
September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 1 Rene Struik, Certicom

Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Title Formal Specification of the CCM* Mode of Operation

Date
Submitted

September 9, 2005

Source René Struik
Certicom Corp.
5520 Explorer Drive, 4th Floor
Mississauga, ON, Canada L4W 5L1

Voice: +1 (905) 501-6083
Fax: +1 (905) 507-4230
E-mail: rstruik@certicom.com

Re: IEEE submission P802.15-02/469r0 (November 14, 2002), IEEE 802.15.4b/Draft
D3.

Abstract This document provides the formal specification of the CCM* mode of operation,
as well as some (informational) design rationale. This document is an edited
version of IEEE submission P802.15-02/469r0 by the same author and
incorporates context on security and standardization efforts. This revision of
04/537r0 contains test vectors for 802.15.4b beacon, data, and command frames.

(Note RS: This revision corrects some typographical errors in 04/537r1.)

Purpose Facilitate adoption of the CCM* mode of operation as replacement of the security
suites currently specified in the IEEE 802.15.4-2003 specification.

Notice This document has been prepared to assist the IEEE P802.15. It is offered as a
basis for discussion and is not binding on the contributing individual(s) or
organization(s). The material in this document is subject to change in form and
content after further study. The contributor(s) reserve(s) the right to add, amend or
withdraw material contained herein.

Release The contributor acknowledges and accepts that this contribution becomes the
property of IEEE and may be made publicly available by P802.15.

 Table of contents

Table of contents ...2

1 Design rationale for the generic CCM* mode of operation..3

2 Formal specification of the generic CCM* mode of operation ..4
2.1 Notation and representation...4

2.1.1 Strings and string operations...4
2.1.2 Integers and their representation ...4

2.2 Symmetric-key cryptographic building blocks..4
2.2.1 Block-cipher..4
2.2.2 Mode of operation...4

2.3 Specification of CCM* mode of operation (in ‘ANSI style’)..5
2.3.1 CCM* mode encryption and authentication transformation ...5
2.3.2 CCM* mode decryption and authentication checking transformation................................7
2.3.3 Restrictions ...8

2.4 Security of CCM* mode of operation ...8
2.5 Interoperability between CCM mode and CCM* mode of operation..9
2.6 Test vectors for CCM* mode of operation – MAC Beacon Frame ...9

2.6.1 CCM* mode encryption and authentication transformation ...9
2.6.2 CCM* mode decryption and authentication checking transformation..............................11

2.7 Test vectors for CCM* mode of operation – MAC Data Frame ...12
2.7.1 CCM* mode encryption and authentication transformation ...12
2.7.2 CCM* mode decryption and authentication checking transformation..............................14

2.8 Test vectors for CCM* mode of operation – MAC Command Frame ..15
2.8.1 CCM* mode encryption and authentication transformation ...15
2.8.2 CCM* mode decryption and authentication checking transformation..............................17

References ..19

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 3 Rene Struik, Certicom

1 Design rationale for the generic CCM* mode of operation

This note specifies CCM*, a block-cipher mode of operation that can be used to protect the privacy and/or
authenticity of messages. This mode is a variant of the so-called CCM mode [4], aimed at broadening the
applicability and usefulness hereof. First, we describe the CCM mode in some more detail and point out some of its
properties. Second, we introduce the CCM* mode, a mode of operation that is interoperable with the CCM mode,
while at the same time doing away with some of its limitations.

NIST Pub 800-38C [11] specifies the so-called CCM mode, a mode of operation that operates on block-ciphers with
a 128-bit block size and involves a particular combination of the so-called Counter (CTR) mode of operation and the
Cipher-Block Chaining (CBC) mode of operation [10], using a single key. The CCM mode of operation has
acquired quite some practical relevance, due to the incorporation hereof as the mandatory block-cipher mode of
operation in quite a few wireless standards that recently emerged, including the IEEE 802.11 WLAN standard [5]
and the IEEE 802.15 High-Rate and Low-Rate WPAN standards [6], [7]. The CCM mode allows for variable-length
authentication tags (from 32-bits to 128-bits), thus allowing varying degrees of protection against unauthorized
modifications. The CCM mode allows quite efficient implementations, due to the fact that one only needs to
implement the encryption transformation of the underlying block-cipher (and not the decryption transformation) and
due to its reliance on a single key, rather than multiple keys, to provide confidentiality and authenticity services.
This being said, the CCM mode has also some disadvantages, including the following:

• While the original CCM mode [4] provides for data authentication and, possibly, confidentiality, it does not
provide for confidentiality only. This is unfortunate, since not all implementation environments call for data
authenticity (e.g., when data authenticity is provided by an external mechanism). It would be advantageous to
have a single mechanism that could provide for all suitable combinations of confidentiality and authenticity,
rather than a strict subset hereof.

• The original CCM mode [4] is known to be vulnerable to specific attacks, if used with variable-length
authentication tags rather than with fixed-length authentication tags only (see, e.g., Section 3.4 of [12]). Thus,
the original CCM mode can only be securely used with the same key in settings with fixed-length authentication
tags. This is unfortunate, since support for variable-length authentication tags is useful in constrained
implementation environments, such as secured wireless sensor networks [7], where applications on a device
might have different protection requirements, but would have to share the same key, due to resource constraints.

