Medium Access Control
WiMedia Draft MAC Standard 0.98.9, October 3, 2005

May 2010

IEEE P802.15-10-0272-01-0006

 DOCPROPERTY "Category" * MERGEFORMAT

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Generalized Security Services in the Baseline Document – Normative Text

	Date Submitted
	May 13, 2010

	Source
	Masayuki Kanda (Nippon Telegraph and Telephone Corp. / Information-Technology Promotion Agency, Japan)

Shin’ichiro Matsuo, Masahiro Kuroda, Grace Sung, Ryuji Kohno (NICT)
Toshinori Fukunaga (Nippon Telegraph and Telephone Corp.)

	Re:
	

	Abstract
	This submission provides update proposals for security services in the baseline document 15-10-0196-02-0006-mac-and-security-baseline-proosal-c-normative-text-doc.doc.

	Purpose
	To generalize the baseline draft on MAC and security for the IEEE 802.15.6 task group

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

3
Definitions [Proposal for addition]
CAMELLIA-128 CCM: A message security protocol that employs the CAMELLIA forward cipher function for 128-bit keys for message encryption/decryption based on counter mode and message authentication based on cipher block chaining (CBC) mode.

6 MAC frame formats

6.1.1 Security Association [Proposal for correction]
A Security Association frame contains a Frame Payload that is formatted as shown in Figure 17. It is exchanged between a node and a hub to activate a pre-shared MK or generate a new shared MK.

[image: image1.emf]Bits:

Bit order:

Security

Association

Protocol

3

b0-b2

Security

Level

Required

2

b3-b4

Control

Frame

Authentication

1

b5

Reserved

2

b6-b7

Message

Security

Protocol

8

b0-b7

Figure 17 — Frame Payload format for Security Association frames
6.1.1.1 Recipient Address [No change]
The Recipient Address field is set to the IEEE MAC address of the recipient of the current frame.

6.1.1.2 Sender Address [No change]
The Sending Address field is set to the IEEE MAC address of the sender of the current frame.

6.1.1.3 Security Suite Selector [No change]
The Security Suite Selector is formatted as shown in Figure 18.

[image: image2.emf]Bits:

Bit order:

Security

Association

Protocol

4

b0-b3

Security

Level

Required

2

b4-b5

Control

Frame

Authentication

1

b6

Reserved

1

b7

Message

Security

Protocol

8

b0-b7

Figure 18 — Security Suite Selector format
6.1.1.3.1 Security Association Protocol [No change]
The Security Association Protocol field is set according to Table 5 to indicate a security association protocol being run for the security association.

Table 5 — Security Association Protocol field encoding

	Field value decimal
	Security Association protocol

	0
	Master key pre-shared association

	1
	Unauthenticated association

	2
	Public key hidden association

	3
	Password authenticated association

	4
	Display authenticated association

	5-7
	Reserved

6.1.1.3.2 Security Level Required [No change]
The Security Level Required field is set to the security level required by this sender according to Table 6.

Table 6 — Security Level Required field encoding

	Field value decimal
	Security level required

	0
	Level 0 – unsecured communication

	1
	Level 1 – authentication but not encryption

	2
	Level 2 – authentication and encryption

	3
	Reserved

6.1.1.3.3 Control Frame Authentication [No change]
The Control Frame Authentication field is set to 1 if control type frames sent from or to this sender must be authenticated but not encrypted when they are required to have security level 1 or 2. It is set to 0 if control type frames sent from or to this sender must be neither authenticated nor encrypted even when they are otherwise required to have security level 1 or 2.
6.1.1.3.4 Message Security Protocol [Proposal for amendment]
The Message Security Protocol field is set according to Table 7 to indicate a message authentication and encryption protocol selected by this sender for subsequent secured communication.
Table 7 — Message Security Protocol field encoding
	Field value decimal
	Message security protocol

	0
	AES-128 CCM

	1
	Camellia-128 CCM

	2-255
	Reserved

[MAC group’s note: Camellia-CCM and SEED are other ciphers that are being discussed in this group.]
6.1.1.4 Association Sequence Number [No change]
The Association Sequence Number field is set to the number (i.e., position) of the current Security Association frame in the run of the chosen security association protocol. In particular, it is set to 1 in the first Security Association frame of the protocol, 2 in the second Security Association frame, 3 in the third, etc. The first Security Association frame is the Security Association frame transmitted or retransmitted by the node initializing the security association, the second Security Association frame is the Security Association frame transmitted or retransmitted by the responding hub, and the like.
6.1.1.5 Security Association Data [No change]
The Security Association Data field is specific to the security association protocol being run.
For master key pre-shared association, the Security Association Data field is not present.

For unauthenticated association, public key hidden association, password authenticated association, and display authenticated association, the Security Association Data field is formatted as shown in Figure 19.

[image: image3.emf]Sender

PK

X

24

0-23

Sender

PK

Y

24

0-23

Sender

Nonce

16

0-15

MK_KMAC

8

0-7

Octets:

Octet order:

Figure 19 — Security Association Data format for security association protocols 1-4

6.1.1.5.1 Sender Nonce [No change]
The Sender Nonce field is set to a statistically unique number per sender and per security association procedure, except otherwise indicated:

· For unauthenticated association, public key hidden association, and password authenticated association,
· in the first and second Security Association frames of the current security association procedure, the field is set afresh and independently to an integer randomly drawn with a uniform distribution over the interval (0, 2^128);
· in the third Security Association frame, the field is set to its value contained in the first Security Association frame of the procedure.

· For display authenticated association,
· in the first Security Association frame of the current security association procedure, the field is set to 0;
· in the second and third Security Association frames, the field is set afresh and independently to an integer randomly drawn with a uniform distribution over the interval (0, 2^128).

6.1.1.5.2 Sender PKx [No change]
The Sender PKx field is set to the X-coordinate of the sender’s elliptic curve public key, except otherwise indicated:

· For unauthenticated association,
· in the first and second Security Association frames of the current security association procedure, the field is set to the X-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY);
· in the third Security Association frame, the field is set to its value contained in the first Security Association frame of the procedure.

· For public key hidden association,
· in the first and third Security Association frames of the current security association procedure, the field is set to 0;
· in the second Security Association frame, the field is set to the X-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY).
· For password authenticated association,
· in the first and third Security Association frames of the current security association procedure, the field is set to the X-coordinate of the sender’s password-scrambled elliptic curve public key PK' = (PK'x, PK'Y);
· in the second Security Association frame, the field is set to the X-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY).
· For display authenticated association,
· in the first Security Association frame of the current security association procedure, the field is set to 0;
· in the second and third Security Association frames, the field is set to the X-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY).

6.1.1.5.3 Sender PKY [No change]
The Sender PKY field is set to the Y-coordinate of the sender’s elliptic curve public key, except otherwise indicated:

· For unauthenticated association,
· in the first and second Security Association frames of the current security association procedure, the field is set to the Y-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY);
· in the third Security Association frame, the field is set to its value contained in the first Security Association frame of the procedure.

· For public key hidden association,
· in the first and third Security Association frames of the current security association procedure, the field is set to 0;
· in the second Security Association frame, the field is set to the Y-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY).

· For password authenticated association,
· in the first and third Security Association frames of the current security association procedure, the field is set to the Y-coordinate of the sender’s password-scrambled elliptic curve public key PK' = (PK'x, PK'Y);
· in the second Security Association frame, the field is set to the Y-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY).

· For display authenticated association,
· in the first Security Association frame of the current security association procedure, the field is set to 0;
· in the second and third Security Association frames, the field is set to the Y-coordinate of the sender’s elliptic curve public key PK = (PKx, PKY).

6.1.1.5.4 MK_KMAC [No change]
The MK_KMAC field is set to a key message authentication code (KMAC) for certain fields of the frame payloads of the Security Association frames of the current security association procedure, except otherwise indicated:

· For unauthenticated association,
· in the first Security Association frame of the current security association procedure, the field is set to 0;
· in the second Security Association frame, the field is set to a KMAC for certain fields of the frame payloads of the first and second Security Association frames of the procedure;
· in the third Security Association frame, the field is set to a KMAC for certain fields of the frame payloads of the second and third Security Association frames.
· For public key hidden association,
· in the first Security Association frame of the current security association procedure, the field is set to 0;
· in the second Security Association frame, the field is set to a KMAC for certain fields of the frame payloads of the first and second Security Association frames of the procedure if the sender of this frame has the public key of the sender of the first Security Association frame, or it is set to 0 otherwise;
· in the third Security Association frame, the field is set to a KMAC for certain fields of the frame payloads of the second and third Security Association frames.
· For password authenticated association,
· in the first Security Association frame of the current security association procedure, the field is set to 0;
· in the second Security Association frame, the field is set to a KMAC for certain fields of the frame payloads of the first and second Security Association frames of the procedure if the sender of this frame has a shared password with the sender of the first Security Association frame, or it is set to 0 otherwise;
· in the third Security Association frame, the field is set to a KMAC for certain fields of the frame payloads of the second and third Security Association frames.

