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Objectives

Main goal: verify existing UWB channel models and establish (if
applicable) new models suitable for theoretical analysis.

Main issues:

• Individual and Joint tap statistics

• Scaling of stochastic degrees of freedom with bandwidth

• Validity of the uncorrelated scattering assumption

Genuine focus was not IEEE 802.15.4a channel modeling work, hence not
all parameters of the IEEE 802.15.4a standard model were extracted.
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Measurement Setup — Schematic

Minicircuits ZVE 8G

Diadrive positioner

Skycross UWB antenna
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Measurement 
Control
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Measurement Setup — Details
Measurements were taken in the frequency domain

• HP 8722D vector network analyzer (VNA), 50 MHz – 40 GHz

• Minicircuits ZVE 8G power amplifier, 2GHz – 8 GHz, 30 dB gain

• Skycross SMT-3TO10M UWB antannas (prototype), Omni

• Custom RF amplifier, 20 dB gain up to 10 GHz, NF < 6

• H&S Sucoflex 104 cables

• Custom modified Diadrive 2000 positioning table

• Control via Matlab (Instrument Control & Data Acquisition Toolboxes)
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VNA Settings
• Option 12, “direct sampler access”, for improved dynamic range

• Frequency range 2–8 GHz, divided into two bands

• 1601 points per band, for a total of 3201 points

• 1.875 MHz point spacing

• Max. resolvable delay of 533 ns, equivalent to 160 m path length

• IF bandwidth 300 Hz

• Total sweep time 19s

• Calibration included the entire equipment except for the antennas,
considered as part of the channel
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Environments

We measured two different environments at the premises of ETH Zurich,
Switzerland, in typical European style office buildings.

• Corridor, e.g. for sensing applications; brick walls, windows, concrete
floor and ceiling

• Entrance lobby, typical public space; tiled floor, large glass windows,
concrete walls

All measurements were taken during night time on weekends to ensure
a static channel.
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Lobby Environment
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Virtual Array Measurements
• Virtual array should cover small scale fading area

• Grid spacing 7cm, approx. half wavelength at 2 GHz for independent
samples

7 cm

7 cm

Grid Point

• 5× 9 grid

• Operated by stepping motors, computer controlled

IEEE 802.14-04-0447-01-004a 9



Measurement Methodology
Goal:

• Obtain enough independent samples of small scale fading for
statistical analysis

• Separate small scale from large scale effects

Achieved via:

• Measurement of two arrays per small scale location for 90 points total

• One frequency response per array point

• Several scenarios (LOS, OLOS, NLOS)

• Several distances between transmitter and receiver in each scenario
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Sample Impulse Response Power — Lobby LOS
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Average Impulse Response Power — Lobby LOS
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Average Impulse Response Power — Lobby OLOS
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Average Impulse Response Power — Lobby NLOS
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Average Impulse Response Power — Corridor LOS
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Average Impulse Response Power — Corridor NLOS
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Traditional Wideband Channel Modeling
Standard continuous-time wideband fading model

h(t, τ) =
N(τ)−1∑

k=0

ak(t)δ(τ − τk(t))ejθk(t)

assumes specular reflections: distinct, frequency independent
propagation paths.

Assumption might not hold for UWB Channels

• Frequency dependence of materials

• Diffuse reflections due to rough surfaces

• Diffraction
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Common Modeling Assumptions

Two very common and well supported assumptions:

• Communication system is band limited

• Channel is effectively time-limited

A further limitation arises due to the VNA measurement methodology:
the measured channel is quasi-static and can be modeled as an LTI
system.

With an external B Hz band limitation b(τ), the effective channel is

hB(τ) = (b ? h)(τ)
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Discretized Channel Representation
⇒ Complete representation through channel samples possible:

hB(τ) =
∞∑

n=−∞
hb

(n

B

) sinπB
(
τ − n

B

)
πB

(
τ − n

B

)
(Shannon’s Sampling Theorem)

Effective time limitation: only L non-zero samples. Hence the channel is
completely described by its non-zero taps

h[l] = hb

(
l

B

)
, l = 0 . . . L− 1

Modeling goal: block fading stochastic discrete-time LTI system
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Fading Tap Statistics
Antenna displacement over the array renders phase information
meaningless =⇒ assume uniform phase, use the small scale spatial
variations of the received amplitude for statistical analysis.

Goal: marginal and joint tap distribution that best approximates reality.

• Consider a setM of candidate models i.e., parametrized probability
densities gi(· |Θ):

– Rayleigh
– Rice
– Nakagami
– Lognormal
– Weibull

This is a model selection problem. Hypothesis testing is not a
meaningful approach.
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Hypothesis Testing Review

Goal: establish if data x supports a challenging hypothesis H0 against
an incumbent hypothesis H1.