The CCM* mode extends the definition of the original CCM mode, such as to provide for confidentiality-only
services, in addition to the other security service options already offered. Moreover, the CCM* mode adapts the
original CCM mode such that the resulting mode can be used securely with variable-length authentication tags,
rather than fixed-length authentication tags only. Thus, the CCM* mode takes away the disadvantages of the CCM
mode pointed out above. For the detailed specification of the CCM* mode of operation, see Section 2.

At the same time, the specification of the CCM* mode is such that it is compatible with the CCM mode, as specified
in the Draft Amendment (as of July 2003) to the IEEE 802.11 WLAN standard [5] and as specified in the IEEE
802.15.3 WPAN standard [6] and coincides with the specification of the default mode in the IEEE 802.15.4 WPAN
standard [7].

The specification of the CCM* mode of operation imposes a specific choice of the input transformation (see Section
2.3.1.1), a specific representation of integers as octet strings, and a specific formatting of the Flags field used for
authentication (see Section 2.3.1.2) and encryption (see Section 2.3.1.3). Obviously, variations hereof are possible,
without necessarily impacting the security properties of the resulting mechanism (e.g., if the cryptographic
assumptions discussed in Section 2.4 are adhered to). Obviously, other variations, such us relaxing restrictions on
the nonce (see Section 2.3.1), are possible as well, possibly with an impact on the security properties of the resulting
scheme.

2 Formal specification of the generic CCM* mode of operation

CCM* is a generic combined encryption and authentication block cipher mode. CCM* is only defined for use with
block ciphers with a 128-bit block size, such as AES-128 [2]. The CCM* ideas can easily be extended to other block
sizes, but this will require further definitions.

The CCM* mode coincides with the original CCM mode specification ([4], Appendix A of [10]) for messages that
require authentication and, possibly, encryption, but does also offer support for messages that require only
encryption. As with the CCM mode, the CCM* mode requires only one key. The security proof for the CCM mode
[8], [9] carries over to the CCM* mode described here. The design of the CCM* mode takes into account the results
of [12], thus allowing it to be securely used in implementation environments for which the use of variable-length
authentication tags, rather than fixed-length authentication tags only, is beneficial.

2.1 Notation and representation

2.1.1 Strings and string operations

A string is a sequence of symbols over a specific set (e.g., the binary alphabet {0,1} or the set of all octets). The
length of a string is the number of symbols it contains (over the same alphabet). The right-concatenation of two
strings x and y (over the same alphabet) of length m and n respectively (notation: x || y), is the string z of length m+n
that coincides with x on its leftmost m symbols and with y on its rightmost n symbols. An octet is a symbol string of
length 8. In our context, all octets are strings over the binary alphabet.

2.1.2 Integers and their representation

Throughout this specification, the representation of integers as octet strings and of octets as binary strings shall be
fixed. All integers shall be represented as octet strings in most-significant-octet first order. This representation
conforms to the conventions in Section 4.3 of ANSI X9.63-2001 [1].

2.2 Symmetric-key cryptographic building blocks
The following symmetric-key cryptographic primitives and mechanisms are defined for use with all security-
processing operations specified in this standard.

2.2.1 Block-cipher
The block-cipher used in this specification shall be the Advanced Encryption Standard AES-128, as specified in
FIPS Pub 197 [2]. This block-cipher shall be used with symmetric keys with the same size as that of the block-
cipher: 128 bits. These keys shall be generated uniformly at random. The procedure for generating keys is outside
the scope of this standard.

2.2.2 Mode of operation

The block-cipher mode of operation used in this specification shall be the CCM* mode of operation, as specified in
Section 2.3, with the following instantiations:

1. Each entity shall use the block-cipher E as specified in 2.2.1;

2. All octets shall be represented as binary strings in most-significant-bit first order;

3. The parameter L shall have the integer value 2;

4. The parameter M shall have one of the following integer values: 0, 4, 8, or 16.

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 5 Rene Struik, Certicom

2.3 Specification of CCM* mode of operation (in ‘ANSI style’)
Prerequisites: The following are the prerequisites for the operation of the generic CCM* mode:

1. A block-cipher encryption function E shall have been chosen, with a 128-bit block size. The length in bits of the
keys used by the chosen encryption function is denoted by keylen.

2. A fixed representation of octets as binary strings shall have been chosen (e.g., most-significant-bit first order or
least-significant-bit-first order).

3. The length L of the message length field, in octets, shall have been chosen. Valid values for L are the integers 2,
3, ..., 8 (the value L=1 is reserved).

4. The length M of the authentication field, in octets, shall have been chosen. Valid values for M are the integers 0,
4, 6, 8, 10, 12, 14, and 16. (The value M=0 corresponds to disabling authenticity, since then the authentication
field is the empty string.)

2.3.1 CCM* mode encryption and authentication transformation
Input: The CCM* mode forward transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this
key is restricted to the entity itself and its intended key sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.
3. An octet string m of length l(m) octets, where 0 ≤ l(m) < 28L.
4. An octet string a of length l(a) octets, where 0 ≤ l(a) < 264.

The nonce N shall encode the potential values for M such that one can uniquely determine from N the actually used
value of M. The exact format of the nonce N is outside the scope of this specification and shall be determined and
fixed by the actual implementation environment of the CCM* mode.

Note (informational): The exact format of the nonce N is left to the application, to allow simplified hardware and
software implementations in particular settings. Actual implementations of the CCM* mode may restrict the values
of M that are allowed throughout the life-cycle of the encryption key Key to a strict subset of those allowed in the
generic CCM* mode. If so, the format of the nonce N shall be such that one can uniquely determine from N the
actually used value of M in that particular subset. In particular, if M is fixed and the value M=0 is not allowed, then
there are no restrictions on N, in which case the CCM* mode reduces to the CCM mode.

