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function [signal,time_samp] = generate_power_profile_wmban()

% Generate a signal (in terms of received power with respect to transmit
% power) for a mobile wireless body area network based on extensive
% measurement campaign carried out at NICTA.
%
% Author: David Smith ; affiliation: National ICT Australia (NICTA)
% With assistance from Jian (Andrew) Zhang and Dino Miniutti
% Date: 21 Nov 2008
%
% Return values:
%   signal    - Received power profile relative to transmit power (dB)
%   time_samp - Timing epoch of each sample in 'signal' vector (s)
%
% Aim : - Generation of a signal power profile (signal variable) with
% fading statistics that approximately match statistics from NICTA's
% extensive measurement campaign reported by Miniutti et al. [Miniutti08].
%
% The following definitions apply to generated signal -
%       Fade:                 Contiguous portion of signal that crosses
%                               below the mean signal power.
%       Fade duration:        Time below mean signal power for faded
%                               portion of signal.
%       Fade depth/magnitude: Maximum attenuation of individual fade
%                               portion relative to mean (within each
%                               individual fade).
%       Level crossing rate:  The inverse of the time where power profile
%                               drops below mean to when it next crosses
%                               below mean.
%
% In line with the aim of this function -
%     We generate the power profile of a signal around its mean over time
%     such that the attenuated portions of this signal (fades)
%     statistically match the fades found in NICTA's measurement campaign
%     [Miniutti08].
%     In particular, this function attempts to generate a signal whereby
%     the statistical distribution of its: 1) fade durations; 2)
%     fade magnitudes; and 3) level crossing rate match the respective
%     distributions found in NICTA's channel measurements. The statistical
%     distribution of the generated signal around the mean also matches
%     that of NICTA's channel measurements.
%
% The following is a summary of the method used: -
%     1. Generate an initial signal that matches the desired fading
%        statistics using order statistics.
%        Notes:
%          - An appropriate set of Weibull distributed [Weibull1951]
%            random numbers are generated according to best fit to signal
%            statistical distribution around mean from NICTA's
%            measurements.
%          - Jake's model is used to generate a Rayleigh fading power
%            profile with an appropriate rate of fading.
%          - A Weibull fading signal power profile is generated by ordering
%            Weibull distributed random numbers according to the ordering
%            of the Rayleigh power profile.
%          - This signal will have appropriate fade durations and level
%            crossing rates
%
%       2. The initial signal is then manipulated such that in such a way
%          to make its fade depth statistics match those found in NICTA's
%          measurements. This occurs in the following manner:
%          2a. The signal is treated in portions, each portion being a fade
%              followed by a non-fade (a contiguous portion of the signal
%              above the mean power).
%          2b. Iterate through all the signal portions and compare each
%              fade to the desired fade depth statistics. The current
%              signal portion is manipulated depending on this comparison
%              in one of three ways.
%                - Good match to desired statistics: Keep the current
%                  signal portion and insert it into the output signal.
%                - Too much attenuation: Remove the parts of the fade that
%                  have too much attenuation. The remaining signal portion
%                  is then inserted into the output signal.
%                - Bad match to desired statistics: Discard the current
%                  signal portion.
%          2c. Due to the unnatural ordering that results from the fade
%              depth manipulation described above, the non-discarded
%              portions of the signal are reordered (though not reordering
%              within portions).
%         Note: This manipulation does not significantly affect match of
%         level crossing rates and fade duration of signal to statistics
%         from NICTA's measurements.
%
%       3. Adjust the final signal so its mean is equal to the mean
%          specified by the user.
%
% Note: This function calls a number of sub-functions to perform the above
% steps. These sub-functions contain more detailed explanation of the
% method described here.
%
% Note: A number of simulation parameters may be set in the following
% section of the code.
% First initialize rand, Matlab's function to produce uniform randomly
% distributed numbers on [0,1] to different state to previous use. This will
% be used in generation of various random numbers.
rand('state',sum(100*clock));

%--------------------------------------------------------------------------
% Simulation parameters
%--------------------------------------------------------------------------
% The simulation parameters below may be changed to appropriate values of
% your choosing.
% Time (s)
time = 20;

% Time in seconds over which signal is generated
% Carrier frequency (MHz)
car_frequency = 820;