· For display authenticated association,
· in the first Security Association frame of the current security association procedure, the field is set to an initial witness equal to a KMAC for certain fields of the frame payload of the third Security Association frame of the procedure;
· in the second and third Security Association frames, the field is set to 0.
6.1.2 Security Disassociation [Proposal for amendment]
A Security Disassociation frame contains a Frame Payload that is formatted as shown in Figure 20. It is transmitted by either an associated node or a hub to repeal an existing security association, i.e., the shared master key (MK).

[image: image4.emf]Sender

Address

Recipient

Address

6

0-5

6

0-5

Octets:

Octet order:

Sender

Nonce

16

0-15

DA_KMAC

8

0-7

Figure 20 — Frame Payload format for Security Disassociation frames
6.1.2.1 Recipient Address [No change]
The Recipient Address field is set to the IEEE MAC address of the recipient of the current frame.

6.1.2.2 Sender Address [No change]
The Sending Address field is set to the IEEE MAC address of the sender of the current frame.

6.1.2.3 Security Suite Selector [Proposal for section addition]
The Security Suite Selector is formatted as shown in Figure 18.
6.1.2.4 Sender Nonce [Section number change]
The Sender Nonce field is set to a statistically unique number per sender and per security disassociation procedure, i.e., it is set afresh and independently to an integer randomly drawn with a uniform distribution over the interval (0, 2^128).

6.1.2.5 DA_KMAC [Section number change]
The DA_KMAC field is set to a key message authentication code (KMAC) for certain fields of the frame payload of this Security Disassociation frame.
7 Security services [Proposal for amendment - Merge version]
This clause expounds on the elements of the security hierarchy introduced in Figure 5. Security in this standard starts with a negotiation of the desired security suite between the two communicating parties, a node and a hub. The security selection in turn sets off a security association between the two parties for activating a pre-shared or generating a new shared master key (MK). Depending on the message security protocol in the security suite selector of the frame payload of the first Security Association frame specified in 6.3.2 or the Security Disassociation frame specified in 6.3.3, several security association protocols suitable for a variety of use cases are provided in 8.1, which finishes off with security disassociation for legitimately repealing a shared master key between the two parties. Pairwise temporal key (PTK) creation and group temporal key (GTK) distribution are then described in 8.2.
Treated in 8.3 is message security at the MAC level, i.e., message authentication and encryption, based on the Advanced Encryption Standard (AES) 128-bit block cipher-based forward cipher function for 128-bit keys operating on counter mode and cipher block chaining (CBC) mode, respectively. As part of message security, replay protection is also considered in this subclause.
7.1 Master keys
The security association protocols specified in 8.1.2-8.1.5 shall be based on the Diffie-Hellman key exchange employing the elliptic curve public key cryptography. The elliptic curve, characterized by the following equation

y2 = x3 + ax + b (mod p), a, b (GF(p), 4a3 + 27b2 ≠ 0

where GF(p) is a prime finite field, shall have the following values for its coefficients and domain parameters, as specified for Curve P-192 in FIPS Pub186-3, with p (an odd prime), r (order of base point G), and a (a coefficient) given in decimal form, and coefficient b and base point G = (Gx, Gy) given in hex:

p = 6277101735386680763835789423207666416083908700390324961279

r = 6277101735386680763835789423176059013767194773182842284081

a = -3 mod p

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811
The private keys (also called secret keys) SKA and SKB of the elliptic curve public key cryptography for the two communicating parties, a node and a hub, respectively, shall be chosen as unique 192-bit integers in the range [1, r-1]. The corresponding 192-bit public keys PKA and PKB shall be computed as follows:

PKA = SKA ×G, PKB = SKB ×G
where × denotes scalar multiplication of the base point G = (Gx, Gy)by an integer as described in A.9.2 of IEEE Std P1363-2000. A received public key, denoted by an X-coordinate value or a pair of X-coordinate and Y-coordinate values, shall be treated valid only if it is a non-infinity point on the elliptic curve defined in the above, i.e., that its X and Y coordinates shall satisfy the elliptic curve equation given above.
On starting a security association procedure base on one of these security association protocols, the node and the hub shall independently generate a fresh 128-bit random number as their Sender Nonce used in the procedure. Prior to initiating a security disassociation procedure as specified in 8.1.6, the initiator, the node or the hub, shall generate a fresh 128-bit random number as its Sender Nonce used in the procedure.
In these association protocols, depending on the message security protocol in the security suite selector of the frame payload of the first Security Association frame or the Security Disassociation frame, the cipher-based message authentication code (CMAC) algorithm as specified in the NIST Special Publication 800-38B, with the AES 128-bit block cipher-based forward cipher function under a 128-bit key as specified in FIPS Pub 197 ISO/IEC 18033-3, is used to compute key message authentication codes (KMAC) and the desired shared master key. Specifically, the functional notation CMAC(K, M) represents the 128-bit output of the CMAC applied under key K to message M based on the AES 128-bit block cipher-based forward cipher function. For instance, if the message security protocol in the security suite selector is 0, the functional notation CMAC(K, M) means the 128-bit output of the CMAC applied under key K to message M based on the AES forward cipher function. If that is 1, the functional notation CMAC(K, M) means the 128-bit output of the CMAC applied under key K to message M based on the Camellia forward cipher function.
Moreover, the bit string truncation functions LMB_n(S) and RMB_n(S) designate the n leftmost and the n rightmost bits of the bit string S, respectively. The sign || denotes concatenation of bit strings that are converted according to FIPS Pub 180-3 from certain fields of the frames of concern.
7.1.1 Master key (MK) pre-shared association

A node and a hub shall each have a secret pre-shared MK prior to running the MK pre-shared association protocol to activate their pre-shared MK as their shared MK for their PTK creation, with the benefit of keeping third parties not possessing the secret MK from launching impersonation attacks via the PTK creation procedure.

To initiate a procedure for the MK pre-shared association protocol, the node shall transmit the first Security Association frame of the procedure, indicating its selected security suite in the frame.

To continue the association procedure, the recipient hub shall transmit the second Security Association frame of the procedure. The hub may accept the security suite selected by the node. Alternatively, the hub may propose a different one by setting the Security Suite Selector field to a desired value accordingly.

If the node receives the second Security Association frame containing a security suite selector different from that included in the first Security Association frame, it shall abort the current association procedure and may initiate a new association procedure taking into account the security suite selector it last received from the hub.
Upon successfully sending the second Security Association frame without changing the security suite selector, the hub shall activate the pre-shared MK as their shared MK, treating the node’s true identity as unauthenticated but the association procedure as completed. Upon receiving the second Security Association frame with the same security suite selector as contained in the first one, the node shall also activate the pre-shared MK as their shared MK, treating the hub’s true identity unauthenticated but the association procedure completed as well. The node shall proceed to the PTK creation procedure to create a PTK with the hub, meanwhile performing mutual authentication of each other based on the claimed pre-shared MK.

The MK pre-shared association procedure is illustrated in Figure 90.

[image: image5.emf](5) Both parties activate their pre-shared MK as their MK

Initiator (A) Responder (B)

(1a) First Security Association frame

(Address_B, Address_A, Security_Suite_Selector, x01)

(2b) I-Ack frame

(3b) Second Security Association frame

(Address_A, Address_B, Security_Suite_Selector, x02)

(4a) I-Ack frame

Figure 90 — MK pre-shared association procedure
7.1.2 Unauthenticated association

A node and a hub shall each require no authentication credentials such as a shared secret or human intervention prior to running the unauthenticated association protocol to generate their shared MK for their PTK creation, without the benefit of keeping third parties from launching impersonation attacks.

To initiate a procedure for the unauthenticated association protocol, the node shall transmit the first Security Association frame of the procedure, indicating its selected security suite in the frame.

To continue the association procedure, the recipient hub shall transmit the second Security Association frame of the procedure. The hub may accept the security suite selected by the node, setting the MK_KMAC field of the Security Association Data as depicted in Figure 19 to MK_KMAC_2 as calculated below. Alternatively, the hub may propose a different one by setting the Security Suite Selector field to a desired value accordingly, setting the MK_KMAC field to 0.
If the node receives the second Security Association frame containing a security suite selector different from that included in the first Security Association frame, it shall abort the current association procedure and may initiate a new association procedure taking into account the security suite selector it last received from the hub.
To complete the association procedure that was not aborted, the node shall send the third Security Association frame of the procedure, setting the MK_KMAC field of the Security Association Data as depicted in Figure 19 to MK_KMAC_3 as also calculated below. The node shall send this Security Association frame only after it has received the second Security Association frame with the MK_KMAC field set to MK_KMAC_2.

Upon successfully sending the third Security Association frame, the node shall compute the shared MK as given below, treating the hub’s true identity as unauthenticated but the association procedure as completed. Upon receiving the third Security Association frame with the MK_KMAC field set to MK_KMAC_3, the hub shall also compute the shared MK as given below, treating the node’s true identity unauthenticated but the association procedure completed as well.

The node and the hub shall each compute a DHKey as follows:

DHKey = X(SKA×PKB) = X(SKB×PKA) = X(SKA×SKB×G)

The node and the hub shall each derive MK_KMAC_2 and MK_KMAC_3, depending on the message security protocol in the Security_Suite_Selector, as follows:

P_2 = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B ||Security_Suite_Selector)

 P_3 = CMAC(DHKey, Address_B || Address_A || Nonce_B || Nonce_A||Security_Suite_Selector)

MK_KMAC_2 = LMB_64(P2), MK_KMAC_3 = LMB_64(P3)

The node and the hub shall each derive their shared MK as follows:

MK = CMAC(DHKey, Nonce_A || Nonce_B)

In the above, X(P) = X(PX, PY) = PX = X-coordinate of P, which is computed from SKA×PKB at the node and from SKB×PKA at the hub, respectively.