Actions: The CCM* mode forward transformation involves the execution, in order, of an input transformation
(2.3.1.1), an authentication transformation (2.3.1.2), and an encryption transformation (2.3.1.3).

2.3.1.1 Input t ransformation

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be
used by the authentication transformation and the encryption transformation, respectively.

This step involves the following steps, in order:

1. Form the octet string representation L(a) of the length l(a) of the octet string a, as follows:
a. If l(a)=0, then L(a) is the empty string.
b. If 0 < l(a) < 216-28, then L(a) is the 2-octets encoding of l(a).
c. If 216-28 ≤ l(a) < 232, then L(a) is the right-concatenation of the octet 0xff, the octet 0xfe, and the 4-octets

encoding of l(a).
d. If 232 ≤ l(a) < 264, then L(a) is the right-concatenation of the octet 0xff, the octet 0xff, and the 8-octets

encoding of l(a).

2. Right-concatenate the octet string L(a) with the octet string a itself. Note that the resulting string contains l(a)
and a encoded in a reversible manner.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-

negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-
negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = AddAuthData || PlaintextData.

2.3.1.2 Authent icat ion transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field consisting of the 1-bit Reserved field, the 1-bit Adata field, and the 3-bit
representations of the integers M and L, as follows:

Flags = Reserved || Adata || M || L.

Here, the 1-bit Reserved field is reserved for future expansions and shall be set to ‘0’. The 1-bit Adata field is
set to ‘0’ if l(a)=0, and set to ‘1’ if l(a)>0. The M field is the 3-bit representation of the integer (M-2)/2 if M>0
and of the integer 0 if M=0, in most-significant-bit-first order. The L field is the 3-bit representation of the
integer L-1, in most-significant-bit-first order.

2. Form the 16-octet B0 field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field N, and
the L-octet representation of the length field l(m), as follows:

B0 = Flags || Nonce N || l(m).

3. Parse the message AuthData as B1 || B2 || ... ||Bt, where each message block Bi is a 16-octet string.

4. The CBC-MAC value Xt+1 is defined by

X0 := 0128; Xi+1 := E(Key, Xi ⊕ Bi) for i=0, ... , t.

Here, E(K, x) is the cipher-text that results from encryption of the plaintext x, using the established block-cipher
encryption function E with key Key; the string 0128 is the 16-octet all-zero bit string.

5. The authentication tag T is the result of omitting all but the leftmost M octets of the CBC-MAC value Xt+1 thus
computed.

2.3.1.3 Encrypt ion transformation

The data PlaintextData that was established in clause 2.3.1.1 (step 4) and the authentication tag T that was
established in clause 2.3.1.2 (step 5) shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field consisting of two 1-bit Reserved fields, and the 3-bit representations of the integers
0 and L, as follows:

Flags = Reserved || Reserved || 0 || L.

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 7 Rene Struik, Certicom

Here, the two 1-bit Reserved fields are reserved for future expansions and shall be set to ‘0’. The ‘0’ field is the
3-bit representation of the integer 0, in most-significant-bit-first order. The L field is the 3-bit representation of
the integer L-1, in most-significant-bit-first order.

2. Define the 16-octet Ai field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field N, and
the L-octet representation of the integer i, as follows:

Ai = Flags || Nonce N || Counter i, for i=0, 1, 2, …

Note that this definition ensures that all the Ai fields are distinct from the B0 fields that are actually used, as
those have a Flags field with a non-zero encoding of M in the positions where all Ai fields have an all-zero
encoding of the integer 0 (see clause 2.3.1.2, step 2).

3. Parse the message PlaintextData as M1 || ... ||Mt, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, ... , Ct are defined by

Ci := E(Key, Ai) ⊕ Mi for i=1, 2, ... , t.

5. The string Ciphertext is the result of omitting all but the leftmost l(m) octets of the string C1 || ... || Ct.

6. Define the 16-octet encryption block S0 by

S0:= E(Key, A0).

7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M octets of S0
and the authentication tag T.

Output: If any of the above operations has failed, then output ‘invalid’. Otherwise, output the right-concatenation of
the encrypted message Ciphertext and the encrypted authentication tag U.

2.3.2 CCM* mode decryption and authentication checking transformation

Input: The CCM* inverse transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this
key is restricted to the entity itself and its intended key-sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.
3. An octet string c of length l(c) octets, where 0 ≤ l(c)-M < 28L.
4. An octet string a of length l(a) octets, where 0 ≤ l(a) < 264.

Actions: The CCM* mode inverse transformation involves the execution, in order, of a decryption transformation
(2.3.2.1) and an authentication checking transformation (2.3.2.2).

2.3.2.1 Decrypt ion transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string. If this operation fails, output
‘invalid’ and stop. U is the purported encrypted authentication tag. Note that the leftmost string C has length
l(c)-M octets.

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative
number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

3. Use the encryption transformation in clause 2.3.1.3, with as inputs the data CipherTextData and the tag U.

4. Parse the output string resulting from applying this transformation as m || T, where the right-most string T is an
M-octet string. T is the purported authentication tag. Note that the leftmost string m has length l(c)-M octets.

2.3.2.2 Authent icat ion checking transformation

The authentication checking transformation involves the following steps, in order:

1. Form the message AuthData using the input transformation in Clause 2.3.1.1, with as inputs the string a and the
octet string m that was established in clause 2.3.2.1 (step 4).