% Carrier frequency of transmitted signal.
% * Allowed range: 400 -- 2500 MHz
% * 820 MHz corresponds to NICTA's measurements.
% Sample rate (kHz)
sample_rate = 1;

% Sample rate of received power profile.
% * Allowed range: 0.75 -- 15 kHz.
% * 1 kHz corresponds to NICTA's measurements.
% Relative body movement velocity (km/h)
vel = 1.5 + 4 * rand;

% This is a rough approximation of Rx movement velocity with respect to
% scatterers and/or transmitter Tx. It is used to generate a signal with
% an appropriate rate of fading in the signal generating sub-function to this
% function.
% * Allowed range: 1.5 -- 20 km/h
% * Values of 1.5 -- 5.5 to correspond best to NICTA's measurements.
% Mean path loss (dB)
a = 60.2; % Scale parameter
b = 6.6; % Shape parameter
mean_path_loss = a*(-log(rand))^(1/b);

% This statistic gives a Weibull distributed random number representing
% mean path loss. With the values of a=60.2 and b=6.6, the statistic
% approximately reflects Weibull distribution of mean path loss from
% NICTA's measurement campaign, but this mean path loss can be set
% arbitrarily to any value of your choosing.
% * Note also this statistic follows directly from the Weibull cumulative
%   distribution function.
% * Recommended range: 35 -- 70 dB
%     Note: Appropriate generation of a set of Weibull distributed faded signals
%     with a varied set of typical mean path losses according to the above
%     statistic results in a distribution characteristic approximately matching that
%     of a specific Lognormal distribution. This specified Lognormal
%     distribution with log mean of -13.3 and log standard deviation 2.49
%     was reported on NICTA's  measurement campaign, as a best fit to the
%     12.7 million measurements (where mean path loss is not removed) [Miniutti08].
%--------------------------------------------------------------------------
% Generate signal according to above parameters
%--------------------------------------------------------------------------
signal = gen_sig_wmban(vel, car_frequency, sample_rate, time, mean_path_loss);

% Note that the mean_path_loss in dB specified above is equal to -10*log10(mean(signal))
% Plot signal in dB, against time;
fs = sample_rate * 10^3; % Sampling rate (Hz)
time_samp = (1:length(signal)) / fs;

plot(time_samp, 10*log10(signal));

xlabel('Time (s)')

ylabel('Channel gain (dB)')

title('Channel gain from Tx to Rx for mobile wireless body area network')

%--------------------------------------------------------------------------
% References:
% [Miniutti08]  D. Miniutti, L. Hanlen, D. Smith, A. Zhang, D. Lewis, D.
%               Rodda and B. Gilbert, “Characterisation of large-scale
%               fading in BAN channels”, October 2008.
% [Weibull1951] Weibull, W. A., "A statistical distribution function of
%               wide applicability", Journal of Applied Mechanics, vol. 18,
%               pp. 292-297, 1951.
%--------------------------------------------------------------------------
% Subfunctions (this is where the real work is done)
%--------------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function signal = gen_sig_wmban(vel, car_frequency, sample_rate, time, mean_path_loss)

% This function creates a received power profile vector for a received
% signal for an on-body mobile wireless BAN.
%
% Return value:
%   signal - A power profile (or power envelope) of absolute magnitude
%   (not dB) describing receive power as a fraction of transmit power. The
%   mean of the signal is determined by the input parameter mean_path_loss.
%
% Parameters:
%   vel            - Speed of movement of body for Rx with respect to
%                    scatterers and/or Tx (km/h)
%   car_frequency  - Carrier frequency (MHz)
%   sample_rate    - Rate at which signal envelope is sampled (kHz)
%   time           - Time over which signal is generated (s)
%   mean_path_loss - Expected mean path loss for the channel (dB)
% Check that parameters lie within suitable ranges
if car_frequency < 400 || car_frequency > 2500

    disp('Carrier frequency should be in range 400 -- 2500 MHz')

    signal = [];

    return
end
if sample_rate < 0.75 || sample_rate > 15

    disp('Sample rate should be in range 0.75 -- 15 kHz')

    signal = [];

    return
end
if vel < 1.5 || vel > 20

    disp('Velocity should be in range 1.5 -- 20 km/h')

    signal = [];

    return
end
%--------------------------------------------------------------------------
% Set parameters used to generate signal.
%--------------------------------------------------------------------------
% Maximal Doppler frequency (Hz)
fd = vel / 3.6 * car_frequency * 10^6 / (3 * 10^8);

