Scheduled Uplink
Allocation Interval

Data2
(I-Ack)

I-Ack

More
Data
= 0

More
Data
= 0

Successful transmit and reception
of 3 Data Frames