2. Use the authentication transformation in Clause 2.3.1.2, with as input the message AuthData.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause
2.3.2.1 (step 4). If MACTag=T, output ‘valid’; otherwise, output ‘invalid’ and stop.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the octet string m. Otherwise,
accept the octet string m and accept one of the key sharing group member(s) as the source of m.

2.3.3 Restrict ions

All implementations shall limit the total amount of data that is encrypted with a single key. The CCM* encryption
transformation shall invoke not more than 261 block-cipher encryption function operations in total, both for the
CBC-MAC and for the CTR encryption operations.

At CCM* decryption, one shall verify the (truncated) CBC-MAC before releasing any information, such as, e.g.,
plaintext. If the CBC-MAC verification fails, only the fact that the CBC-MAC verification failed shall be exposed;
all other information shall be destroyed.

2.4 Security of CCM* mode of operation
The CCM* mode coincides with the original CCM mode specification [4] for messages that require authentication
and, possibly, encryption, but also offers support for messages that require only encryption. As with the CCM mode,
the CCM* mode requires only one key. The CCM* specification differs from the CCM specification, as follows:

• The CCM* mode allows the length of the authentication field M to be zero as well (the value M=0
corresponding to disabling authenticity, since then the authentication field is the empty string).

• The CCM* mode imposes a further restriction on the nonce N: it shall encode the potential values for M such
that one can uniquely determine from N the actually used value of M.

As a result, if M is fixed and the value M=0 is not allowed, then there are no additional restrictions on N, in which
case the CCM* mode reduces to the CCM mode. In particular, the proof of the CCM mode (see [8], [9]) applies.

For fixed-length authentication tags, the CCM* mode is equally secure as the original CCM mode. For variable-
length authentication tags, the CCM* mode completely avoids – by design – the vulnerabilities that do apply to the
original CCM mode.

For fixed-length authentication tags, the security proof of the original CCM mode carries over to that of the CCM*
mode (also for M=0), by observing that the proof of the original CCM mode relies on the following properties,
which slightly relax those stated in [8], [9] (relaxed property indicated in italics):

• The B0 field uniquely determines the value of the nonce N.

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 9 Rene Struik, Certicom

• The authentication transformation operates on input strings B0 || B1 || B2 || ... ||Bt from which one can uniquely
determine the input strings a and m (as well as the nonce N). In fact, for any two input strings corresponding to
distinct triples (N, m, a), neither one is a prefix string of the other.

• All the Ai fields are distinct from the B0 fields that are actually used (over the lifetime of the key), as those have
a Flags field with a non-zero encoding of M in the positions where all Ai fields have an all-zero encoding of the
integer 0.

Hence, if M is fixed, then the CCM* mode offers the same security properties as the original CCM mode:
confidentiality over the input string m and data authenticity over the input strings a and m, relative to the length of
the authentication tag. Obviously, if M=0, then no data authenticity is provided by the CCM* mode itself (but may
be provided by an external mechanism).

For variable-length authentication tags, the original CCM mode is known to be vulnerable to specific attacks (see,
e.g., Section 3.4 of [12]). These attacks may arise with the original CCM mode, since the decryption transformation
does not depend on the length of the authentication tag itself. The CCM* mode avoids these attacks altogether, by
requiring that one shall be able to uniquely determine the length of the applicable authentication tag from the Ai
fields (i.e., from the counters blocks).

2.5 Interoperability between CCM mode and CCM* mode of operation
The CCM* mode reduces to the CCM mode in all implementation environments where the length of the
authentication tag is fixed and where the value M=0 (encryption-only) is not allowed. In particular, the CCM* mode
is compatible with the CCM mode, as specified in the Draft Amendment (as of July 2003) to the IEEE 802.11
WLAN standard [5] and as specified in the IEEE 802.15.3 WPAN standard [6]. The IEEE 802.15.4 WPAN standard
[7] currently incorporates the CCM mode with variable-length authentication tags; the upcoming security
amendment is anticipated to involve replacement of the CCM mode by the CCM* mode of operation, to securely
support variable-length authentication tags in its target application area – low-cost sensor networks.

2.6 Test vectors for CCM* mode of operation – MAC Beacon Frame
The example below illustrates security processing of a beacon frame that is transmitted by the coordinator using its
extended source address. In this example, the superframe specification field is set to 0xCF55 (e.g., BO=15) and there
are no guaranteed time slots or pending addresses. This example uses source address 0xACDE480000000001, PAN
identifier 0x4321, and beacon payload 0x51525354; the frame counter has integer value 5. The security level is set
to 0x02 (MIC-64, or 64-bit data authenticity).

Unsecured beacon frame:
00 D0 84 21 43 01 00 00 00 00 48 DE AC || 55 CF 00 00 51 52 53 54.

Secured beacon frame:

08 D0 84 21 43 01 00 00 00 00 48 DE AC || 02 05 00 00 00 || 55 CF 00 00 51 52 53 54 22 3B C1 EC 84 1A B5
53.

2.6.1 CCM* mode encryption and authentication transformation

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.

Input: The inputs to the mode of operation are:

1. The key Key of size keylen=128 bits to be used:

 Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:

 Nonce = AC DE 48 00 00 00 00 01 || 00 00 00 05 || 02.

3. The octet string m of length l(m)=0 octets to be used:

 m = ε (empty string).