% Note that this is an approximate target value as fades in the generated
% signal are manipulated later in the code.
% Sample rate (Hz)
fs = sample_rate * 10^3;

% Doppler fading parameter (normalized Doppler spread)
p = fd / fs;

% Total number of samples over which final signal sig is generated
% This may be increased below, depending on two conditions.
nsamp = round(time*fs);

%--------------------------------------------------------------------------
% Increase number of samples if required
%--------------------------------------------------------------------------
% Given that samples of the signal's power envelope are discarded when we
% later manipulate the fade depths, we may need to increase the number of
% samples here so we don't "run out" of samples later. If, at the end of
% manipulating the fade depths there are still samples left over, then the
% signal is truncated to the correct length.
% The two conditions that are used to determine whether we need to increase
% the number of samples were found by extensive empirical testing. These
% conditions are:
%   1. carrier frequency is less than 800 MHz and time specified is less
%   than 30s; or
%   2. time specified is less than 20s.
time_change = 0; % Keep track of whether time parameter has been changed
if car_frequency < 800 && time < 35

    time = 35;

    nsamp1 = nsamp;

    nsamp = round(time*fs);

    time_change = 1;

end
if time < 20

    time = 20;

    nsamp1 = nsamp;

    nsamp = round(time*fs);

    time_change = 1;

end
%--------------------------------------------------------------------------
% Signal generation loop
%--------------------------------------------------------------------------
% In some very isolated cases (in particular given certain values of
% velocity, carrier frequency, time and sample rate) we may "run out" of
% samples in the signal generation routine (although this is still very
% unlikely). Thus, to avoid an error, we run a while loop until there are
% enough samples (in the great majority of cases there will be only one
% iteration of this loop).
enough_samples_indicator = 0;

while enough_samples_indicator == 0,

    %----------------------------------------------------------------------
    % Below we generate an initial Weibull fading power profile with
    % approximate specified Doppler fading parameter (normalized Doppler
    % spread).
    %
    % Order statistics of a Rayleigh power profile with the specified
    % Doppler fading parameter are used to order randomly generated Weibull
    % distributed numbers to obtain a Weibull faded signal.
    %
    % The order of the same length Rayleigh faded signal (corresponding to
    % Rayleigh distribution of specified Doppler parameter) determines the
    % order of the Weibull distributed random numbers to produce a relevant
    % Weibull faded signal profile with approximate Doppler parameter.
    %----------------------------------------------------------------------
    % First generate a vector of Weibull distributed random numbers around
    % the mean, Al.
    % Note that it is necessary to generate more random samples than are
    % asked for as we will later discard some samples when manipulating the
    % fade depths.The code below uses a multiplier of 1.6 to specify how
    % many samples should be generated. This number was chosen by empirical
    % testing and is generally large enough to allow discarding of samples
    % in the final signal after fade manipulation and as small as possible
    % to produce a final signal that most accurately reflects the desired
    % statistics.
    randnum = rand(1, round(1.6*nsamp)); % Uniformly distributed random numbers on (0,1)
    % The following Weibull parameters are derived from the best overall
    % data fit (with mean path loss removed - i.e. power profile normalized
    % to mean) from NICTA's measurement campaign.
    a = 0.9926; % Weibull shape parameter
    b = 0.9832; % Weibull scale parameter
    Al = a*(-log(randnum)).^(1/b); % Weibull distributed random numbers
    AdB = 10*log10(Al); % Convert to dB
    % Exclude those values above and below the mean that didn't occur in
    % all 12.7 million measurements as they are unrealistic in the context
    % of what received signal powers can be reasonably expected. Note that
    % these discards will be very rate and should not affect the Weibull
    % distribution in any significant way.
    AdB = AdB(AdB>-73 & AdB<21);