· SKA is the node’s 192-bit private key (an integer) kept secret by the node.

· SKB is the hub’s 192-bit private key kept secret by the hub.

· PKA is the node’s 192-bit public key (a pair of X and Y coordinates) transmitted by the node.

· PKB is the hub’s 192-bit public key (a pair of X and Y coordinates) transmitted by the hub.

· Address_A is the Sender Address field of the frame payload of the first Security Association frame.

· Address_B is the Recipient Address field of the frame payload of the first Security Association frame.

· Nonce_A is the Sender Nonce field of the frame payload of the first Security Association frame.

· Nonce_B is the Sender Nonce field of the frame payload of the second Security Association frame.
· Security_Suite_Selector is the Security Suite Selector field of the frame payload of the first Security Association frame.
The unauthenticated association procedure is illustrated in Figure 91.

[image: image6.emf]PK

AX

and PK

AY

 are set to 0

in first & third Security

Association frames

for public key hidden association

Initiator (A) Responder (B)

(1a) Select 128-bit Nonce_A (1b) Select 128-bit Nonce_B

(4b) Compute DHKey = X(SK

B

×PK

A

)

P2 = CMAC(DHKey, Address_A || Address_B ||

Nonce_A || Nonce_B || Security_Suite_Selector)

P3 = CMAC(DHKey, Address_B || Address_A ||

Nonce_B || Nonce_A || Security_Suite_Selector)

MK_KMAC_2B = LMB_64(P2)

MK_KMAC_3B = LMB_64(P3)

(0a) Select private key SK

A

Compute public key

PK

A

= (PK

AX

, PK

AY

) = SK

A

×G

(0b) Select private key SK

B

Compute public key

PK

B

= (PK

BX

, PK

BY

) = SK

B

×G

(2a) First Security Association frame

(Address_B, Address_A, Security_Suite_Selector, x01, Nonce_A, PK

AX

, PK

AY

, 0)

(3b) I-Ack frame

(5b) Second Security Association frame

(Address_A, Address_B, Security_Suite_Selector, x02, Nonce_B, PK

BX

, PK

BY

, MK_KMAC_2B)

(6a) I-Ack frame

(7a) Compute DHKey = X(SK

A

×PK

B

)

P2 = CMAC(DHKey, Address_A || Address_B ||

Nonce_A || Nonce_B || Security_Suite_Selector)

P3 = CMAC(DHKey, Address_B || Address_A ||

Nonce_B || Nonce_A || Security_Suite_Selector)

MK_KMAC_2A = LMB_64(P2)

MK_KMAC_3A = LMB_64(P3)

(8a) Check if

MK_KMAC_2A = MK_KMAC_2B

Do not proceed if check fails

(9a) Third Security Association frame

(Address_B, Address_A, Security_Suite_Selector, x03, Nonce_A, PK

AX

, PK

AY

, MK_KMAC_3A)

(10b) I-Ack frame

(11b) Check if

MK_KMAC_3A = MK_KMAC_3B

Do not proceed if check fails

(12) Both parties compute & activate their new MK = CMAC(DHKey, Nonce_A || Nonce_B)

X(P) = X(P

X

, P

Y

) = P

X

Figure 91 — Unauthenticated association procedure

7.1.3 Public key hidden association

A node and a hub shall have a secret transfer of the node’s public key to the hub, typically through an out-of-band channel, prior to running the public key hidden association protocol to generate their shared MK for their PTK creation, with the benefit of keeping third parties from launching impersonation attacks.

To initiate a procedure for the public key hidden association protocol, the node shall transmit the first Security Association frame of the procedure, indicating its selected security suite in the frame.

To continue the association procedure, the recipient hub shall transmit the second Security Association frame of the procedure. The hub may accept the security suite selected by the node, setting the MK_KMAC field of the Security Association Data as depicted in Figure 19 to MK_KMAC_2 as calculated below. Alternatively, the hub may propose a different one by setting the Security Suite Selector field to a desired value accordingly, setting the MK_KMAC field to 0.

If the node receives the second Security Association frame containing a security suite selector different from that included in the first Security Association frame, it shall abort the current association procedure and may initiate a new association procedure taking into account the security suite selector it last received from the hub.
To complete the association procedure that was not aborted, the node shall send the third Security Association frame of the procedure, setting the MK_KMAC field of the Security Association Data as depicted in Figure 19 to MK_KMAC_3 as also calculated below. The node shall send this Security Association frame only after it has received the second Security Association frame with the MK_KMAC field set to MK_KMAC_2.

Upon successfully sending the third Security Association frame, the node shall compute the shared MK as given below, treating the hub’s true identity as authenticated and the association procedure as completed. Upon receiving the third Security Association frame with the MK_KMAC field set to MK_KMAC_3, the hub shall also compute the shared MK as given below, treating the node’s true identity authenticated and the association procedure completed as well.

The node and the hub shall each compute a DHKey as follows:

DHKey = X(SKA×PKB) = X(SKB×PKA) = X(SKA×SKB×G)

The node and the hub shall each derive MK_KMAC_2 and MK_KMAC_3, depending on the message security protocol in the Security_Suite_Selector, as follows:

P_2 = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B ||Security_Suite_Selector)

 P_3 = CMAC(DHKey, Address_B || Address_A || Nonce_B || Nonce_A||Security_Suite_Selector)

MK_KMAC_2 = LMB_64(P2), MK_KMAC_3 = LMB_64(P3)

The node and the hub shall each derive their shared MK as follows:

MK = CMAC(DHKey, Nonce_A || Nonce_B)

In the above, X(P) = X(PX,PY) = PX = X-coordinate of P, which is computed from SKA×PKB at the node and from SKB×PKA at the hub, respectively.

· SKA is the node’s 192-bit private key (an integer) kept secret by the node.

· SKB is the hub’s 192-bit private key kept secret by the hub.

· PKA is the node’s 192-bit public key (a pair of X and Y coordinates) transferred only to the hub by a secure out-of-band channel.

· PKB is the hub’s 192-bit public key (a pair of X and Y coordinates) transmitted by the hub.

· Address_A is the Sender Address field of the frame payload of the first Security Association frame.

· Address_B is the Recipient Address field of the frame payload of the first Security Association frame.

· Nonce_A is the Sender Nonce field of the frame payload of the first Security Association frame.

· Nonce_B is the Sender Nonce field of the frame payload of the second Security Association frame.

· Security_Suite_Selector is the Security Suite Selector field of the frame payload of the first Security Association frame.
The public key hidden association procedure is also illustrated in Figure 91 as well.

7.1.4 Password authenticated association

A node and a hub shall each have a secret shared password prior to running the password authenticated association protocol to generate their shared MK for their PTK creation, with the benefit of keeping third parties not possessing the secret password from launching impersonation attacks.

To initiate a procedure for the password authenticated association protocol, the node shall transmit the first Security Association frame of the procedure, indicating its selected security suite in the frame , and setting the Sender PKX and Sender PKY fields of the Security Association Data as depicted in Figure 19 to the X-coordinate PK'AX and Y-coordinate PK'AY, respectively, of the node’s password-scrambled public key PK'A as calculated below.

To continue the association procedure, the recipient hub shall transmit the second Security Association frame of the procedure. The hub may accept the security suite selected by the node, setting the MK_KMAC field of the Security Association Data to MK_KMAC_2 as calculated below. Alternatively, the hub may propose a different one by setting the Security Suite Selector field to a desired value accordingly, setting the MK_KMAC field to 0.
If the node receives the second Security Association frame containing a security suite selector different from that included in the first Security Association frame, it shall abort the current association procedure and may initiate a new association procedure taking into account the security suite selector it last received from the hub.
To complete the association procedure that was not aborted, the node shall send the third Security Association frame of the procedure, setting the Sender PKX and Sender PKY fields of the Security Association Data as depicted in Figure 19 to the values of the corresponding fields of the Security Association Data in the first Security Association frame of the procedure, and setting the MK_KMAC field of the Security Association Data to MK_KMAC_3 as also calculated below. The node shall send this Security Association frame only after it has received the second Security Association frame with the MK_KMAC field set to MK_KMAC_2.

Upon successfully sending the third Security Association frame, the node shall compute the shared MK as given below, treating the hub’s true identity as authenticated and the association procedure as completed. Upon receiving the third Security Association frame with the MK_KMAC field set to MK_KMAC_3, the hub shall also compute the shared MK as given below, treating the node’s true identity authenticated and the association procedure completed as well.