4. The octet string a of length l(a)=26 octets to be used:

 a = 08 D0 84 21 43 || 01 00 00 00 00 48 DE AC || 02 || 05 00 00 00 || 55 CF 00 00 || 51 52 53 54.

Actions: The CCM* mode forward transformation involves the execution, in order, of an input transformation
(2.6.1.1), an authentication transformation (2.6.1.2), and an encryption transformation (2.6.1.3).

2.6.1.1 Input t ransformation

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be
used by the authentication transformation and the encryption transformation, respectively.

1. Form the octet string representation L(a) of the length l(a) of the octet string a:

 L(a) = 00 1A.

2. Right-concatenate the octet string L(a) and the octet string a itself:

 L(a) || a =00 1A || 08 D0 84 21 43 01 00 00 00 00 48 DE AC 02 05 00 00 00 55 CF 00 00 51 52 53 54.
3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-

negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.
 AddAuthData = 00 1A 08 D0 84 21 43 01 00 00 00 00 48 DE AC 02 05 00 00 00 55 CF 00 00 51 52 53 54
 00 00 00 00.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-
negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16:

 PlaintextData = ε (empty string).

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

 AuthData = 00 1A 08 D0 84 21 43 01 00 00 00 00 48 DE AC 02 05 00 00 00 55 CF 00 00 51 52 53 54
 00 00 00 00.

2.6.1.2 Authent icat ion transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field as follows:

 Flags = 59.

2. Form the 16-octet B0 field as follows:

 B0 = 59 || AC DE 48 00 00 00 00 01 00 00 00 05 02 || 00 00.

3. Parse the message AuthData as B1 || B2, where each message block Bi is a 16-octet string.

4. The CBC-MAC value X3 is computed as follows:

i Bi Xi

0 59 AC DE 48 00 00 00 00 01 00 00 00 05 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1 00 1A 08 D0 84 21 43 01 00 00 00 00 48 DE AC 02 C4 A4 D0 BD 70 73 7E 32 11 2E 51 9A CA A2 01 F1
2 05 00 00 00 55 CF 00 00 51 52 53 54 00 00 00 00 A9 70 2C 6E E1 7E DE E0 C7 32 88 0A 40 41 7F 9C

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 11 Rene Struik, Certicom

3 ⎯ AB 6B 19 E7 5B 75 2D 9A 6E F0 CC 13 09 98 EB D0

5. The authentication tag T is the result of omitting all but the leftmost M=8 octets of the CBC-MAC value X3:

 T = AB 6B 19 E7 5B 75 2D 9A.

2.6.1.3 Encrypt ion transformation

The data PlaintextData shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 01.

2. Define the 16-octet Ai field as follows:

i Ai

0 01 || AC DE 48 00 00 00 00 01 00 00 00 05 02 || 00 00

3. Define the 16-octet encryption block S0 by

 S0 = E(Key, A0)= 89 50 D8 0B DF 6F 98 C9 63 F2 D5 A1 08 A1 55 C7.
4. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M=8 octets of

S0 and the authentication tag T:
 U = 22 3B C1 EC 84 1A B5 53.

Output: c=22 3B C1 EC 84 1A B5 53.

2.6.2 CCM* mode decryption and authentication checking transformation

Input: The inputs to the inverse mode of operation are:

1. The key Key of size keylen=128 bits to be used:
 Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:
 Nonce = AC DE 48 00 00 00 00 01 || 00 00 00 05 || 02.

3. The octet string c of length l(c)=8 octets to be used:
 c = 22 3B C1 EC 84 1A B5 53.

4. The octet string a of length l(a)=26 octets to be used:
 a = 08 D0 84 21 43 || 01 00 00 00 00 48 DE AC || 02 || 05 00 00 00 || 55 CF 00 00 || 51 52 53 54.

Actions: The CCM* mode inverse transformation involves the execution, in order, of a decryption transformation
(2.6.2.1) and an authentication checking transformation (2.6.2.2).

2.6.2.1 Decrypt ion transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string:

 C = ε (empty string);
 U = 22 3B C1 EC 84 1A B5 53.

2. Form the 1-octet Flags field as follows:

 Flags = 01.

3. Define the 16-octet Ai field as follows:

i Ai

0 01 || AC DE 48 00 00 00 00 01 00 00 00 05 02 || 00 00

4. Define the 16-octet encryption block S0 by

 S0= E(Key, A0) = 89 50 D8 0B DF 6F 98 C9 63 F2 D5 A1 08 A1 55 C7.

5. The purported authentication tag T is the result of XOR-ing the string consisting of the leftmost M=8 octets of
S0 and the octet string U:

 T = AB 6B 19 E7 5B 75 2D 9A.

2.6.2.2 Authent icat ion checking transformation

The authentication checking transformation involves the following steps, in order:

1. Form the message AuthData using the input transformation in Clause 2.6.1.1, with as inputs the string a and the
octet string m= ε (empty string):

 AuthData = 00 1A 08 D0 84 21 43 01 00 00 00 00 48 DE AC 02 05 00 00 00 55 CF 00 00 51 52 53 54
 00 00 00 00.

2. Use the authentication transformation in Clause 2.6.1.2, with as input the message AuthData to compute the
authentication tag MACTag:

 MACTag = AB 6B 19 E7 5B 75 2D 9A.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause
2.6.2.1(step 5):

 T = AB 6B 19 E7 5B 75 2D 9A = MACTag.
Output: Since MACTag=T, output ‘valid’ and accept the octet strings a and m and accept one of the key sharing
group member(s) as the source of a and m.

