Error! Unknown document property name. IF ="Accepted" March 21, 1999 February 13, 2006
February 13, 2006

IEEE P802.15-4/06/091r0

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Show Stoppers in 15.4b Security

	Date Submitted
	February 13, 2006

	Source
	Reinhard Wobst

Atmel Germany GmbH
	Voice/Fax: +49 (351) 6523 166
E-mail: reinhard.wobst@hno.atmel.de

	Re:
	IEEE 802.15.4b/D3, Comment database 06/021r3

	Abstract
	This document highlights some security issues within the current IEEE 802.15.4b Draft D3 specification and includes suggested solutions

	Purpose
	Making 802.15.4b security usable

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

1 Security of 802.15.4b is much better but has showstoppers

I was enlightened to see that in 802.15.4b, security has become much simpler than in 15.4. Too complicated systems always have hidden errors. During normal operation, all security handling can be done in the MAC layer now what also would take away a big burden of security handling in ZigBee, for instance. However, there are real-life situations were the recent concept does not work or has serious security holes which can not tolerated. The necessary corrections are very simple, all based on ideas of Rene Struik (maybe even a bit simpler). The code and data changes for the MAC layer are really minimal, "difficult checks" are delegated to higher layers anyway. I try to explain this. (Sorry, I am very late, but I got involved just one week ago.)

1.1 PROBLEM 1: The security level can not be constant all time

The concept of the standard is straightforward: Based on frame and possibly command type, a security level is determined, independent on the sender and on the used key. This is completely static but nevertheless sufficient as long as "nothing is changed" - and here the trouble begins:

A device joins the network and wants to negotiate or obtain a key. If you don't allow this, any key had to be transported via some "out of bound" mechanism what can be very cumbersome (say, you have to visit any device personally and feed a key - for each association). I think that link keys make only sense if you can negotiate them over air. The ZigBee spec (which I know quite well) is a good example for this: Link key exchange might be secured with a network key but may be also unsecured during initialization (see also below, problem 2).

A device should be allowed to send unsecured messages e.g. during initialization. After getting a key, the traffic with this device shall be protected. This is not possible in the recent spec since the security level table is not device-specific. Either you allow ALL devices to send unsecured data frames ALL the time, or ALL data frames have to be secured ALL the time.

1.1.1 REQUIREMENT:

We must allow the security level to be changed on a per-device basis, controlled by some higher layer. Otherwise, either secure network association does not work in many cases, or we must drop security. The need for this requirement is mainly functional and very urgent.

1.2 PROBLEM 2: The higher levels do not know the used key

Imagine that some "harmless" data are sent as broadcasts to some group, protected with a group key. However, sensitive information has always to be protected with a link key. In both cases, data frames are used. The MAC will insecure the frames and send the data together with the MCPS-DATA.indication parameters (table 43 on p.75) to the next higher layer. However, these parameters do not contain information about the used key, only about security level. So e.g. a disassociate command encrypted with a network key would be accepted, though the security concept requires link keys. Or: A link key is negotiated protected with a network. After this, there is not control whether the link key is really used, or if some untrusted device knowing the network key sends fake messages in the name of another device. So why use link keys at all?

1.2.1 ATTACK 1:

Your home automation system controlling light, home cinema and alarm system has three portable command units. One of them was taken away during the last party, and you did not note it. The guy who stole it can now send disassociate commands in the name of each alarm sensor, encrypted with the network key (or some information like "I will be switched off within the next 15 minutes", if such a command exists). The only thing the attacker has to know is the frame counter. If all devices regularly send broadcasts, it will be no problem to intercept these.

I confess that this attack requires some intelligence and technique, but it will quite "perfect": At least electronically, you are not in the state to reconstruct what really happened. For widespread home automation systems, this method could be enticing for organized crime (and bad for business of 15.4b vendors).

Remember that link keys increase security considerable: Theoretically, an attacker can listen to the key negotiation. But if he misses the one package (or one of the packages during a negotiation like SKKE in ZigBee), he is lost. So it really makes sense to differ between network and link keys.

REQUIREMENT:

The higher layers must be able to see which kind of key was used.

1.3 PROBLEM 3: Frame counter check

The frame counter handling is on the same level as in 15.4 and in ZigBee 1.0. This is not enough. Two deficiencies are here:

1. Frame counters should be allowed to decrease: If routing is configured internet-like, frame B is sent after frame A but may arrive first at the receiver (frame A and B take different routes). The receiver's MAC adjusts to the frame counter of frame B (increase by 2) and thus will reject frame A. The need for this feature is functional, supposed you allow such intelligent routing.

2. Frame counters must not be allowed to increase in arbitrary big steps. The danger is that a received frame counter with number 0xffffffff now invalidates ALL keys of the sender (in 15.4, it disabled just the used key). It is reasonable to bind the frame counter to the device and not to the device/key combination since this saves much memory and computation time. The price for this is to be more careful.