    % Generate a Rayleigh fading signal power profile using Jakes' model,
    % whereby the ordering of Rayleigh fading generated statistics is used
    % to create an appropriately ordered Weibull fading signal (based on
    % the Rayleigh signal ordering with the same Doppler parameter over the
    % length of the Weibull distributed samples).This method for producing
    % appropriately ordered Weibull fading follows from the methods to
    % produce Nakagami-m fading in [Filho07] and Lognormal fading in
    % [Cotton07].
    % NB: This is only an initial signal generation; following this we
    % will manipulate this signal so that fade depths correspond to those
    % from NICTA's measurement campaign.
    % Rayleigh_power: a Rayleigh power profile generated using Jakes' model
    % with appropriate Doppler fading parameter
    Rayleigh_power = abs(jakesm_siso(length(AdB),p)).^2;

    % I is the indexing of the sorted Rayleigh_power (in ascending order)
    % with respect to the original generated Rayleigh power profile
    [Habs_s, I] = sort(Rayleigh_power);

    % Including the mean path loss (in dB) we generate a set of received
    % signal powers (unordered), P (in dB), based on Weibull random numbers
    % generated.
    P = AdB - mean_path_loss;

    A_f = 10.^(P/10); % Absolute values of generated received signal powers
    % Sort the initial signal according to Rayleigh ordering
    initial_signal = sort(A_f);

    initial_signal(I) = initial_signal;

    % This initial signal is a Weibull faded signal power profile with
    % approximate Doppler parameter (or normalized Doppler spread) p, and
    % Weibull shape and scale parameters (a and b), as specified.
    %----------------------------------------------------------------------
    % Manipulate fade depths
    %----------------------------------------------------------------------
    % The initial_signal generated above will, in general, not have the
    % desired distribution of fade depths, so the signal must be
    % manipulated to achieve the desired distribution. We now call a
    % function that will manipulate the initial signal. This function will
    % produce a signal with a distribution of fade depths (in dB) that
    % approximate those from NICTA's measurement campaign.
    signal_dB = manipulate_fade_depths(initial_signal, mean_path_loss);

    % Note that the Doppler fading parameter of the signal returned from
    % the function below will not exactly match the input initial_signal to
    % this function. However, it will still remain a rough approximation of
    % the desired doppler fading parameter.
    % If we have generated enough samples in the final signal then we can
    % end the while loop. Otherwise, we perform another iteration of the
    % loop.
    if length(signal_dB)>=nsamp

        enough_samples_indicator = 1;

    end
end %(while)
% Final generated signal is truncated to total number of desired samples.
% Note that the final generated signal power profile is an absolute
% magnitude (not dB).
signal = 10.^(signal_dB(1:nsamp)/10); % Truncate and convert from dB to absolute magnitude
% If we changed the effective time to help signal generation, further
% truncate signal to time desired in function call.
if time_change == 1,

    signal = signal(1:nsamp1);

end
% Finally, we readjust the signal so its mean matches the specified mean
% path loss (mean will have changed slightly due to fade manipulation).
signal_mean_dB_non_fixed = 10*log10(mean(signal));

signal_dB_fin = 10*log10(signal) - (mean_path_loss + signal_mean_dB_non_fixed);

signal = 10.^(signal_dB_fin/10);

%--------------------------------------------------------------------------
% References:
% [Filho07]  Filho, J.C.S.S, Yacoub, M. D. and Fraidenraich, G., "A Simple
%            Accurate Method for Generating Autocorrelated Nakagami-m
%            Envelope Sequences", IEEE Communication Letters, vol. 11, no.
%            3, pp. 231-233, Mar 2007.
% [Cotton07] Cotton, S. L. and Scanlon, W. G., "Higher Order Statistics for
%            Lognormal Small-Scale Fading in Mobile Radio Channels", IEEE
%            Antennas and Wireless Propagation Letters, vol. 6, pp. 540-543,
%            2007.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Hs = jakesm_siso(N1, p)

% This function generates Rayleigh fading for a single-input single-output
% system according to Jakes' model [Jakes74].
%
% Return value:
%   Hs - Complex fade amplitudes
%
% Parameters:
%   N1 - Desired number of samples for the channel response
%   p  - Doppler fading parameter (or normalized Doppler spread by sample rate)
Ns = 50; % Number of scatterers (chosen to get appropriately 'rich' scattering in Rayleigh fading)
c = 1 / sqrt(Ns); % Normalization factor
ts = repmat(2*pi*rand(1,Ns), N1, 1);

ft = 2*pi*p*repmat((1:N1)', 1, Ns) .* repmat(cos(2*pi*rand(1,Ns)), N1, 1);