2.7 Test vectors for CCM* mode of operation – MAC Data Frame
The example below illustrates security processing of a data frame that is transmitted using extended addresses, with
PAN identifier compression and acknowledgement enabled. This example uses source address
0xACDE0000000001, destination address 0xACDE480000000002, PAN identifier 0x4321, and data payload
0x61626364; the frame counter has integer value 5. The security level is set to 0x04 (ENC, or data confidentiality
without data authenticity).

Unsecured data frame:

61 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC || 61 62 63 64.

Secured data frame:

69 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC || 04 05 00 00 00 || D4 3E 02 2B.

2.7.1 CCM* mode encryption and authentication transformation
Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 0.

Input: The inputs to the mode of operation are:

1. The key Key of size keylen=128 bits to be used:

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 13 Rene Struik, Certicom

 Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:

 Nonce = AC DE 48 00 00 00 00 01 || 00 00 00 05 || 04.

3. The octet string m of length l(m)=4 octets to be used:

 m = 61 62 63 64.

4. The octet string a of length l(a)=26 octets to be used:

 a = 69 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC || 04 || 05 00 00 00.

Actions: The CCM* mode forward transformation involves the execution, in order, of an input transformation
(2.7.1.1), an authentication transformation (2.7.1.2), and an encryption transformation (2.7.1.3).

2.7.1.1 Input t ransformation

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be
used by the authentication transformation and the encryption transformation, respectively.

1. Form the octet string representation L(a) of the length l(a) of the octet string a:

 L(a) = 1A (the empty string). .

2. Right-concatenate the octet string L(a) and the octet string a itself:

L(a) || a =00 1A ||69 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC 04 05 00 00 00.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-
negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.
 AddAuthData = 00 1A 69 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC 04 05 00 00
 00 00 00 00 00.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-
negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16:

 PlaintextData = 61 62 63 64 00 00 00 00 00 00 00 00 00 00 00 00.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

 AuthData = 00 1A 69 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC 04 05 00 00 00 00
 00 00 00 61 62 63 64 00 00 00 00 00 00 00 00 00 00 00 00.

2.7.1.2 Authent icat ion transformation

T =ε (empty string).

2.7.1.3 Encrypt ion transformation

The data PlaintextData shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 01.

2. Define the 16-octet Ai field as follows:

i Ai

1 01 || AC DE 48 00 00 00 00 01 00 00 00 05 04 || 00 01

3. Parse the message PlaintextData as M1, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, C2 are computed as follows:

i AES(Key,Ai) Ci = AES(Key,Ai) ⊕ Mi
1 B5 5C 61 4F A6 8B 7E E0 CB 77 37 EB A8 1D 33 41 D4 3E 02 2B A6 8B 7E E0 CB 77 37 EB A8 1D 33 41

5. The string Ciphertext is the result of omitting all but the leftmost l(m)=4 octets of the string C1:

 CipherText = D4 3E 02 2B.

Output: c = D4 3E 02 2B.

2.7.2 CCM* mode decryption and authentication checking transformation

Input: The inputs to the inverse mode of operation are:

1. The key Key of size keylen=128 bits to be used:
 Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.
2. The nonce N of 15-L=13 octets to be used:
 Nonce = AC DE 48 00 00 00 00 01 || 00 00 00 05 || 04.
3. The octet string c of length l(c)=4 octets to be used:
 c = D4 3E 02 2B.
4. The octet string a of length l(a)=26 octets to be used:
 a = 69 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC || 04 || 05 00 00 00.

Actions: The CCM* mode inverse transformation involves the execution, in order, of a decryption transformation
(2.7.2.1) and an authentication checking transformation (2.7.2.2).

2.7.2.1 Decrypt ion transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string:

 C = D4 3E 02 2B.
 U = ε (empty string).

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative
number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

 CipherTextData = D4 3E 02 2B 00 00 00 00 00 00 00 00 00 00 00 00.

3. Form the 1-octet Flags field as follows:

 Flags = 01.

4. Define the 16-octet Ai field as follows:

i Ai

1 01 || AC DE 48 00 00 00 00 01 00 00 00 05 04 || 00 01

5. Parse the message CiphertextData as C1, where each message block Ci is a 16-octet string.

6. The plaintext block P1 is computed as follows:

i AES(Key,Ai) Pi = AES(Key,Ai) ⊕ Ci

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 15 Rene Struik, Certicom

1 B5 5C 61 4F A6 8B 7E E0 CB 77 37 EB A8 1D 33 41 61 62 63 64 00 00 00 00 00 00 00 00 00 00 00 00

7. The octet string m is the result of omitting all but the leftmost l(m)=4 octets of the string P1:

 m =61 62 63 64.

8. The purported authentication tag T is the empty string:

 T =ε (empty string).

2.7.2.2 Authent icat ion checking transformation

The authentication checking transformation involves the following steps, in order:

1. Form the message AuthData using the input transformation in Clause 2.7.1.1, with as inputs the string a and the
octet string m that was established in clause 2.7.2.1 (step 7):

 AuthData = 00 1A 69 DC 84 21 43 02 00 00 00 00 48 DE AC 01 00 00 00 00 48 DE AC 04 05 00 00 00 00
 00 00 00 61 62 63 64 00 00 00 00 00 00 00 00 00 00 00 00.

2. Use the authentication transformation in Clause 2.7.1.2, with as input the message AuthData to compute the
authentication tag MACTag:

 MACTag = ε (empty string).