The node shall compute its password-scrambled public key PK'A = (PK'AX, PK'AY) from its public or private key and the password shared with the hub as follows:

PK'A = PKA – (MX + 1)×Q(PW) = SKA×G – (MX + 1)×Q(PW)

Q(PW) = (QX = PW+MX, QY = even positive integer)

The hub shall recover the node’s public key from the received password-scrambled public key PK'A = (PK'AX, PK'AY) for the subsequent DHKey computation as follows:

PKA = PK'A + (MX + 1)×Q(PW), Q(PW) = (QX = PW+MX, QY = even positive integer)

The parameters involved in these equations are defined below:

· PW is a positive integer converted according to IEEE Std P1363-2000 from the UTE-16BE representation of the shared password by treating the leftmost octet as the octet containing the most-significant bits.
· MX is the smallest nonnegative integer such that QX = PW+MX is the X-coordinate of a point on the elliptic curve defined earlier.
· Q(PW) is the point on the elliptic curve with X-coordinate = QX and Y-coordinate = QY of an even positive integer.
The node shall choose a private key SKA such that the X-coordinate of PKA is not equal to the X-coordinate of (MX + 1)×Q(PW).
The node and the hub shall each compute a DHKey as follows:

DHKey = X(SKA×PKB) = X(SKB×PKA) = X(SKA×SKB×G)

The node and the hub shall each derive MK_KMAC_2 and MK_KMAC_3, depending on the message security protocol in the Security_Suite_Selector, as follows:

P_2 = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B ||Security_Suite_Selector)

 P_3 = CMAC(DHKey, Address_B || Address_A || Nonce_B || Nonce_A ||Security_Suite_Selector)

MK_KMAC_2 = LMB_64(P2), MK_KMAC_3 = LMB_64(P3)

The node and the hub shall each derive their shared MK as follows:

MK = CMAC(DHKey, Nonce_A || Nonce_B)

In the above, X(P) = X(PX,PY) = PX = X-coordinate of P, which is computed from SKB×PKA at the hub and from SKA×PKB at the node, respectively.

· SKA is the node’s 192-bit private key (an integer) kept secret by the node.

· SKB is the hub’s 192-bit private key kept secret by the hub.

· PKA is the node’s 192-bit public key (a pair of X and Y coordinates) kept secret by the node.

· PKB is the hub’s 192-bit public key (a pair of X and Y coordinates) transmitted by the hub.

· Address_A is the Sender Address field of the frame payload of the first Security Association frame.

· Address_B is the Recipient Address field of the frame payload of the first Security Association frame.

· Nonce_A is the Sender Nonce field of the frame payload of the first Security Association frame.

· Nonce_B is the Sender Nonce field of the frame payload of the second Security Association frame.

· Security_Suite_Selector is the Security Suite Selector field of the frame payload of the first Security Association frame.
The password authenticated association procedure is illustrated in Figure 92.

[image: image7.emf]Initiator (A) Responder (B)

(2a) Select 128-bit Nonce_A (2b) Select 128-bit Nonce_B

(6b) Compute DHKey = X(SK

B

×PK

A

)

P2 = CMAC(DHKey, Address_A || Address_B ||

Nonce_A || Nonce_B || Security_Suite_Selector)

P3 = CMAC(DHKey, Address_B || Address_A ||

Nonce_B || Nonce_A || Security_Suite_Selector)

MK_KMAC_2B = LMB_64(P2)

MK_KMAC_3B = LMB_64(P3)

(0a) Select private key SK

A

Compute public key

PK

A

= (PK

AX

, PK

AY

) = SK

A

×G

(0b) Select private key SK

B

Compute public key

PK

B

= (PK

BX

, PK

BY

) = SK

B

×G

(3a) First Security Association frame

(Address_B, Address_A, Security_Suite_Selector, x01, Nonce_A, P'K

AX

, PK'

AY

, 0)

(4b) I-Ack frame

(7b) Second Security Association frame

(Address_A, Address_B, Security_Suite_Selector, x02, Nonce_B, PK

BX

, PK

BY

, MK_KMAC_2B)

(8a) I-Ack frame

(9a) Compute DHKey = X(SK

A

×PK

B

)

P2 = CMAC(DHKey, Address_A || Address_B ||

Nonce_A || Nonce_B || Security_Suite_Selector)

P3 = CMAC(DHKey, Address_B || Address_A ||

Nonce_B || Nonce_A || Security_Suite_Selector)

MK_KMAC_2A = LMB_64(P2)

MK_KMAC_3A = LMB_64(P3)

(10a) Check if

MK_KMAC_2A = MK_KMAC_2B

Do not proceed if check fails

(11a) Third Security Association frame

(Address_B, Address_A, Security_Suite_Selector, x03, Nonce_A, PK'

AX

, PK'

AY

, MK_KMAC_3A)

(12b) I-Ack frame

(13b) Check if

MK_KMAC_3A = MK_KMAC_3B

Do not proceed if check fails

(14) Both parties compute and activate their new MK = CMAC(DHKey, Nonce_A || Nonce_B)

(1a) Compute password-scrambled public key

PK'

A

= PK

A

–(M

X

+ 1)×Q(PW)

where Q(PW) =

(Q

X

= PW+M

X

, Q

Y

= even positive integer)

Update SK

A

and PK

A

if PK'

A

= O

(5b) Recover A’s public key

PK

A

= PK'

A

+ (M

X

+ 1)×Q(PW)

where Q(PW) =

(Q

X

= PW+M

X

, Q

Y

= even positive integer)

X(P) = X(P

X

, P

Y

) = P

X

Figure 92 — Password authenticated association procedure
7.1.5 Display authenticated association

A node and a hub shall each have a display of a 5-digit decimal number prior to running the display authenticated association protocol to generate their shared MK for their PTK creation, with the benefit of keeping third parties not displaying the same generated secret from launching impersonation attacks.

To initiate a procedure for the display authenticated association protocol, the node shall transmit the first Security Association frame of the procedure, indicating its selected security suite in the frame, setting the MK_KMAC field of the Security Association Data as depicted in Figure 19 to Witness as calculated below.

To continue the association procedure, the recipient hub shall transmit the second Security Association frame of the procedure. The hub may accept the security suite selected by the node or propose a different one by setting the Security Suite Selector field to a desired value accordingly.
If the node receives the second Security Association frame containing a security suite selector different from that included in the first Security Association frame, it shall abort the current association procedure and may initiate a new association procedure taking into account the security suite selector it last received from the hub.
To complete the association procedure that was not aborted, the node shall send the third Security Association frame of the procedure. The hub shall not treat this frame as valid and shall display a number of 0 if the MK_KMAC field contained in the received first Security Association frame of the procedure is not equal to Witness as given below.

The node shall display a 5-digit decimal number Display_A immediately after successfully sending the third Security Association frame, and the hub shall also display a 5-digit decimal number Display_B immediately after determining the received third Security Association frame to be valid. If the node and the hub display the same 5-digit number, they shall each be informed through their respective user interfaces that their mutual authentication has succeeded. Otherwise, they shall each be informed that their mutual authentication has failed.

Upon determining that their mutual authentication has succeeded, the node and the hub shall each compute the shared MK as given below, treating their authenticated association procedure as completed.

The node and the hub shall each compute a DHKey as follows:

DHKey = X(SKA×PKB) = X(SKB×PKA) = X(SKA×SKB×G)

The node and the hub shall each derive Witness, depending on the message security protocol in the Security_Suite_Selector, as follows:

P = CMAC(Nonce_A, Address_A || Address_B || PKAX || PKAY)

Witness = LMB_64(P)
The node and the hub shall also compute Display_A and Display_B, depending on the message security protocol in the Security_Suite_Selector, respectively, as follows:

H = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B ||Security_Suite_Selector)

D = RMB_16(H)

Display_A = BS2DI(D), Display_B = BS2DI(D)

The node and the hub shall each derive their shared MK as follows:

MK = CMAC(DHKey, Nonce_A || Nonce_B)

In the above, X(P) = X(PX,PY) = PX = X-coordinate of P, which is computed from SKA×PKB at the node and from SKB×PKA at the hub, respectively. BS2DI(BS) converts the bit string BS, based on IEEE Std P1363-2000, to a positive decimal integer by treating the leftmost bit of the string as the most-significant bit of the integer.

· SKA is the node’s 192-bit private key (an integer) kept secret by the node.

· SKB is the hub’s 192-bit private key kept secret by the hub.

· PKA is the node’s 192-bit public key (a pair of X and Y coordinates) transmitted by the node in the third Security Association frame.

· PKB is the hub’s 192-bit public key (a pair of X and Y coordinates) transmitted by the hub in the second Security Association frame.

· PKAX and PKAY are the X-coordinate and Y-coordinate, respectively, of the node’s 192-bit public key (a pair of X and Y coordinates) contained in the third Security Association frame.

· Address_A is the Sender Address field of the frame payload of the third Security Association frame.

· Address_B is the Recipient Address field of the frame payload of the third Security Association frame.

· Nonce_A is the Sender Nonce field of the frame payload of the third Security Association frame.

· Nonce_B is the Sender Nonce field of the frame payload of the second Security Association frame.

· Security_Suite_Selector is the Security Suite Selector field of the frame payload of the first Security Association frame.
The display authenticated association procedure is illustrated in Figure 93.

