March, 1994
 DOC: IEEE P802.11-94/xxx

November 13, 2008
 IEEE P802.15-0xxx-00-004e

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Security and Efficiency Enhancements Overview

	Date
	[13-Nov-08]

	Source
	René Struik
Certicom Corp.

5520 Explorer Drive, 4th Floor

Mississauga, ON L4W 5L1
	E-mail: rstruik@certicom.com
Phone: +1 (905) 501-6083

Fax: +1 (905) 507-4230

	Re:
	Security and Efficiency Enhancements for IEEE 802.15.4e

	Abstract
	This document provides an overview of security and efficiency enhancements for 802.15.4e, based on the streamlined version of Clauses 7.5.8 and 7.6 of IEEE 802.15.4-2006.

	Purpose
	Security and efficiency enhancements of IEEE 802.15.4-2006

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

1.1 Overview of Provided Functionality
Frame security with IEEE 802.15.4e is based on the frame security provisions in the 802.15.4-2006 specification with the following provisions:

Same as with 802.15.4-2006:

Security provisions:

· Confidentiality, data authenticity, replay protection (with old specification, not always replay protection or data authenticity)

· Protection of broadcast and multicast frames possible (with old specification, this mechanism was broken)

· Easier set-up of protection parameters possible (with old specification, one had to pre-install these parameters via ‘out-of-scope’ mechanism)

· Possibility to vary protection per frame, using a single key (with old specification, protection was fixed and key was married to protection level)

· Consideration of system lifecycle issues, e.g., allowing unsecured communications until higher layer sets up key (with old specification, this was ‘out-of-scope’)

· Optimization of storage of keying material (with old specification, frame counter was function of device and key; with new specification, this is function of device only [thus, saving cost, e.g., when working with two versions of network key])

· Security policy checks per frame possible (with old specification, protection level fixed irrespective of frame type)

· Key usage policy checks possible (with old specification, any key could be used with any frame)

Further enhancements to 802.15.4-2006:

Security provisions:

· Strong replay protection rather than weak replay protection (since clock available)

· More refined security policy check (also prevents some DoS attacks)

· Protection of acknowledgement frames possible

System lifecycle support:

· Facility for smooth key updates network-wide keys

· Refinement to facility for unsecured initial device enrolment (device-dependent rather than just frame type dependent)

Implementation cost:

· Reorganization of tables, to facilitate low-cost implementations

· Additional status messages

· Reduced storage cost of keying material (frame counters, device addresses, keys)

NOTE: Implementation of enhancement does not jeopardize 802.15.4-2006 compliance

1.2 How to Implement Enhancements to 802.15.4-2006 Security Functionality for 802.15.4e
Enhancements to 802.15.4-2006 Security Functionality may be implemented by using the streamlined version of the 802.15.4-2006 security specification, with the following provisions:

1.2.1 Transmission (§7.5.6.1):

· p. 188, l. 16: Add language to the effect that the current time macCurrentTime will be stored.

1.2.2 Reception and rejection (§7.5.6.2):

· p. 190, l. 24: Add language to the effect that the current time macCurrentTime will be stored.

1.2.3 Outgoing frame security procedure (§7.5.8.2.1):

· p. 202, l. 29-31: Add FrameCounterMode parameter; add macCurrentTime parameter. Adapt MAC sublayer service primitives (§7.1) accordingly.

· p. 202, Step d), ii). l. 47-48: Extend definition of AuxLen parameter, to take into account FrameCounterMode as well.

· p. 203, Step f): Obtain macFrameCounter attribute from macCurrentTime parameter; check that value never decreases.

· p. 203, Step i), iii): Set frame counter to representation of macFrameCounter compliant with FrameCounterMode parameter.

1.2.4 Incoming frame security procedure (§7.5.8.2.3):

· p. 204, l. 37-41: Add FrameCounterMode parameter; add macCurrentTime parameter. Adapt MAC sublayer service primitives (§7.1) accordingly.

· p. 205, Step i), l. 36-39: Reconstruct frame counter from representation hereof in auxiliary security header, taken into account the frame counter mode and locally maintained info as to the current time (so-called frame counter conversion).

· p. 205, Step j), l. 40-43: Correlate the frame counter and the current time macCurrentTime; reject frame if these differ by more than a set amount (presumably, because the frame was stale).

Remarks (RS):

· p. 205, Step g), l. 26-29: What if device not there? If one does not do source address filtering, one might still wish to accept incoming frame (e.g., to allow forwarding of frames secured using network-wide key). We may wish to implement a source address filtering mechanism anyway, also for unsecured incoming traffic.

· Changes to facilitate secured acknowledgements:

· §7.5.8.2.1: Add language on how to compress auxiliary security header.

· §7.5.8.2.3: Add language on how to reconstruct full auxiliary security header.

· §7.5.6.1, p. 189, l. 24-29: Rewrite this paragraph, so as to include outgoing frame processing on acknowledgement messages. Adapt §7.5.6.4 accordingly, to take into account changes to acceptable latency (e.g., parameter aTurnAroundTime) and resends.

· §7.5.6.2, pp. 189-190: Expand description to cover handling of incoming secured acknowledgment frames as well.

1.3 A Note on Higher-Layer Security Functionality
Higher-layer functionality may be implemented almost the same as MAC Layer Security Functionality (cf. §1.2 above), with the following caveats:

1.3.1 Common information elements across layers

· Addresses: cryptographic processing and retrieval of keying information assumes that the IEEE extended address EUI-64 is available. If necessary, address conversion needs to take place.