Sample space is partitioned into the region of acceptanceDa and the
critical regionDc = Dc

a

• Type I error: H0 is true but x ∈ Dc

• Confidence level: α = P(x ∈ Dc |H0)

• Type II error: H0 false and x ∈ Da

• Test power: 1− P(type II error)
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Goodness-of-Fit Tests

Hypothesis H0: data x is drawn according to some distribution F (x).
Typical tests operate as follows:

• Compute a test statistic Dn(x), some function of the n-dimensional
data vector x

• Dn has a limiting distribution Q(x) for n →∞, which does not
depend on F (x) if H0 holds.

• Reject H0 if Dn > x0, where Q(x0) = 1− α

• Confidence level needs to be selected in advance
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Why Hypothesis Testing is the Wrong Approach
• Hypothesis testing does not deal with approximations

– probability that the standard models are true is zero
– significance does not measure goodness of fit

• Hypothesis testing relies on ad hoc choices

– significance level arbitrary
– some tests rely on binning — how to choose the bins?

• Hypothesis testing does not compare several hypothesis

– only tests a challenging against an incumbent hypothesis
– adjusting the significance level to compare test results invalidates

the test

• Hypothesis testing deals poorly with parameter estimates
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Traits of a Good Model

• Contains sufficient information about the real world

• Leads to consistent predictions

• Mathematically and computationally tractable

• Based on physical insight and measured data

• Advances intuition

IEEE 802.14-04-0447-01-004a 24



Model Selection

• Goal is to approximate the unknown reality, described by PDF f(x)

• Select several parametric families of candidate models gi(x |Θ)

• Relative entropy measures discrepancy between model gi and reality

D(f || g) =
∫

f(x) log
f(x)

gi(x |Θ)
dx

= Ef [log f(X)]− Ef [log gi(X |Θ)]

• Select model to minimize the discrepancy

• Need to estimate Ef [log gi(X |Θ)] from data y
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Akaike’s Information Criterion — AIC [Akaike 1973]
An unbiased estimate of Ef [log gi(X |Θ)] is

AIC = −2 log gi(y | Θ̂(y)) + 2K

with the i.i.d. data vector y, and the ML parameter estimate Θ̂(y).

• Bias correction depends on number of estimated parameters K

• Penalizes overfitting

• Minimizes the bias–variance tradeoff

• Mathematical formulation of the principle of parsimony

• Extensively used in regression order selection

Note: Other criteria have different bias correcting terms (MDL, BIC, TIC)
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Akaike Weights

AIC values are a relative measure — only ∆i = AICi −minMAIC is
important.

AIC is an unbiased estimate of the expected log-likelihood log L(gi |y),
hence

L(gi |y) ∝ e−
1
2∆i

Normalization to unity yields Akaike Weights:

wi =
e−

1
2∆i∑|M|

k=1 e−
1
2∆k

⇒ an estimate of the expected probability of model i providing the best
fit among all candidate models.
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Akaike Weights, Averaged Impulse Response — Lobby LOS
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Fading Model Selection
We computed Akaike Weights for all scenarios

• Rayleigh provides on average the best fit

– AIC penalizes presence of the extra parameter in Nakagami, Ricean
and Weibull models

– Rayleigh is not good at the start of a cluster

• LOS component is often Weibull distributed

• Lognormal is almost always the worst model

– lognormal apparently good for first cluster taps
– but no conclusions about the model are possible due to

time-of-flight differences across array: a specular component is
recorded in different taps at different grid positions

IEEE 802.14-04-0447-01-004a 29



Model Selection Conclusion

• Akaike weights shows significant variations across taps

– might explain different selected models in different measurement
campaigns

– shows that candidate models are quite close
– different findings might be due to methodology and measurement

errors rather than different realities

• Rayleigh amplitude plus uniform phase assumption leads to circularly
symmetric complex Gaussian taps — good news for theoretical work

• Need more independent measurements using information criteria
(AIC, BIC, MDL) to support or challenge these findings
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Complete Statistical Description

So far: marginal distribution is complex Gaussian
Conjecture: joint distribution is jointly complex Gaussian

⇒ complete description obtained through mean and covariance matrix

• Significant eigenvalues correspond to stochastic degrees of freedom

– independent diversity branches
– delay spread only provides a first order estimate, assuming

independent taps
– important open question: scaling with bandwidth

• Following work by Knopp (2004), we are currently working on the
analysis of the stochastic degrees of freedom
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Parameters for the IEEE 802.15.4a Standard Model
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Parameters for the Nakagami distribution — Lobby LOS

Although AICc shows a higher probability for Rayleigh, the standard
model uses the Nakagami distribution.

Nakagami m factor for the LOS tap

Distance m

27 m 8.7
24 m 9.1
21 m 5.4
18 m 10.2
15 m 7.6
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Parameters for the Nakagami distribution — Lobby LOS

Nakagami m parameters for later clusters, i.e. not due to the LOS
component but maybe other specular reflections

Distance m

27 m 4.0, 7.5
24 m 3.7, 10.7
21 m 3.1, 12.7
18 m 6.3, 11.5
15 m 2.9, 3.5, 8.1

Most other (non-specular) taps have m ≈ 1, consistent with the Rayleigh
model.
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Small Scale Parameters — Time Dispersion

Mean delay and delay spread often used to characterize time
dispersiveness of the channel. They are not the most general description.