[image: image8.emf](9b) Check if Witness = CMAC(Nonce_A,

Address_A || Address_B || PK

AX

|| PK

AY

)

Do not proceed if check fails

Initiator (A) Responder (B)

(1a) Select 128-bit Nonce_A (1b) Select 128-bit Nonce_B

(0a) Select private key SK

A

Compute public key

PK

A

= (PK

AX

, PK

AY

) = SK

A

×G

(0b) Select private key SK

B

Compute public key

PK

B

= (PK

BX

, PK

BY

) = SK

B

×G

(3a) First Security Association frame

(Address_B, Address_A, Security_Suite_Selector, x01, 0, 0, 0, Witness)

(4b) I-Ack frame

(5a) Second Security Association frame

(Address_A, Address_B, Security_Suite_Selector, x02, Nonce_B, PK

BX

, PK

BY

, 0)

(6b) I-Ack frame

(10a) Compute DHKey = X(SK

A

×PK

B

)

H = CMAC(DHKey,

Address_A || Address_B || Nonce_A || Nonce_B

|| Security_Suite_Selector)

D = RMB_16(H), D_A = BS2DI(D)

(7a) Third Security Association frame

(Address_B, Address_A, Security_Suite_Selector, x03, Nonce_A, PK

AX

, PK

AY

, 0)

(8b) I-Ack frame

(12) Both parties compute and activate their new MK = CMAC(DHKey, Nonce_A || Nonce_B)

X(P) = X(P

X

, P

Y

) = P

X

(2a) Compute Witness = CMAC(Nonce_A,

Address_A || Address_B || PK

AX

|| PK

AY

)

(10b) Compute DHKey = X(SK

B

×PK

A

)

H = CMAC(DHKey,

Address_A || Address_B || Nonce_A || Nonce_B

|| Security_Suite_Selector)

D = RMB_16(H), D_B = BS2DI(D)

(11) User checks & confirms if D_A = D_B

Do not proceed if not confirmed

Figure 93 — Display authenticated association procedure

7.1.6 Disassociation

To initiate a security disassociation procedure for nullifying an existing security association and hence the shared MK and PTK with a hub or a node, the node or the hub shall send a Security Disassociation frame, setting the DA_KMAC field of the frame payload as depicted in Figure 20 to DA_KMAC. Upon successfully sending the Security Disassociation frame, the sender shall erase the MK and the corresponding PTK materials from its internal storage.

Upon receiving a Security Disassociation frame with the DA_KMAC field set to DA_KMAC, the recipient shall also erase the MK and the corresponding PTK materials from its internal storage.

To send a Security Disassociation, the sender shall independently generate a new 128-bit cryptographic random number as its Sender Nonce in the Security Disassociation frame.

The node and the hub shall compute DA_KMAC, depending on the message security protocol in the Security_Suite_Selector, as follows:

P = CMAC(MK, Address_A || Address_B || Nonce_A || Security_Suite_Selector)

DA_KMAC = LMB_64(P)
The input fields to the computation above are defined as follows:

· MK is the shared MK to be repealed.

· Address_A is the Sender Address field of the frame payload of the Security Disassociation frame.

· Address_B is the Recipient Address field of the frame payload of the Security Disassociation frame.

· Nonce_A is the Sender Nonce field of the frame payload of the Security Disassociation frame.
· Security_Suite_Selector is the Security Suite Selector field of the frame payload of the Security Disassociation frame.

The security disassociation procedure is illustrated in Figure 94.

[image: image9.emf](3a) Security Disassociation frame

(Address_B, Address_A, Nonce_A, DA_KMAC)

(4b) I-Ack frame

(6) Both parties erase their existing MK & PTK materials

Initiator (A) Responder (B)

(1a) Select 128-bit Nonce_A

(2a) Compute P= CMAC(MK,

Address_A || Address_B || Nonce_A)

DA_KMAC = LMB_64(P)

(5b) Compute and check if

P = CMAC(MK,

Address_A || Address_B || Nonce_A)

DA_KMAC = LMB_64(P)

Do not proceed if check fails

Figure 94 — Security Disassociation procedure

7.2 Temporal keys

On starting a pairwise temporal key (PTK) creation procedure as described in 0, the two communicating parties, a node and a hub, shall independently generate a fresh 128-bit random number as their Sender Nonce used in the procedure. On starting a group temporal key (GTK) distribution procedure as described in 8.2.2, the hub shall generate a fresh 128-bit cryptographic grade random number as the GTK if the GTK is to be distributed the first time.
In the PTK creation procedure, depending on the message security protocol in the security suite selector of the frame payload of the first Security Association frame such as provided in 8.1, the cipher-based message authentication code (CMAC) algorithm as specified in the NIST Special Publication 800-38B, with the AES 128-bit block cipher-based forward cipher function under a 128-bit key as specified in FIPS Pub 197 ISO/IEC 18033-3, is used to compute key message authentication codes (KMAC). Specifically, the functional notation CMAC(K, M) represents the 128-bit output of the CMAC applied under key K to message M based on the AES 128-bit block cipher-based forward cipher function. For instance, if the message security protocol in the security suite selector is 0, the functional notation CMAC(K, M) means the 128-bit output of the CMAC applied under key K to message M based on the AES forward cipher function. If that is 1, the functional notation CMAC(K, M) means the 128-bit output of the CMAC applied under key K to message M based on the Camellia forward cipher function.
Moreover, the bit string truncation functions LMB_n(S) and RMB_n(S) designate the n leftmost and the n rightmost bits of the bit string S, respectively. The sign || denotes concatenation of bit strings that are converted according to FIPS Pub 180-3 from certain fields of the frames of concern.
7.2.1 PTK creation

A node and a hub shall have a 128-bit secret shared master key (MK) resulting from a successful run of a security association protocol such as provided in 8.1 prior to running a pairwise temporal key (PTK) creation procedure to generate a PTK for exchanging secured frames with each other.
To initiate a PTK creation procedure, the node or the hub—referred to as the initiator—shall transmit the first PTK frame of the procedure to the intended recipient—referred to as the responder.

To continue the PTK creation procedure, the responder shall transmit the second PTK frame of the procedure, setting the PTK_KMAC field of the frame payload as depicted in Figure 21 to PTK_KMAC_2 as calculated below. The responder shall set the PTK_KMAC field to 0 if it does not have a shared MK with the initiator.

To complete the PTK creation procedure, the initiator shall send the third PTK frame of the procedure, setting the PTK_KMAC field of the frame payload as depicted in Figure 21 to PTK_KMAC_3 as also calculated below. The initiator shall send this PTK frame only after it has received the second PTK frame with the PTK_KMAC field set to PTK_KMAC_2.

Upon successfully sending the third PTK frame, the initiator shall compute a new PTK as given below, treating the responder’s true identity as authenticated and the PTK creation procedure as completed. Upon receiving the third PTK frame with the PTK_KMAC field set to PTK_KMAC_3, the responder shall also compute the new PTK, treating the initiator’s true identity authenticated and the PTK creation procedure completed as well.

The initiator and the responder shall independently generate a new 128-bit cryptographic random number as their Sender Nonce in a PTK creation procedure.

The initiator and the responder shall each derive the PTK, KCK, PTK_KMAC_2, and PTK_KMAC_3, depending on the message security protocol in the Security_Suite_Selector of the frame payload of the first Security Association frame such as provided in 8.1, as follows:

PTK = CMAC(MK, Address_I || Address_R || Nonce_I || Nonce_R || PTK_Index)

KCK = CMAC(MK, Address_R || Address_I || Nonce_R || Nonce_I || PTK_Index)

P = CMAC(KCK, Address_I || Address_R || Nonce_R || Nonce_I || PTK_Index)

PTK_KMAC_2 = LMB_64(P), PTK_KMAC_3 = RMB_64(P)

The fields that form the message of CMAC correspond to the fields in the PTK frames of the current PTK creation procedure and are converted to bit strings according to FIPS Pub 180-3:
· Address_I is the Sender Address field of the frame payload of the first PTK frame.

· Address_R is the Recipient Address field of the frame payload of the first PTK frame.

· Nonce_I is the Sender Nonce field of the frame payload of the first PTK frame.

· Nonce_R is the Sender Nonce field of the frame payload of the second PTK frame.

· PTK_Index is the PTK Index field of the frame payload of the first PTK frame.

The PTK creation procedure is illustrated in Figure 95.

[image: image10.emf](2a) First PTK frame

(

Address_R, Address_I, x01, PTK Index, Nonce_I, 0

)

Initiator (I) Responder (R)

(1a) Select 128-bit

Nonce_I

(1b) Select 128-bit

Nonce_R

MK = master key

(5b) Second PTK frame

(

Address_I, Address_R, x02, PTK Index, Nonce_R, PTK_KMAC_2B

)

(9a) Third PTK frame

(

Address_R, Address_I, x03, PTK Index, Nonce_I, PTK_KMAC_3A)

(4b) Compute

PTK = CMAC(MK, Address_I || Address_R || Nonce_I || Nonce_R || PTK_Index)

KCK = CMAC(MK, Address_R || Address_I || Nonce_R || Nonce_I || PTK_Index)

P = CMAC(KCK, Address_I || Address_R || Nonce_R || Nonce_I || PTK_Index)

PTK_KMAC_2B = LMB_64(P), PTK_KMAC_3B = RMB_64(P)

(8a) Check if

PTK_KMAC_2A = PTK_KMAC_2B

Do not proceed if check fails

(7a) Compute

PTK = CMAC(MK, Address_I || Address_R || Nonce_I || Nonce_R || PTK_Index)

KCK = CMAC(MK, Address_R || Address_I || Nonce_R || Nonce_I || PTK_Index)

P = CMAC(KCK, Address_I || Address_R || Nonce_R || Nonce_I || PTK_Index)

PTK_KMAC_2A = LMB_64(P), PTK_KMAC_3A = RMB_64(P)

(11b) Check if

PTK_KMAC_3A = PTK_KMAC_3B

Do not proceed if check fails

(3b) I-Ack frame

(6a) I-Ack frame

(10b) I-Ack frame

(12) Both parties compute and activate their new

PTK

= CMAC(MK, Address_I || Address_R || Nonce_I || Nonce_R || PTK_Index)

Figure 95 — PTK creation procedure

7.2.2 GTK distribution

A node and a hub shall have a pairwise temporal key (PTK) prior to running a group temporal key (GTK) distribution procedure to transport a GTK to the node for multicasting secured frames to the node and others.
To send the GTK to the node, the hub shall send to the node a GTK frame containing the GTK and secured with the PTK being used between the hub and the node.