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause
2.7.2.1(step 8):

 T = ε = MACTag.
Output: Since MACTag=T, output ‘valid’ and accept the octet strings a and m and accept one of the key sharing
group member(s) as the source of a and m.

2.8 Test vectors for CCM* mode of operation – MAC Command Frame
The example below illustrates security processing of an association request command frame that is transmitted by a
FFD using extended addresses, with acknowledgement enabled. In this example, the capability field is set to 0xCE.
This example uses source address 0xACDE480000000001, destination address 0xACDE480000000002, PAN
identifier 0x4321, and command payload 0xCE; the frame counter has integer value 5. The security level is set to
0x06 (ENC-MIC-64, or data confidentiality with 64-bit data authenticity).

Unsecured command frame:

23 DC 84 21 43 02 00 00 00 00 48 DE AC FF FF 01 00 00 00 00 48 DE AC || 01 CE.

Secured command frame:

2B DC 84 21 43 02 00 00 00 00 48 DE AC FF FF 01 00 00 00 00 48 DE AC || 06 05 00 00 00 || 01 D8 4F DE
52 90 61 F9 C6 F1.

2.8.1 CCM* mode encryption and authentication transformation
Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.

Input: The inputs to the mode of operation are:

1. The key Key of size keylen=128 bits to be used:

 Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:

 Nonce = AC DE 48 00 00 00 00 01 || 00 00 00 05 || 06.

3. The octet string m of length l(m)=1 octet to be used:

 m = CE.

4. The octet string a of length l(a)=29 octets to be used:

 a = 2B DC 84 21 43 02 00 00 00 00 48 DE AC FF FF || 01 00 00 00 00 48 DE AC || 06 || 05 00 00 00 || 01.

Actions: The CCM* mode forward transformation involves the execution, in order, of an input transformation
(2.8.1.1), an authentication transformation (2.8.1.2), and an encryption transformation (2.8.1.3).

2.8.1.1 Input t ransformation

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be
used by the authentication transformation and the encryption transformation, respectively.

1. Form the octet string representation L(a) of the length l(a) of the octet string a:

 L(a) = 00 1D.

2. Right-concatenate the octet string L(a) and the octet string a itself:

 L(a) || a = 00 1D || 2B DC 84 21 43 02 00 00 00 00 48 DE AC FF FF 01 00 00 00 00 48 DE AC 06 05 00
 00 00 01.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-
negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.
 AddAuthData = 00 1D 2B DC 84 21 43 02 00 00 00 00 48 DE AC FF FF 01 00 00 00 00 48 DE AC 06 05
 00 00 00 01 00.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-
negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16:

 PlaintextData = CE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

 AuthData = 00 1D 2B DC 84 21 43 02 00 00 00 00 48 DE AC FF FF 01 00 00 00 00 48 DE AC 06 05 00
 00 00 01 00 CE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.

2.8.1.2 Authent icat ion transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field as follows:

 Flags = 59.

2. Form the 16-octet B0 field as follows:

 B0 = 59 || AC DE 48 00 00 00 00 01 00 00 00 05 06 || 00 01.

3. Parse the message AuthData as B1 || B2 ||B3, where each message block Bi is a 16-octet string.

4. The CBC-MAC value X4 is computed as follows:

i Bi Xi

0 59 AC DE 48 00 00 00 00 01 00 00 00 05 06 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 17 Rene Struik, Certicom

1 00 1D 2B DC 84 21 43 02 00 00 00 00 48 DE AC FF 1C E4 F7 E4 FC 48 74 6D 0C 22 20 5D E8 DB B9 B0
2 FF 01 00 00 00 00 48 DE AC 06 05 00 00 00 01 00 16 EC 61 6D 5A C1 1A A0 4B 30 89 09 5D D5 7F 89
3 CE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 49 C3 1D 64 A5 A0 12 58 5B 07 78 B8 CD FE CE A8
4 ⎯ D6 06 7B B5 9B 57 03 9C 00 98 0A 5D B3 63 BB 80

5. The authentication tag T is the result of omitting all but the leftmost M=8 octets of the CBC-MAC value X4:

 T = D6 06 7B B5 9B 57 03 9C.

2.8.1.3 Encrypt ion transformation

The data PlaintextData shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 01.

2. Define the 16-octet Ai field as follows:

i Ai

0 01 || AC DE 48 00 00 00 00 01 00 00 00 05 06 || 00 00
1 01 || AC DE 48 00 00 00 00 01 00 00 00 05 06 || 00 01

3. Parse the message PlaintextData as M1, where each message block Mi is a 16-octet string.

4. The ciphertext block C1 is computed as follows:

i AES(Key,Ai) Ci = AES(Key,Ai) ⊕ Mi

1 16 A9 67 B4 0F F9 72 DE B1 CB 46 E7 09 FD EB FF D8 A9 67 B4 0F F9 72 DE B1 CB 46 E7 09 FD EB FF

5. The string Ciphertext is the result of omitting all but the leftmost l(m)=1 octet of the string C1:

 CipherText = D8.

6. Define the 16-octet encryption block S0 by

 S0 = E(Key, A0)= 99 D8 29 25 FA AE C5 6D 17 93 04 21 3B 88 69 35.
7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M=8 octets of

S0 and the authentication tag T:
 U = 4F DE 52 90 61 F9 C6 F1.

Output: c =D8 || 4F DE 52 90 61 F9 C6 F1.