1.3.1 ATTACK 2:

As in attack 1, let us assume the attacker knows a group key. Instead of sending some intelligent command, he sends any frame with frame counter 0xffffffff in the name of each alarm sensor, encrypted with the network or group key. By definition, these devices are disabled until new keys are negotiated. In the recent standard, a reasonable negotiation is impossible (see problem 1). Not much fantasy is needed how to produce standard techniques for such attacks. Disabling alarm systems can become quite comfortable.

1.3.2 REQUIREMENT:

Limit the increase of frame counters somehow.

1.4 SOLUTIONS:

All we need is:

1) One more EXCEMPT flag (type Boolean) in the device descriptor table (table 92, p.198). If this flag is set, the comparison of security levels is allowed to be false. In this case:

· The frame has to be unsecured as usual; if this fails, the security check is false, and the frame will be dropped.

· If the security check is passed, the frame will be delegated to the next higher layer with the note that security level did not match. I propose to add one more Boolean flag "SECLEVELFAIL" in the MCPS-DATA.indication parameters table (table 43 on p.75). The check whether the failure in security level comparison was allowed must be done by higher layers since they have that context which is unknown to the MAC layer (e.g., actual state of key negotiation).

IMPORTANT: For a new device trying to join the network, the MAC layer shall set the EXCEMPT flag. Only the higher layer may reset it, stopping its own frame security checks for this one device.

2) Two more entries in the MCPS-DATA.indication parameters table (table 43 on p.75):

a) Two bits for the key identifier mode (table 95, p.201). So the higher layer may see which kind of key was used.

b) One bit for the SECLEVELFAIL flag indication that the security level did not match. I think it will be necessary in the future to have this flag for robust security checks.

As to frame counters of incoming frames, we have two choices:

1) (simple)

Frame counters are never allowed to decrease (hence no IP-like routing is possible) and may increase by a maximal difference which is a network-wide constant (e.g., 256). In this case, no more that e.g. 256 frames in sequence may be lost, otherwise the device is disabled, or a new key has to be negotiated. Mind of possible attacks.

2) (complicated, rather for the future)

Extend the MCPS-DATA.indication parameters table (table 43 on p.75) by a signed, two-octet integer FRAMECTRDIFF fed with the frame counter difference.

a) If the frame counter increases by 1, proceed as described in the recent specification. Moreover, set FRAMECTRDIFF to 0.

b) If the frame counter decreases, or if it increases more than 1, set FRAMECTRDIFF to this difference. If an increase is too big for the bit size of FRAMECTRDIFF, reject the frame. Then do the other security checks. If an increase happened, store the frame counter in a working buffer and wait for response from the higher layers.

After this, the higher layers have to decide whether this frame is accepted or not. For positive values, tell the MAC layer whether it was accepted. According to this result, the frame counter field in the device descriptor table is updated or not.

I should remark that allowing frame counters to decrease is some overhead. Frames and their counters have to be stored, device specific, and assembled afterwards (RAM required). Maybe we can introduce some network-wide flag indicating whether variant 2 is enabled or not.

Since devices shall be small and cheap, I would left variant 2 open as a future option and prefer variant 1. The only problem is to limit the increase reasonably. For alarm systems with signals every minute, a tolerable increase might be 2 or 3 only. For counting units at a street which might be hidden behind a truck for an hour, the increase might be much bigger. So this constant must be user-configurable.

1.5 CONCLUSION:

I see the described small changes badly necessary.

Not only ZigBee folks could not live with a static security level; we need the possibility to negotiate links keys via air. This is a functional requirement for anybody who does not want to work with one common key only. Or even if he does: Anybody who wants to send the key over air and increase security afterwards.

The impossibility to distinct between used keys from the sight of higher level makes the parallel use of link keys and network keys more than questionable. Link keys were created to have a good security level (it looks as if their use would make sense already for home automation - think of alarm systems!), but this security is damaged if broadcast messages can not be distinguished from trusted messages by that layer which can understand what the message means (for data frames: this is not the MAC layer!).

The restriction of frame counter increase is really necessary and has been discussed in the ZigBee working group. Otherwise, a nasty attack is possible. If this was NOT possible in 802.15.4: Now it is since ONE frame counter 0xffffffff for ANY key disables the device. Formerly, you had to know a link key to disable its usage. Now, a "well-known" network key suffices to disable any device - in the recent version of the spec.

I hope the changes of code and data are small enough to be accepted. All we need is one bit more in the device table and three bits in the structure sent to the next higher layer. The effect on security is much bigger. It is not about improving security, it is about making the system secure and usable with security!
Submission
Page

Rene Struik, Certicom