7.3 Message security
A hub shall transmit a beacon, if appropriate, as an unsecured frame or as a secured frame authenticated, but not encrypted, by a group temporal key (GTK) distributed to the nodes that are secured with it. Nodes that do not have a secured relationship with the hub may receive and process the beacon without validating the message integrity code (MIC) included therein.
At their Secured or Connected State, a node and a hub shall exchange and process only secured frames at a security level negotiated during their last association, with the following additional considerations:

· GTK frames shall always be secured, both authenticated and encrypted.
· Poll frames shall never be authenticated or encrypted.
· Control type frames other than Poll frames

· shall be neither authenticated nor encrypted if the hub and the node have agreed to applying no control type frame authentication;

· shall be authenticated but not encrypted if the hub and the node have agreed to applying control type frame authentication.
A recipient shall ignore a received frame with an unexpected security level, other than performing acknowledgment if needed. A recipient shall also ignore a received secured frame with an invalid MIC, i.e., the MIC value calculated from the received frame as described in 8.3.1.5 is not the same as the MIC field contained in the received frame, except again for returning an acknowledgment.
7.3.1 Frame authentication, encryption, and decryption
Secured frames shall be authenticated, and encrypted/decrypted when required, based on AES-128 128-bit block cipher-based CCM, i.e., the CCM mode as specified in the NIST Special Publication 800-38C ISO/IEC 19772, with the AES 128-bit block cipher-based forward cipher function for 128-bit keys as specified in FIPS Pub 197 ISO/IEC 18033-3 applied as the underlying block cipher algorithm, depending on the message security protocol in the security suite selector of the frame payload of the first Security Association frame.
Prior to exchanging secured unicast frames, the two communicating parties, a node and a hub, shall have a pairwise temporal key (PTK) for use as the AES 128-bit block cipher key applied to the unicast frames. They may have an additional PTK before the current PTK is retired. Prior to multicast secured frames to a group, the hub shall have distributed a group temporal key (GTK) to the nodes of the group for use as the AES 128-bit block cipher key applied to the multicast frames.

A temporal key, PTK or GTK, shall be retired no later than when the Security Sequence Number field of the last frame secured by the key has reached the maximum value supported by the field. It may be retired earlier as needed.
The length of what is referred to as the Message Authentication Code (MAC) for message (frame) authentication in NIST Special Publication 800-38C ISO/IEC 19772 but as the Message Integrity Code (MIC) in this standard—to be distinguished from another accustomed standing of the term MAC for medium access control—shall be four octets. That is, in the NIST Special Publication 800-38C ISO/IEC 19772, t = 4. Also, q = 2 shall be chosen as the octet length of the binary representation of the octet length of the frame payload.

The bit order of each input block to the CCM invocation and AES 128-bit block cipher-based encryption shall be formatted as illustrated in Figure 96. It is the concatenation of the bits orders of the ordered octets of the constituent fields of the block, where the octet order of each constituent field is defined below, and the bits of each octet are ordered such that the most-significant bit (msb) is the first bit of the octet while the least-significant bit (lsb) is the last bit of the octet. The first octet or the first bit of a given component is shown on the left, and the last octet or the last bit is shown on the right, in the context of the component. The bit notations input0, …, input127 correspond to those used for AES 128-bit block cipher input block formation specified in FIPS Pub 197 ISO/IEC 18033-3.

[image: image11.emf]First

(Leftmost)

Field

Octets:

Octet order:

16

L-R

Last

(Rightmost)

Field

First

(Leftmost)

Octet

Last

(Rightmost)

Octet

...

First

(Leftmost)

Octet

Last

(Rightmost)

Octet

...

msb lsb

...

msb lsb

...

...

...

...

msb lsb

...

msb lsb

...

i

n

p

u

t

0

i

n

p

u

t

0

7

i

n

p

u

t

1

2

0

i

n

p

u

t

0

1

2

7

Bits

Bit order:

128

L-R(input

0

– input

127

)

AES input block

msb = most-significant bit lsb = least-significant bit

...

Figure 96 — Bit order for AES 128-bit block cipher input blocks

7.3.1.1 Nonce formation

The Nonce as a required input field to each instance of CCM frame authentication and encryption/decryption is a 13-octet field that is formatted as shown in Figure 97. Here, the octets of the MAC header and Security Number fields are each ordered from left to right in accordance with their transmit order as defined in 6.1 and 6.2.

[image: image12.emf]Security

Sequence

Number

MAC

Header

0x000000

3

0-2

6

L-R

4

0-3

Octets:

Octet order:

Figure 97 — Nonce format

7.3.1.2 Initial block B0 construction

The block B0 as the first input block to the cipher block chaining (CBC) for frame authentication, i.e., MIC computation, is a 16-octet field that is formatted as shown in Figure 98. Here, Q = L_FP is the octet length of the frame payload as defined in Figure 12 and is encoded with the octet containing the most-significant bits on the left and the octet containing the least-significant bits on the right.
Only this block is present if the current frame does not have a frame payload.

[image: image13.emf]Q = L_FP Nonce Flags = 0x09

1

0

13

L-R

2

1-0

Octets:

Octet order:

(a) Frame payload encrypted

[image: image14.emf]Q = 0 Nonce Flags = 0x49

1

0

13

L-R

2

1-0

Octets:

Octet order:

(b) Frame payload not encrypted

Figure 98 — Initial block B0 format

7.3.1.3 Payload blocks B1, …, Bm construction

The blocks B1, …, Bm as the subsequent input blocks to the CBC frame authentication, and also as the input blocks to the counter mode encryption/decryption, i.e., ciphertext computation and plain text recovery, if the frame payload is to be encrypted/decrypted, are each a 16-octet field that is formatted as shown in Figure 99. Here, a =L_FP is the octet length of the frame payload as defined in Figure 12 and is encoded with the octet containing the most-significant bits on the left and the octet containing the least-significant bits on the right, and the Frame Payload field is ordered from left to right in consistency with it transmit order as defined in 6.1 and 6.2.

These blocks are constructed from the unencrypted or decrypted frame payload. The last block contains one or more padded zero octets on the right end if the frame payload is not an integral multiple of 16 octets.
None of these blocks is present if the current frame does not have a frame payload.

[image: image15.emf]B

m

B

1

16

0-15

16

0-15

Octets:

Octet order:

Unencrypted/Decrypted Frame Payload Zero Padding

...

(a) Frame payload encrypted

[image: image16.emf]B

m

B

1

2

1-0

16

0-15

Octets:

Octet order:

a Zero Padding

...

14

0-13

Frame Payload

(b) Frame payload not encrypted

Figure 99 — Payload blocks B1, …, Bm format

7.3.1.4 Counter blocks Ctr0, …, Ctrm formation

The block Ctr0 as the input block to the counter mode encryption of the CBC output for MIC computation, and each of the blocks Ctr1…, Ctrm as the input blocks to the counter mode encryption/decryption if the frame payload is to be encrypted/decrypted, is a 16-octet field that is formatted as shown in Figure 100. Here, i = 0, …, m, respectively, and is encoded with the octet containing the most-significant bits on the left and the octet containing the least-significant bits on the right.

[image: image17.emf]Counter i Nonce Flags = 0x01

1

0

13

L-R

2

1-0

Octets:

Octet order:

Figure 100 — Counter blocks Ctr0, …, Ctrm format

7.3.1.5 MIC computation

The MIC field in an authenticated frame is calculated as shown in Figure 101, where

MIC = LMB_n(M), M = CIPH(Ctr0) (Xm
X0 = CIPH(B0), Xi = CIPH(Bi (Xi-1), i = 1, …, m
Here, LMB_n(M) designates the n leftmost bits of the bit string M, the symbol (denotes bitwise exclusive-OR, and CIPH(B) represents the output of the forward cipher function of the AES 128-bit block cipher algorithm applied to block B under the AES 128-bit block cipher key PTK or GTK used to secure the frame. The MIC is ordered for transmission from its first octet on the left to its last octet on the right, as also illustrated in Figure 101. The octet notations out0 , …, out15 correspond to those used for AES 128-bit block cipher output block formation specified in FIPS Pub 197 ISO/IEC 18033-3.