2.8.2 CCM* mode decryption and authentication checking transformation

Input: The inputs to the inverse mode of operation are:

1. The key Key of size keylen=128 bits to be used:
 Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.
2. The nonce N of 15-L=13 octets to be used:
 Nonce = AC DE 48 00 00 00 00 01 || 00 00 00 05 || 06.
3. The octet string c of length l(c)=9 octets to be used:
 c =D8 4F DE 52 90 61 F9 C6 F1.
4. The octet string a of length l(a)=29 octets to be used:
 a = 2B DC 84 21 43 02 00 00 00 00 48 DE AC FF FF || 01 00 00 00 00 48 DE AC || 06 || 05 00 00 00 || 01.

Actions: The CCM* mode inverse transformation involves the execution, in order, of a decryption transformation
(2.8.2.1) and an authentication checking transformation (2.8.2.2).

2.8.2.1 Decrypt ion transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string:

 C = D8;
 U =4F DE 52 90 61 F9 C6 F1.

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative
number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

 CipherTextData = D8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.

3. Form the 1-octet Flags field as follows:

 Flags = 01.

4. Define the 16-octet Ai field as follows:

i Ai

0 01 || AC DE 48 00 00 00 00 01 00 00 00 05 06 || 00 00
1 01 || AC DE 48 00 00 00 00 01 00 00 00 05 06 || 00 01

5. Parse the message CiphertextData as C1, where each message block Ci is a 16-octet string.

6. The plaintext block P1 is computed as follows:

i AES(Key,Ai) Pi = AES(Key,Ai) ⊕ Ci

1 16 A9 67 B4 0F F9 72 DE B1 CB 46 E7 09 FD EB FF CE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7. The octet string m is the result of omitting all but the leftmost l(m)=1 octet of the string P1:

 m = CE.
8. Define the 16-octet encryption block S0 by
 S0 = E(Key, A0)= 99 D8 29 25 FA AE C5 6D 17 93 04 21 3B 88 69 35.

9. The purported authentication tag T is the result of XOR-ing the string consisting of the leftmost M=8 octets of
S0 and the octet string U:

 T = D6 06 7B B5 9B 57 03 9C.

2.8.2.2 Authent icat ion checking transformation

The authentication checking transformation involves the following steps, in order:

1. Form the message AuthData using the input transformation in Clause 2.8.1.1, with as inputs the string a and the
octet string m that was established in clause 2.8.2.1(step 7):

 AuthData = 00 1D DC 84 21 43 02 00 00 00 00 48 DE AC FF FF 01 00 00 00 00 48 DE AC 06 05 00 00
 00 01 00 CE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.

2. Use the authentication transformation in Clause 2.8.1.2, with as input the message AuthData to compute the
authentication tag MACTag:

September 9, 2005 IEEE P802.15-4/0537r2

Submission Page 19 Rene Struik, Certicom

 MACTag = D6 06 7B B5 9B 57 03 9C.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause
2.8.2.1(step 9):

 T = D6 06 7B B5 9B 57 03 9C = MACTag.
Output: Since MACTag=T, output ‘valid’ and accept the octet strings a and m and accept one of the key sharing
group member(s) as the source of a and m.

References
[1] ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry - Key Agreement and Key

Transport Using Elliptic Curve Cryptography, American Bankers Association, November 20, 2001. Available
from http://www.ansi.org.

[2] FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication
197, US Department of Commerce/N.I.S.T, Springfield, Virginia, November 26, 2001. Available from
http://csrc.nist.gov/.

[3] FIPS Pub 198, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing
Standards Publication 198, US Department of Commerce/N.I.S.T., Springfield, Virginia, March 6, 2002.
Available from http://csrc.nist.gov/.

[4] R. Housley, D. Whiting, N. Ferguson, Counter with CBC-MAC (CCM), submitted to N.I.S.T., June 3, 2002.
Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[5] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.11-1999, IEEE Standard for
Telecommunications and Information Exchange Between Systems – LAN/MAN Specific Requirements – Part
11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications, New York: IEEE Press,
1999.

[6] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.3-2003, IEEE Standard for Information
Technology — Telecommunications and Information Exchange between Systems — Local and Metropolitan
Area Networks — Specific Requirements — Part 15.3: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPAN). New York: IEEE Press.
2003.

[7] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.4-2003, IEEE Standard for Information
Technology — Telecommunications and Information Exchange between Systems — Local and Metropolitan
Area Networks — Specific Requirements — Part 15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPAN). New York: IEEE Press.
2003.

[8] J. Jonsson, On the Security of CTR + CBC-MAC, in Proceedings of Selected Areas in Cryptography – SAC
2002, K. Nyberg, H. Heys, Eds., Lecture Notes in Computer Science, Vol. 2595, pp. 76-93, Berlin: Springer,
2002.

[9] J. Jonsson, On the Security of CTR + CBC-MAC, NIST Mode of Operation – Additional CCM Documentation.
Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[10] NIST Pub 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation – Methods and
Techniques, NIST Special Publication 800-38A, 2001 Edition, US Department of Commerce/N.I.S.T.,
December 2001. Available from http://csrc.nist.gov/.

[11] NIST Pub 800-38C, Recommendation for Block Cipher Modes of Operation – The CCM Mode for
Authentication and Confidentiality, NIST Special Publication 800-38C, US Department of Commerce/N.I.S.T.,
Springfield, Virginia, May 12, 2004. Available from http://csrc.nist.gov/.

[12] P. Rogaway, D. Wagner, A Critique of CCM, IACR ePrint Archive 2003-070, April 13, 2003.