Estimates can be computed as

τ̄ =
∑L−1

l=0 |h| [l]∑L−1
l=0 |h| [l]

mean delay

s =

√√√√∑L
l=1(l − τ̄)2 |h| [l]∑L−1

l=0 |h| [l]
delay spread

Mean and standard deviation can now be computed over all small scale
positions of the virtual array.
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Mean Delay and Delay Spread Statistics — Lobby LOS

Mean Delay Delay Spread
Distance µτ̄ στ̄ µs σs

27 m 27.13 ns 1.74 ns 49.5 ns 2.08 ns
24 m 27.15 ns 2.86 ns 49.23 ns 3.37 ns
21 m 30.99 ns 2.30 ns 53.62 ns 2.25 ns
18 m 29.86 ns 2.11 ns 52.23 ns 1.64 ns
15 m 27.26 ns 1.75 ns 49.20 ns 1.63 ns
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Mean Delay and Delay Spread Statistics — Lobby OLOS

Mean Delay Delay Spread
Distance µτ̄ στ̄ µs σs

27 m 49.82 ns 7.78 ns 74.08 ns 7.04 ns
24 m 46.86 ns 6.33 ns 71.07 ns 5.91 ns
21 m 45.61 ns 5.70 ns 71.23 ns 4.43 ns
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Mean Delay and Delay Spread Statistics — Corridor

LOS Setting

Mean Delay Delay Spread
Distance µτ̄ στ̄ µs σs

12.5 m 7.55 ns 0.88 ns 21.08 ns 1.65 ns
10.5 m 10.68 ns 1.69 ns 24.70 ns 2.19 ns
8.5 m 9.93 ns 2.15 ns 23.74 ns 2.86 ns

NLOS Setting

Mean Delay Delay Spread
µτ̄ στ̄ µs σs

24.44 ns 1.16 ns 31.11 ns 1.87 ns
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Small Scale Parameters — The Saleh-Valenzuela Model
The proposed 802.15.4a channel model is continuous-time and specular:

h(t) =
L−1∑
l=0

K−1∑
k=0

ak,lδ(t− Tl − τk,l,)

with L clusters and K rays per cluster. Ray and cluster arrivals are
described by Poisson processes with interarrival probabilities

P(Tl |Tl−1) = Λ exp{−Λ(Tl − Tl−1)}

Ray and cluster power decay are exponential

E
[
|ak,l|2

]
= E

[
|a0,0|2

]
exp

{
−Tl

Γ

}
exp

{
−τk,l

γ

}
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Saleh-Valenzuela Model Parameter Extraction

Our discrete time model does not fit into this framework⇒ cannot
extract all parameters since there are no rays. Using the methodology
presented by Balakrishnan in doc. 802.15-04-0342-00-004a, we
computed

• Cluster decay coefficient Γ

• Inter-cluster decay coefficient γ

• Cluster interarrival time Λ

The S-V model fit is not always satisfactory, as can be seen in the
following plots. We only extracted S-V parameters for the LOS scenarios,
where clusters were observable.
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Cluster Decay — Corridor LOS
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Intra-Cluster Decay — Corridor LOS
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Cluster Interarrival Times — Corridor LOS
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Cluster Decay — Lobby LOS
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Intra-Cluster Decay — Lobby LOS
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Cluster Interarrival Times — Lobby LOS
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PDP Fit — Lobby NLOS
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PDP Fit Parameters — Lobby NLOS

Setting χ γrise γ1 Ω1

NLOS 1 0.88 28 ns 117 ns 0.0020
NLOS 2 0.85 30 ns 134 ns 0.0014

IEEE 802.14-04-0447-01-004a 48



Large Scale Parameters — Path Loss

The simplest pathloss model consists of a single slope with exponential
decay

10 log P (d) = G0 + 10ν log
d

d0
, d ≥ d0

with d0 = 1m, an arbitrarily chosen reference distance, and G0 the
reference loss at d0.

Our measurements are not targeted at pathloss extraction; only in three
settings enough large scale data points are available to yield crude
estimates, as can be observed from the following scatter plots.
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Path Loss Fit — Lobby LOS
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Path Loss Fit — Lobby OLOS
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Path Loss Fit — Corridor LOS
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Pathloss Coefficients

Setting ν G0

Lobby LOS 1.6 -49 dB
Lobby OLOS 2.2 -45 dB
Corridor LOS 1.2 -51 dB
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Conclusions

• Presented results from a UWB measurement campaign for indoor
public spaces and hallways; largest transmitter-receiver separation
reported so far (> 27 m)

• Continuous-time specular model probably not suitable for UWB —
used a discrete-time model instead

• AIC for fading tap model selection

– Rayleigh assumption still valid for UWB
– differences to Rice, Nakagami and Weibull small

• Most IEEE 802.15.4a standard model parameters as expected
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