The blocks required for the MIC computation are constructed from the unencrypted version of the frame to be transmitted at the sender side, and from the decrypted version of the received frame at the recipient side if the frame is encrypted.

[image: image18.emf]Leftmore 4 octets à MIC

AES

(

B

0

)

AES

(

B

1

Å

X

0

)

AES

(

B

m

Å

X

m-1

)

B

0

X

0

B

1

X

m-1

B

m

X

m

AES

(

Ctr

0

)

Ctr

0

out

0

(Leftmost

Octet)

out

1

out

2

out

3

out

15

(Rightmost

Octet)

...

msb lsb

...

msb lsb

...

msb lsb

...

msb lsb

...

msb lsb

... ...

Octets:

Octet order:

4

L-R(out

0

– out

3

)

MIC

...

msb = most-significant bit lsb = least-significant bit

Figure 101 — MIC calculation and transmit order

7.3.1.6 Frame payload encryption

The encrypted frame payload in an encrypted frame is formatted as shown in Figure 102, where

B'i = Bi (CIPH(Ctri), i = 1, …, m-1

B'm = L_n(Bm) (L_n(CIPH(Ctrm))
Here, the symbol (denotes bitwise exclusive-OR, and L_n(B) designates the n leftmost octets of B. Moreover, CIPH(Ctri) represents the output of the forward cipher function of the AES 128-bit block cipher algorithm applied to the counter block Ctri under the AES 128-bit block cipher key PTK or GTK used to secure the frame. The encrypted frame payload has the same length as the unencrypted frame payload, so that n ≤ 16 is the number of octets in Bm excluding the zero padding octets if any.

Each encrypted block is ordered for transmission from its first octet on the left to its last octet on the right, as also illustrated in Figure 102. The octet notations out0, …, out15 correspond to those used for AES 128-bit block cipher output block formation specified in FIPS Pub 197 ISO/IEC 18033-3.

[image: image19.emf]B'

m

B'

1

16

L-R (out

0

–out

15

)

n

L-R (out

0

–out

n-1

)

Octets:

Octet order:

Encrypted Frame Payload

...

AES

(

Ctr

i

)

Ctr

i

B'

i

B

i

out

0

(Leftmost

Octet)

out

15

(Rightmost

Octet)

out

0

(Leftmost

Octet)

out

n-1

(nth Leftmost

Octet)

...

Cipher text generation

Figure 102 — Encrypted Frame Payload format for encrypted frames

7.3.1.7 Frame payload decryption

The frame payload in an encrypted frame is decrypted as shown in Figure 103, where

Bi = B'i (CIPH(Ctri), i = 1, …, m-1
B–m = B'm (L_n(CIPH(Ctrm))
The decrypted frame payload has the same length as the encrypted frame payload, so that n ≤ 16 is the number of octets in the last block B'm of the encrypted frame payload received. The last decrypted block B–m is padded with 16 – n zero octets at the right end to form the last block Bm as shown in Figure 99(a) for MIC calculation over the received frame as described in 8.3.1.5.

Each decrypted block is ordered for MIC calculation, and delivery to the MAC client if the MIC is valid, from its first octet on the left to its last octet on the right, as also illustrated in Figure 103. Again the octet notations out0, …, out15 correspond to those used for AES 128-bit block cipher output block formation specified in FIPS Pub 197 ISO/IEC 18033-3.

[image: image20.emf]B

–

m

B

1

16

0-15

n

L-R (out

0

–out

n-1

)

Octets:

Octet order:

Decrypted Frame Payload

...

AES

(

Ctr

i

)

Ctr

i

B

i

B

'

i

Plain text recovery

out

0

(Leftmost

Octet)

out

15

(Rightmost

Octet)

out

0

(Leftmost

Octet)

out

n-1

(nth Leftmost

Octet)

...

Figure 103 — Decrypted Frame Payload format for encrypted frames

7.3.2 Replay protection

A recipient shall treat a received frame with a valid MIC value, i.e., with the MIC field contained in the received frame equal to the MIC value calculated from the received frame, as a replay of a previously received frame if the Security Sequence Number field of the current frame has a value equal to or smaller than

· GTK_SSN if the current frame is secured by a group temporal key (GTK) that has not been used for any previously received frames with a valid MIC field, where GTK_SSN is the value of the GTK SSN field contained in the Group Temporal Key (GTK) frame through which the node received this GTK from the sender of the current frame;

· SSN if the current frame is secured by a PTK or GTK that has been used for one or more previously received frames with a valid MIC field, where SSN is the value of the Security Sequence Number field found in the last received frame containing a valid MIC and secured by this PTK or GTK.

The recipient shall discard all detected replayed frames.
Sender Address

0-71

0-5

Security Suite selector

0-5

AssociationSequence Number

72

Recipient Address

6

0-1

0

6

2

1

Security Association Data

0-7

8

DA_KMAC

16

0-15

Sender

Nonce

0-1

2

Security Suite selector

(Address_B, Address_A, Security_Suite_Selector, Nonce_A, DA_KMAC)

(5b) Compute P = CMAC(MK,

Address_A || Address_B || Nonce_A || Security_Suite_Selector)

Check if DA_KMAC = LMB_64(P)

Do not proceed if check fails

(2a) Compute P = CMAC(MK,

Address_A || Address_B || Nonce_A || Security_Suite_Selector)

DA_KMAC = LMB_64(P)

(9b) Compute P = CMAC(Nonce_A,

Address_A || Address_B ||PKAX || PKAY)

Check if Witness = LMB_64(P)

Do not proceed if check fails

(2a) Compute P = CMAC(Nonce_A,

Address_A || Address_B ||PKAX || PKAY)

Witness = LMB_64(P)

CIPH

CIPH

CIPH

Octes

Octes

CIPH

CIPH

CIPH

128-bit block cipher

_1329823537.vsd
(1a) First Security Association frame
(Address_B, Address_A, Security_Suite_Selector, x01)

Initiator (A)

Responder (B)

(2b) I-Ack frame

(5) Both parties activate their pre-shared MK as their MK

(3b) Second Security Association frame
(Address_A, Address_B, Security_Suite_Selector, x02)

(4a) I-Ack frame

_1330156002.vsd
Octets:
Octet order:

Sender
PKX

24
0-23

Sender
PKY

24
0-23

Sender
Nonce

16
0-15

MK_KMAC

8
0-7

_1330157017.vsd
Bits:
Bit order:

Security
Association
Protocol

4
b0-b3

Security
Level
Required

2
b4-b5

Message
Security
Protocol

8
b0-b7

Control
Frame
Authentication

1
b6

Reserved

1
b7

_1330163970.vsd
Bits:
Bit order:

Security
Association
Protocol

3
b0-b2

Security
Level
Required

2
b3-b4

Message
Security
Protocol

8
b0-b7

Control
Frame
Authentication

1
b5

Reserved

2
b6-b7

_1330156059.vsd
Sender
Address

Recipient
Address

6
0-5

6
0-5

Octets:
Octet order:

Sender
Nonce

16
0-15

DA_KMAC

8
0-7

_1330155367.vsd
X(P) = X(PX, PY) = PX

(12) Both parties compute & activate their new MK = CMAC(DHKey, Nonce_A || Nonce_B)

PKAX and PKAY are set to 0 in first & third Security Association frames
for public key hidden association

(5b) Second Security Association frame
(Address_A, Address_B, Security_Suite_Selector, x02, Nonce_B, PKBX, PKBY, MK_KMAC_2B)

Initiator (A)

Responder (B)

(1a) Select 128-bit Nonce_A

(1b) Select 128-bit Nonce_B

(3b) I-Ack frame

(7a) Compute DHKey = X(SKA×PKB)
P2 = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B || Security_Suite_Selector)
P3 = CMAC(DHKey, Address_B || Address_A || Nonce_B || Nonce_A || Security_Suite_Selector)
MK_KMAC_2A = LMB_64(P2)
MK_KMAC_3A = LMB_64(P3)

(11b) Check if
MK_KMAC_3A = MK_KMAC_3B
Do not proceed if check fails

(4b) Compute DHKey = X(SKB×PKA)
P2 = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B || Security_Suite_Selector)
P3 = CMAC(DHKey, Address_B || Address_A || Nonce_B || Nonce_A || Security_Suite_Selector)
MK_KMAC_2B = LMB_64(P2)
MK_KMAC_3B = LMB_64(P3)

(8a) Check if
MK_KMAC_2A = MK_KMAC_2B
Do not proceed if check fails

(6a) I-Ack frame

(9a) Third Security Association frame
(Address_B, Address_A, Security_Suite_Selector, x03, Nonce_A, PKAX, PKAY, MK_KMAC_3A)

(0a) Select private key SKA
Compute public key
PKA = (PKAX, PKAY) = SKA×G

(0b) Select private key SKB
Compute public key
PKB = (PKBX, PKBY) = SKB×G

(2a) First Security Association frame
(Address_B, Address_A, Security_Suite_Selector, x01, Nonce_A, PKAX, PKAY, 0)

(10b) I-Ack frame

_1330155737.vsd
(5b) Recover A’s public key
PKA = PK'A + (MX + 1)×Q(PW)
where Q(PW) =
(QX = PW+MX, QY = even positive integer)

Initiator (A)

Responder (B)