· Timing information: cryptographic processing assumes that timing information related to time of actual receipt of frame is available. This information needs to be propagated ‘up the stack’ (hence, mentioning hereof as I/O parameter in §1.2.3 and §1.2.4 above).

1.3.2 Different information elements across layers

· Timeliness criteria: correlation of the frame counter and the current time may yield rejection of the frame if these differ by more than a set amount, presumably because the frame was stale (cf. §1.2.4 above). The conditions under which this test leads to rejection of the incoming frame may depend on the layer in question, e.g., to take into account that multi-hop traffic has longer latency than single-hop traffic.

· Security policy information: the security policy under which incoming frames are rejected may depend on the frame type/stack layer in question. Note RS: In fact, the timeliness test above is another example of such a security policy check, but now not with respect to the protection purportedly applied to the frame or key used to implement this security transformation, but with respect to the time the frame was purportedly sent by the purported originating device.
1.4 How to Use Parameter Settings

The security services offered via frame security, both at the MAC level (§1.2) and at higher levels (as alluded to in §1.3), is guided by appropriate settings of security related parameters. A short discussion, in the context of MAC and higher-layer communications, follows.

Security services offered
The cryptographic mechanism provides particular combinations of the following security services:

· Data confidentiality. Assurance that transmitted information is only disclosed to parties for which it is intended.

· Data authenticity. Assurance of the source of transmitted information (and, hereby, that information was not modified in transit).

· Replay protection. Assurance that duplicate information is detected.

· Timeliness (delay protection). Assurance that transmitted information was received in a timely manner.

The actual frame protection provided can be adapted on a frame-by-frame basis and allows for varying levels of data authenticity (to minimize security overhead in transmitted frames where required) and for optional data confidentiality. When nontrivial protection is required, replay protection is always provided.

The acceptable delay can be adapted on a frame-by-frame basis and allows for varying levels of latencies (to facilitate longer latencies in frames transmitted via a multi-hop communication path or, e.g., shorted latencies for acknowledgements).
Note: Replay protection is provided via the use of a non-repeating value (nonce) in the frame protection process and storage of some status information for each originating device on the receiving device, which allows detection of whether this particular nonce value was used previously by the originating device. In addition, so-called delay protection is provided via some loosely synchronized notion of time maintained across the network.
Key Usage
Cryptographic frame protection may use a symmetric key shared between two peer devices (link key) or a key shared among a group of devices (group key), thus allowing some flexibility and application-specific trade-offs between key storage and key maintenance costs versus the cryptographic protection provided. If a group key is used for peer-to-peer communication, protection is only provided against outsider devices and not against potential malicious devices in the key-sharing group.

The number of keys in the network depends on network topology and application-dependent requirements for infrastructure security and application security. As a minimum, each device uses one symmetric key for frame protection. In scenarios where keying material is not pre-installed or may be updated, each device will use a master key or public key (which does not necessarily need to be stored on the device itself).

A network-wide key may be used to protect frames against outsiders (i.e., devices that are not part of the network). The architecture allows the use of a network-wide key, but also allows a more fine-grained logical separation of information, both by using group keys (whereby one restricts access to information to group members only) and link keys (whereby one protects information communicated between two peer devices). Again, key usage depends on network topology and application-dependent requirements for infrastructure security and application security.

Number of keys

The architecture allows for the establishment of a different key for each node pair. Again, key usage depends on network topology and application-dependent requirements for infrastructure security and application security. While it is certainly possible to imagine high-security applications where having logical key separation between keys based on device pairs, in most deployment scenarios, this is not necessary. The number of keys and key usage depend on lifecycle trust management requirements imposed by a particular application at hand. As an example, if one has a centralized network set-up with one fixed security manager, one generally requires a peer-to-peer key between each node and the security manager, but not necessarily a peer-to-peer key between each node (different from the security manager).

The architecture allows re-use of keys across different layers of the stack, thus economizing on key storage cost and facilitating ease of trust management. Thus, keys are not logically tied to a layer of the protocol stack. It is to be expected that keys are used to provide infrastructure structure – which is realized by single-hop security and may be implemented at the network layer or MAC layer – or to provide application security – which is realized by end-to-end security and may be implemented at the application/session layer.

Cryptographic building blocks across layers

The architecture uses cryptographic building blocks based on the symmetric-key block cipher AES and based on the public-key scheme ECC. Cryptographic protection of frames uses CCM*, a particular mode of operation of this block cipher; trust management uses a symmetric-key entity authentication scheme as well as particular symmetric-key and public-key based key agreement schemes based on this block-cipher and this public key scheme, respectively. Cryptographic device authentication is based on public-key based certificates.
Key establishment (higher-layer functionality)
Key establishment may use a master key shared between a security manager and a device or a certified public key issued by a certificate authority to the device, where public keys are mostly suited for flexible trust management and where symmetric keys may be used in a more static topology. The details on how initial keying material is generated depend on network topology and application-dependent requirements for infrastructure security and application security. It is to be expected that public keys are generated by the device itself and certified in a controlled environment prior to deployment (e.g., during manufacturing or personalization of the device) and that the root key of the certificate authority is installed on the device in an authentic manner at the same time. If one were to use (symmetric-key based) master keys, these can be expected to be generated during device manufacturing or personalization of the device and has to happen in a highly secured and environment (to prevent disclosure of symmetric keys). Key installation should be governed by proper policies for logging and auditing.
Key updates (higher-layer functionality)
The architecture facilitates key updates based on any event stipulated by the trust management policy. In particular, this allows key updates that are periodic or event-driven. The architecture allows semi-automatic lifecycle management and, thereby, semi-automatic key updates.
Submission
Page

D. Kawaguchi, Symbol Technologies
Submission
Page