Hs = sum(c*exp(-j*(ft+ts)), 2);

%--------------------------------------------------------------------------
% Reference:
% [Jakes74] Jakes, W. C., "Microwave Mobile Communications", Ed. John
%           Wiley, New York, 1974.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function signal_dB = manipulate_fade_depths(initial_signal, mean_path_loss)

% This function manipulates the initial_signal power profile parameter in
% such a way as to produce a signal power profile (in dB) with the desired
% distribution of fade depths.
%
% This is achieved in the following manner:
%   * The signal is treated in portions, each portion being a fade followed
%   by a non-fade (a contiguous portion of the signal above the mean
%   power).
%   * Iterate through all the signal portions and compare each fade to the
%   desired fade depth statistics. The current signal portion is
%   manipulated depending on this comparison in one of three ways.
%     - Good match to desired statistics: Keep the current signal portion
%     and insert it into the output signal.
%     - Too much attenuation: Remove the parts of the fade that have too
%     much attenuation. The remaining signal portion is then inserted into
%     the output signal.
%     - Bad match to desired statistics: Discard the current signal
%     portion (including the non-fade part of the portion).
%   * Due to the unnatural ordering that results from the fade depth
%   manipulation described above, the non-discarded portions of the signal
%   are reordered (though not reordering within portions).
%
% We note that no manipulation of the non-faded portion is necessary.
%
% This method has been found to be statistically accurate from empirical
% testing. Furthermore, the resultant final signal power profile properties
% (and appearance) are a good match to NICTA's measured power profiles.
%
%
% Return value:
%   signal_dB - A signal  power profile in dB with appropriate fade depth
%   distribution
%
% Parameters:
%   initial_signal - Signal to be manipulated
%   mean_path_loss - Desired mean path loss for output signal
%
% Notes:
% - The mean of signal_dB is generally within 1dB of the specified mean
% path loss, due to the manipulation of the fades. That is, it doesn't
% match mean_path_loss exactly, but the function that calls this one will
% make an appropriate adjustment to the mean.
% - signal_dB will have a Doppler fading parameter that is a rough
% approximation to that specified in function that calls this function.
% - The length of the vector signal_dB will be shorter than that of the
% initial_signal.
%--------------------------------------------------------------------------
% Find: 1) the number of fades in the initial signal; and 2) where these
% fades occur.
%--------------------------------------------------------------------------
% Find the number of fades in the initial signal, by first quantising the
% signal around the mean
quantised = initial_signal / mean(initial_signal) < 1;

crossings_up  = find(diff(quantised) == -1); % Index of when signal crosses above threshold of the mean, suggesting the end of a fade
crossings_down  = find(diff(quantised) == 1); % Index of when signal crosses below threshold of the mean, suggesting the beginning of a fade
% Remove stray crossings at start & end of data
if(length(crossings_up) > 1 && length(crossings_down) > 1)

    if(crossings_up(1) < crossings_down(1))

        crossings_up(1) = [];

    end
    if(crossings_down(end) > crossings_up(end))

        crossings_down(end) = [];

    end
end
% Hence the number of fades in the initial signal is...
nfades = length(crossings_up);

%--------------------------------------------------------------------------
% Generate reasonable expected fade depths for each fade from a
% distribution that is based upon NICTA's measurement campaign.
%--------------------------------------------------------------------------
% We generate a vector of appropriately distributed fade magnitudes (in dB)
% over the number of fades found in the signal. The distribution is a
% Weibull distribution that approximates the fade magnitude distribution
% (in dB) found in NICTA's measurement campaign.
% Note that the best fit for the fade magnitudes is actually a Gamma
% distribution (gamma parameters: shape = 0.669, scale = 14.46), but the
% Weibull is a very good approximation.
randnum = rand(1,nfades); % Uniformly distributed random numbers on (0,1)
a = 8.4; % Weibull shape parameter
b = 0.77; % ; Weibull scale parameter
wp = a*(-log(randnum)).^(1/b); % Weibull distributed random numbers
fade_mags = -mean_path_loss - wp; % Place Weibull random numbers around mean path loss
% Exclude those fades that didn't occur in all 12.7 million of NICTA's
% measurements as they are unrealistic in the context of what fade depths
% can be reasonably expected. Note that such values will be very rare in
% the generation of fade_mags and their exclusion should not affect the
% Weibull distribution significantly.
fade_mags = fade_mags(fade_mags > -mean_path_loss-73); % Desired fade magnitudes
% Sort these fades in descending order (for convenience)
fade_mags = sort(fade_mags, 2, 'descend');

% For ease of manipulation we convert our signal into dB
initial_signal_dB = 10*log10(initial_signal);

% Find the index of the start of the first fade
index_start_fade = crossings_down(1);

%  - index_start_fade is the index of the start of fade in the signal
% If the initial signal starts in a fade, then we create an empty output
% signal to begin with. Otherwise, we insert the first portion of the
% initial signal (the portion before any fades have occurred) into the
% output signal.
if index_start_fade-1 > 0,

    signal_dB = initial_signal_dB(1:(index_start_fade-1));

else
    signal_dB = [];

end
% Find how many crossings above the threshold of the mean there are.
% This will be used in final signal generation.
total_crossings = length(crossings_up);

% Initialise a counter to keep track of how may signal portions we have
% used so far.
kt = 0;

%--------------------------------------------------------------------------
% Fade manipulation:
% Apply the previously described method of keeping/clipping/removing faded
% sections of the initial signal.
%--------------------------------------------------------------------------
% Iterate over each fade & non-fade portion of the initial signal
for j = 1:total_crossings

    % Find the index of the crossing (above the mean) in the initial
    % signal. This index marks the end of the fade.
    index_end_fade = crossings_up(j) - 1;

    % Find the portion of signal that corresponds to this fade
    current_fade = initial_signal_dB(index_start_fade:index_end_fade);

    % Find the magnitude/depth of the current fade
    current_fade_magnitude = min(current_fade);

    % Compare the current fade magnitude to the sorted vector of desired
    % fade magnitudes. We find the index of the closest desired fade depth
    % whose fade is of greater magnitude than the current fade magnitude.
    ks = max(find(fade_mags>current_fade_magnitude));

    % If such an index exists we manipulate the initial faded signal
    % portion appropriately
    if isempty(ks)

        % No matching fade depth was found, do not use this portion of the
        % signal.
        ts = 0; % Flag that the current signal portion was not used
    else
        fm = fade_mags(ks); % Find the value of given fade depth
        % Remove this fade magnitude from the vector of possible magnitudes
        % (we only use each fade magnitude once).
        fade_mags = fade_mags(fade_mags~=fm);

        % Remove the parts of the current signal portion which have too
        % much attenuation.
        current_fade = current_fade(current_fade>fm);

        % Use the current signal portion?
        if ~isempty(current_fade)

            kt = kt + 1; % Increase counter of signal portions used
            ts = 1; % Flag that the current signal portion was used
        else
            % The current signal portion is empty, can't use it.
            ts = 0; % Flag that the current signal portion was not used
        end
    end
    %----------------------------------------------------------------------
    % Collect all the fades together
    %----------------------------------------------------------------------
    % If we have not iterated through all of the fades then insert the
    % current signal portion (fade + non-fade) into a cell array of signal
    % portions, as appropriate. This cell array will be used to generate
    % the final output signal.
    if j+1 <= total_crossings

        % Set index for start of next fade
        index_start_fade = crossings_down(j+1);

        % If current signal portion was used...
        if ts == 1

            % Take the current fade as well as the next contiguous non-fade
            % portion of the signal and insert it into the cell array.
            signal_portion{kt} = [current_fade, initial_signal_dB((index_end_fade+1):(index_start_fade-1))];

        end
    else
        % There is no non-fade portion following the current fade, so we
        % just add the fade to the cell array.
        if ts == 1,

            signal_portion{kt} = current_fade;

        end
    end
    % If all the generated fade depths have been used, exit the 'for' loop
    if isempty(fade_mags),

        break;

    end
end %(for)
%--------------------------------------------------------------------------
% Jumble the signal
%--------------------------------------------------------------------------
% We finally jumble up each signal portion that we stored in the cell array
% (note: not jumbling within portions). This is necessary due to the
% unnatural ordering of fades that occurs from our method of matching fade
% depths.
Rp = randperm(kt);

for kl = 1:kt,

    signal_dB = [signal_dB,signal_portion{Rp(kl)}];

end
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