(2a) Select 128-bit Nonce_A

(2b) Select 128-bit Nonce_B

(6b) Compute DHKey = X(SKB×PKA)
P2 = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B || Security_Suite_Selector)
P3 = CMAC(DHKey, Address_B || Address_A || Nonce_B || Nonce_A || Security_Suite_Selector)
MK_KMAC_2B = LMB_64(P2)
MK_KMAC_3B = LMB_64(P3)

(0a) Select private key SKA
Compute public key
PKA = (PKAX, PKAY) = SKA×G

(0b) Select private key SKB
Compute public key
PKB = (PKBX, PKBY) = SKB×G

(3a) First Security Association frame
(Address_B, Address_A, Security_Suite_Selector, x01, Nonce_A, P'KAX, PK'AY, 0)

(4b) I-Ack frame

(7b) Second Security Association frame
(Address_A, Address_B, Security_Suite_Selector, x02, Nonce_B, PKBX, PKBY, MK_KMAC_2B)

(8a) I-Ack frame

(9a) Compute DHKey = X(SKA×PKB)
P2 = CMAC(DHKey, Address_A || Address_B || Nonce_A || Nonce_B || Security_Suite_Selector)
P3 = CMAC(DHKey, Address_B || Address_A || Nonce_B || Nonce_A || Security_Suite_Selector)
MK_KMAC_2A = LMB_64(P2)
MK_KMAC_3A = LMB_64(P3)

(10a) Check if
MK_KMAC_2A = MK_KMAC_2B
Do not proceed if check fails

(11a) Third Security Association frame
(Address_B, Address_A, Security_Suite_Selector, x03, Nonce_A, PK'AX, PK'AY, MK_KMAC_3A)

(12b) I-Ack frame

(13b) Check if
MK_KMAC_3A = MK_KMAC_3B
Do not proceed if check fails

(14) Both parties compute and activate their new MK = CMAC(DHKey, Nonce_A || Nonce_B)

(1a) Compute password-scrambled public key
PK'A = PKA – (MX + 1)×Q(PW)
where Q(PW) =
(QX = PW+MX, QY = even positive integer)
Update SKA and PKA if PK'A = O

X(P) = X(PX, PY) = PX

_1330155930.vsd
(3a) Security Disassociation frame
(Address_B, Address_A, Nonce_A, DA_KMAC)

(4b) I-Ack frame

(6) Both parties erase their existing MK & PTK materials

Initiator (A)

Responder (B)

(1a) Select 128-bit Nonce_A

(2a) Compute P = CMAC(MK,
Address_A || Address_B || Nonce_A)
DA_KMAC = LMB_64(P)

(5b) Compute and check if
P = CMAC(MK,
Address_A || Address_B || Nonce_A)
DA_KMAC = LMB_64(P)
Do not proceed if check fails

_1329823664.vsd
(9b) Check if Witness = CMAC(Nonce_A,
Address_A || Address_B || PKAX || PKAY)
Do not proceed if check fails

(2a) Compute Witness = CMAC(Nonce_A,
Address_A || Address_B || PKAX || PKAY)

Initiator (A)

Responder (B)

(1a) Select 128-bit Nonce_A

(1b) Select 128-bit Nonce_B

(0a) Select private key SKA
Compute public key
PKA = (PKAX, PKAY) = SKA×G

(0b) Select private key SKB
Compute public key
PKB = (PKBX, PKBY) = SKB×G

(3a) First Security Association frame
(Address_B, Address_A, Security_Suite_Selector, x01, 0, 0, 0, Witness)

(4b) I-Ack frame

(5a) Second Security Association frame
(Address_A, Address_B, Security_Suite_Selector, x02, Nonce_B, PKBX, PKBY, 0)

(6b) I-Ack frame

(10a) Compute DHKey = X(SKA×PKB)
H = CMAC(DHKey,
Address_A || Address_B || Nonce_A || Nonce_B
|| Security_Suite_Selector)
D = RMB_16(H), D_A = BS2DI(D)

(7a) Third Security Association frame
(Address_B, Address_A, Security_Suite_Selector, x03, Nonce_A, PKAX, PKAY, 0)

(8b) I-Ack frame

(12) Both parties compute and activate their new MK = CMAC(DHKey, Nonce_A || Nonce_B)

(10b) Compute DHKey = X(SKB×PKA)
H = CMAC(DHKey,
Address_A || Address_B || Nonce_A || Nonce_B
|| Security_Suite_Selector)
D = RMB_16(H), D_B = BS2DI(D)

X(P) = X(PX, PY) = PX

(11) User checks & confirms if D_A = D_B
Do not proceed if not confirmed

_1298981276.vsd
First
(Leftmost) Field

First
(Leftmost) Octet

Octets:
Octet order:

...

msb

16
L-R

Last (Rightmost) Field

Last (Rightmost) Octet

...

First
(Leftmost) Octet

Last (Rightmost) Octet

msb = most-significant bit lsb = least-significant bit

...

...

...

...

...

...

AES input block

...

...

lsb

...

msb

lsb

...

...

...

msb

lsb

...

msb

lsb

...

...

...

input0

input07

input120

input0127

Bits
Bit order:

128
L-R (input0 – input127)

_1299398003.vsd
Bm

B1

2
1-0

16
0-15

Frame Payload

Octets:
Octet order:

a

Zero Padding

...

14
0-13

_1299400190.vsd
B'm

B'1

16
L-R (out0 – out15)

n
L-R (out0 – outn-1)

Octets:
Octet order:

Encrypted Frame Payload

...

AES(Ctri)

Ctri

B'i

Bi

Cipher text generation

out0
(Leftmost Octet)

out15
(Rightmost Octet)

out0
(Leftmost Octet)

outn-1
(nth Leftmost Octet)

...

...

...

_1324793972.vsd
(2a) First PTK frame
(Address_R, Address_I, x01, PTK Index, Nonce_I, 0)

Initiator (I)

Responder (R)

(1a) Select 128-bit Nonce_I

(1b) Select 128-bit Nonce_R

(4b) Compute
PTK = CMAC(MK, Address_I || Address_R || Nonce_I || Nonce_R || PTK_Index)
KCK = CMAC(MK, Address_R || Address_I || Nonce_R || Nonce_I || PTK_Index)
P = CMAC(KCK, Address_I || Address_R || Nonce_R || Nonce_I || PTK_Index)
PTK_KMAC_2B = LMB_64(P), PTK_KMAC_3B = RMB_64(P)

MK = master key

(5b) Second PTK frame
(Address_I, Address_R, x02, PTK Index, Nonce_R, PTK_KMAC_2B)

(8a) Check if
PTK_KMAC_2A = PTK_KMAC_2B
Do not proceed if check fails

(7a) Compute
PTK = CMAC(MK, Address_I || Address_R || Nonce_I || Nonce_R || PTK_Index)
KCK = CMAC(MK, Address_R || Address_I || Nonce_R || Nonce_I || PTK_Index)
P = CMAC(KCK, Address_I || Address_R || Nonce_R || Nonce_I || PTK_Index)
PTK_KMAC_2A = LMB_64(P), PTK_KMAC_3A = RMB_64(P)

(9a) Third PTK frame
(Address_R, Address_I, x03, PTK Index, Nonce_I, PTK_KMAC_3A)

(11b) Check if
PTK_KMAC_3A = PTK_KMAC_3B
Do not proceed if check fails

(3b) I-Ack frame

(6a) I-Ack frame

(10b) I-Ack frame

(12) Both parties compute and activate their new PTK
= CMAC(MK, Address_I || Address_R || Nonce_I || Nonce_R || PTK_Index)

_1299407257.vsd
B–m

B1

16
0-15

n
L-R (out0 – outn-1)

Octets:
Octet order:

Decrypted Frame Payload

...

AES(Ctri)

Ctri

Bi

B'i

Plain text recovery

out0
(Leftmost Octet)

out15
(Rightmost Octet)

out0
(Leftmost Octet)

outn-1
(nth Leftmost Octet)

...

...

...

_1299399037.vsd
Leftmore 4 octets à MIC

AES(B0)

AES(B1 Å X0)

AES(Bm Å Xm-1)

B0

X0

B1

Xm-1

Bm

Xm

AES(Ctr0)

Ctr0

out0
(Leftmost Octet)

msb = most-significant bit lsb = least-significant bit

...

out1

out2

out3

out15
(Rightmost Octet)

...

msb

lsb

...

msb

lsb

...

msb

lsb

...

msb

lsb

...

msb

lsb

...

...

Octets:
Octet order:

4
L-R (out0 – out3)

MIC

_1299397984.vsd
Zero Padding

Bm

B1

16
0-15

16
0-15

Octets:
Octet order:

Unencrypted/Decrypted Frame Payload

...

_1298450886.vsd
Q = L_FP

Nonce

Flags = 0x09

1
0

13
L-R

2
1-0

Octets:
Octet order:

_1298450901.vsd
Q = 0

Nonce

Flags = 0x49

1
0

13
L-R

2
1-0

Octets:
Octet order:

_1298450956.vsd
Counter i

Nonce

Flags = 0x01

1
0

13
L-R

2
1-0

Octets:
Octet order:

_1290261852.vsd
Security
Sequence
Number

MAC
Header

0x000000

3
0-2

6
L-R

4
0-3

Octets:
Octet order:

