July, 2004

 IEEE P802.15-3/0391r0

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Security Test Vectors

	Date Submitted
	July 15, 2004

	Source
	René Struik
Certicom Corp.
5520 Explorer Drive, 4th Floor

Mississauga, ON, Canada L4W 5L1
	Voice:
+1 (905) 501-6083

Fax:
+1 (905) 507-4230
E-mail:
rstruik@certicom.com

	Re:
	

	Abstract
	This document provides test vectors for the security-relevant portions of IEEE 802.15.3 WPAN standard

	Purpose
	Facilitate compliance testing of security-relevant portions of the IEEE 802.15.3 WPAN standard

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Annex A References

The following standards contain provisions, which, through reference in this document, constitute provisions of this standard. Normative references are given in A.1 and A.2 and informative references are given in A.3. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

A.1 802.15.3 References

[1] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.3-2003, IEEE Standard for Information Technology — Telecommunications and Information Exchange between Systems — Local and Metropolitan Area Networks — Specific Requirements — Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs). New York: IEEE Press. 2003.

A.2 Normative References

[2] ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography, American Bankers Association, November 20, 2001. Available from http://www.ansi.org.

[3] FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, US Department of Commerce/N.I.S.T, Springfield, Virginia, November 26, 2001. Available from http://csrc.nist.gov/.

[4] NIST Pub 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation – Methods and Techniques, NIST Special Publication 800-38A, 2001 Edition, US Department of Commerce/N.I.S.T., December 2001. Available from http://csrc.nist.gov/.

A.3 Informative References

[5] R. Housley, D. Whiting, N. Ferguson, Counter with CBC-MAC (CCM), submitted to N.I.S.T., June 3, 2002. Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[6] J. Jonsson, On the Security of CTR + CBC-MAC, in Proceedings of Selected Areas in Cryptography – SAC 2002, K. Nyberg, H. Heys, Eds., Lecture Notes in Computer Science, Vol. 2595, pp. 76-93, Berlin: Springer, 2002.

[7] J. Jonsson, On the Security of CTR + CBC-MAC, NIST Mode of Operation – Additional CCM Documenta​tion. Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[8] P. Rogaway, D. Wagner, A Critique of CCM, IACR ePrint Archive 2003-070, April 13, 2003.
Annex B Basic notions

B.1 Notation and representation

B.1.1 Strings and string operations

A string is a sequence of symbols over a specific set (e.g., the binary alphabet {0,1} or the set of all octets). The length of a string is the number of symbols it contains (over the same alphabet). The right-concatenation of two strings x and y of length m and n respectively (notation: x || y), is the string z of length m+n that coincides with x on its leftmost m symbols and with y on its rightmost n symbols. An octet is a symbol string of length 8. In our context, all octets are strings over the binary alphabet.

B.1.2 Integers, octets, and their representation

Throughout this specification, the representation of integers as octet strings and of octet strings as binary strings shall be fixed. All integers shall be represented as octet strings in most-significant-octet first order. This representation conforms to the convention in Section 4.3 of ANSI X9.63-2001 [2]. All octets shall be represented as binary strings in most-significant-bit first order.

B.1.3 Entities

Throughout this specification, each entity shall be a DEV and shall be uniquely identified by its 48-bit IEEE device address [1]. The parameter entlen shall have the integer value 64.

Annex C CCM* mode of operation

CCM* is a generic combined encryption and authentication block cipher mode. CCM* is only defined for use with block ciphers with a 128-bit block size, such as AES-128 [3]. The CCM* ideas can easily be extended to other block sizes, but this will require further definitions.
The CCM* mode coincides with the original CCM mode specification [5] for mes​sages that require authentication and, possibly, encryption, but does also offer support for messages that require only encryption. As with the CCM mode, the CCM* mode requires only one key. The security proof for the CCM mode [6], [7] carries over to the CCM* mode described here. The design of the CCM* mode takes into account the results of [8], thus allowing it to be securely used in implementation environments for which the use of variable-length authentication tags, rather than fixed-length authentication tags only, is beneficial.
Prerequisites: The following are the prerequisites for the operation of the generic CCM* mode:

1. A block-cipher encryption function E shall have been chosen, with a 128-bit block size. The length in bits of the keys used by the chosen encryption function is denoted by keylen.

2. A fixed representation of octets as binary strings shall have been chosen (e.g., most-significant-bit first order or least-significant-bit-first order).

3. The length L of the message length field, in octets, shall have been chosen. Valid values for L are the integers 2, 3, ..., 8 (the value L=1 is reserved).

4. The length M of the authentication field, in octets, shall have been chosen. Valid values for M are the integers 0, 4, 6, 8, 10, 12, 14, and 16. (The value M=0 corresponds to disabling authenticity, since then the authentication field is the empty string.)

C.1 Notation and representation

Throughout this specification, the representation of integers as octet strings shall be fixed. All integers shall be represented as octet strings in most-significant-octet first order. This representation conforms to the conventions in Section 4.3 of ANSI X9.63-2001 [2].

C.2 CCM* mode encryption and authentication transformation

Input: The CCM* mode forward transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this key is restricted to the entity itself and its intended key sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.
3. An octet string m of length l(m) octets, where 0 (l(m) < 28L.

4. An octet string a of length l(a) octets, where 0 (l(a) < 264.

The nonce N shall encode the potential values for M such that one can uniquely deter​mine from N the actually used value of M. The exact format of the nonce N is outside the scope of this specification and shall be determined and fixed by the actual implementation environment of the CCM* mode.

Note: The exact format of the nonce N is left to the application, to allow simplified hardware and software implementations in particular settings. Actual implementations of the CCM* mode may restrict the values of M that are allowed throughout the life-cycle of the encryption key Key to a strict subset of those allowed in the generic CCM* mode. If so, the format of the nonce N shall be such that one can uniquely determine from N the actually used value of M in that particular subset. In particular, if M is fixed and the value M=0 is not allowed, then there are no restrictions on N, in which case the CCM* mode reduces to the CCM mode.

C.2.1 Input transformation

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be used by the authentication transformation and the encryption transformation, respectively.

This step involves the following steps, in order:

1. Form the octet string representation L(a) of the length l(a) of the octet string a, as follows:

a. If l(a)=0, then L(a) is the empty string.

b. If 0 < l(a) < 216-28, then L(a) is the 2-octets encoding of l(a).

c. If 216-28 (l(a) < 232, then L(a) is the right-concatenation of the octet 0xff, the octet 0xfe, and the 4-octets encoding of l(a).

d. If 232 (l(a) < 264, then L(a) is the right-concatenation of the octet 0xff, the octet 0xff, and the 8-octets encoding of l(a).

2. Right-concatenate the octet string L(a) with the octet string a itself. Note that the resulting string contains l(a) and a encoded in a reversible manner.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16.
5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = AddAuthData || PlaintextData.
C.2.2 Authentication transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field consisting of the 1-bit Reserved field, the 1-bit Adata field, and the 3-bit representations of the integers M and L, as follows:

Flags = Reserved || Adata || M || L.

Here, the 1-bit Reserved field is reserved for future expansions and shall be set to ‘0’. The 1-bit Adata field is set to ‘0’ if l(a)=0, and set to ‘1’ if l(a)>0. The L field is the 3-bit representation of the integer L-1, in most-significant-bit-first order. The M field is the 3-bit representation of the integer (M-2)/2 if M>0 and of the integer 0 if M=0, in most-significant-bit-first order.

2. Form the 16-octet B0 field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field N, and the L-octet representation of the length field l(m), as follows:

B0 = Flags || Nonce N || l(m).
3. Parse the message AuthData as B1 || B2 || ... ||Bt, where each message block Bi is a 16-octet string.
4. The CBC-MAC value Xt+1 is defined by
X0 := 0128; Xi+1 := E(Key, Xi (Bi) for i=0, ... , t.
Here, E(K, x) is the cipher-text that results from encryption of the plaintext x using the established block-cipher encryption function E with key Key; the string 0128 is the 16-octet all-zero bit string.

5. The authentication tag T is the result of omitting all but the leftmost M octets of the CBC-MAC value Xn+1 thus computed.
C.2.3 Encryption transformation

The data PlaintextData that was established in clause B.2.1 (step 4) and the authentication tag T that was established in clause B.2.2 (step 5) shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field consisting of two 1-bit Reserved fields, and the 3-bit representations of the integers 0 and L, as follows:

Flags = Reserved || Reserved || 0 || L.

Here, the two 1-bit Reserved fields are reserved for future expansions and shall be set to ‘0’. The L field is the 3-bit representation of the integer L-1, in most-significant-bit-first order. The ‘0’ field is the 3-bit representation of the integer 0, in most-significant-bit-first order.

2. Define the 16-octet Ai field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field N, and the L-octet representation of the integer i, as follows:

Ai = Flags || Nonce N || Counter i, for i=0, 1, 2, …

Note that this definition ensures that all the Ai fields are distinct from the B0 fields that are actually used, as those have a Flags field with a non-zero encoding of M in the positions where all Ai fields have an all-zero encoding of the integer 0 (see clause B.2.2, step 2).

3. Parse the message PlaintextData as M1 || ... ||Mt, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, ... , Ct are defined by

Ci := E(Key, Ai) (Mi for i=1, 2, ... , t.

5. The string Ciphertext is the result of omitting all but the leftmost l(m) octets of the string C1 || ... || Ct.
6. Define the 16-octet encryption block S0 by
S0:= E(Key, A0).

7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M octets of S0 and the authentication tag T.
Output: If any of the above operations has failed, then output ‘invalid’. Otherwise, output the right-concatenation of the encrypted message Ciphertext and the encrypted authentication tag U.

C.3 CCM* mode decryption and authentication checking transformation

Input: The CCM* inverse transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this key is restricted to the entity itself and its intended key-sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.
3. An octet string c of length l(c) octets, where 0 (l(c)-M < 28L.

4. An octet string a of length l(a) octets, where 0 (l(a) < 264.

C.3.1 Decryption transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string. If this operation fails, output ‘invalid’ and stop. U is the purported encrypted authentication tag. Note that the leftmost string C has length l(c)-M octets.
2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

3. Use the encryption transformation in clause B.2.3, with as inputs the data CipherTextData and the tag U.

4. Parse the output string resulting from applying this transformation as m || T, where the right-most string T is an M-octet string. T is the purported authentication tag. Note that the leftmost string m has length l(c)-M octets.

C.3.2 Authentication checking transformation

The authentication checking transformation involves the following steps:

1. Form the message AuthData using the input transformation in clause B.2.1, with as inputs the string a and the octet string m that was established in clause B.3.1 (step 4).

2. Use the authentication transformation in clause B.2.2, with as input the message AuthData.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause B.3.1 (step 4). If MACTag=T, output ‘valid’; otherwise, output ‘invalid’ and stop.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the octet string m. Otherwise, accept the octet string m and accept one of the key sharing group member(s) as the source of m.

C.4 Restrictions

All implementations shall limit the total amount of data that is encrypted with a single key. The CCM* encryption transformation shall invoke not more than 261 block-cipher encryption function operations in total, both for the CBC-MAC and for the CTR encryption operations.

At CCM* decryption, one shall verify the (truncated) CBC-MAC before releasing any information, such as, e.g., plaintext. If the CBC-MAC verification fails, only the fact that the CBC-MAC verification failed shall be exposed; all other information shall be destroyed.
Annex D Security Building Blocks

This annex specifies the cryptographic primitives and mechanisms that are used to implement the security protocols in this standard.

D.1 Symmetric-key cryptographic building blocks

The following symmetric-key cryptographic primitives and data elements are defined for use with all security-processing operations specified in this standard.

D.1.1 Symmetric key domain parameters

The key domain parameters used in the specification shall be as specified in section C.2.1, with the following instantiation: (minchallengelen, maxchallengelen)=(128,128). Thus, each symmetric key has key size keylen=128 (in bits).

All keys shall be validated using the challenge validation primitive as specified in C.3.

D.1.2 Block-cipher

The block-cipher used in this specification shall be the Advanced Encryption Standard AES-128, as specified in FIPS Pub 197 [3]. This block-cipher shall be used with symmetric keys as specified in section C.1.1. Hence, the key size is equal to the block size of the block-cipher: 128 bits.

D.1.3 Mode of operation

The block-cipher mode of operation used in this specification shall be the CCM* mode of operation, as specified in Annex B, with the following instantiations:

1. Each entity shall use the block-cipher E as specified in section C.1.2;

2. All octets shall be represented as specified in section A.1.2;

3. The parameter L shall have the integer value 2;

4. The parameter M shall have one of the following integer values: 0, 4, 8, or 16.

D.2 Challenge domain parameter generation and validation

This section specifies the primitives that shall be used to generate and validate challenge domain parameters.

Challenge domain parameters impose constraints on the length(s) of bit challenges a scheme expects. As such, this determine a bound on the entropy of challenges and, thereby, on the security of the cryptographic schemes in which these challenges are used. In most schemes, the challenge domain parameters will be such that only challenges of a fixed length will be accepted (e.g., 128-bit challenges). However, one may define the challenge domain parameters such that challenges of varying length might be accepted. The latter is useful in contexts where entities that wish to engage in cryptographic schemes might have a bad random number generator on-board. Allowing both entities that engage in a scheme to contribute sufficiently long inputs enables each of these to contribute sufficient entropy to the scheme at hand.

In this standard, challenge domain parameters will be shared by a number of entities using a scheme of the standard. The challenge domain parameters may be public; the security of the system does not rely on these parameters being secret.

D.2.1 Challenge domain parameter generation

Challenge domain parameters shall be generated using the following routine.

Input: This routine does not take any input.

Actions: The following actions are taken:

1. Choose two nonnegative integers minchallengelen and maxchallengelen, such that minchallengelen (maxchallengelen.

Output: Challenge domain parameters D=(minchallengelen, maxchallengelen).

D.2.2 Challenge domain parameter verification

Challenge domain parameters shall be verified using the following routine.

Input: Purported set of challenge domain parameters D=(minchallengelen, maxchallengelen).

Actions: The following checks are made:

1. Check that minchallengelen and maxchallengelen are nonnegative integers.

2. Check that minchallengelen (maxchallengelen.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the challenge domain parameters. Otherwise, output ‘valid’ and accept the challenge domain parameters.

D.3 Challenge validation primitive

Challenge validation refers to the process of checking the length properties of a challenge. It is used to check whether a challenge to be used by a scheme in the standard has sufficient length (e.g., messages that are too short are discarded, due to insufficient entropy).

Input: The input of the validation transformation is a valid set of challenge domain parameters D=(minchallengelen, maxchallengelen), together with the bit string Challenge.

Actions: The following actions are taken:

1. Compute the bit-length challengelen of the bit string Challenge.

2. Verify that challengelen ([minchallengelen, maxchallengelen]. (That is, verify that the challenge has an appropriate length.)

Output: If the above verification fails, then output ‘invalid’ and reject the challenge. Otherwise, output ‘valid’ and accept the challenge.

Annex E Test vectors for cryptographic building blocks

This annex provides sample test vectors for the IEEE 802.15.3 community, aimed at assisting in building interoperable security implementations. The sample test vectors are provided as is, pending independent validation.

E.1 Data conversions

For test vectors, see Appendix J1 of ANSI X9.63-2001 [2].

E.2 AES block cipher

This annex provides sample test vectors for the block-cipher specified in section C.1.1. For test vectors, see FIPS Pub 197 [3].

E.3 CCM mode encryption and authentication transformation

This annex provides sample test vectors for the mode of operation as specified in section C.1.3.

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.
Input: The inputs to the mode of operation are:

1. The key Key of size keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:

Nonce = A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06.
3. The octet string m of length l(m)=23 octets to be used:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E.
4. The octet string a of length l(a)=8 octets to be used:

a = 00 01 02 03 04 05 06 07.

E.3.1 Input transformation

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be used by the authentication transformation and the encryption transformation, respectively.

1. Form the octet string representation L(a) of the length l(a) of the octet string a:

L(a) = 00 08.

2. Right-concatenate the octet string L(a) and the octet string a itself:

L(a) || a =00 08 || 00 01 02 03 04 05 06 07.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16:

AddAuthData = 00 08 || 00 01 02 03 04 05 06 07 || 00 00 00 00 00 00.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16:

PlaintextData =
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 ||

18 19 1A 1B 1C 1D 1E || 00 00 00 00 00 00 00 00 00.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData =
00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 ||

08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

E.3.2 Authentication transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 59.

2. Form the 16-octet B0 field as follows:

B0 = 59 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 17.

3. Parse the message AuthData as B1 || B2 ||B3, where each message block Bi is a 16-octet string.
4. The CBC-MAC value X4 is computed as follows:
	i
	Bi
	Xi

	0
	59 A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 00 17
	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

	1
	00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00
	F7 74 D1 6E A7 2D C0 B3 E4 5E 36 CA 8F 24 3B 1A

	2
	08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
	90 2E 72 58 AE 5A 4B 5D 85 7A 25 19 F3 C7 3A B3

	3
	18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00
	5A B2 C8 6E 3E DA 23 D2 7C 49 7D DF 49 BB B4 09

	4
	(
	B9 D7 89 67 04 BC FA 20 B2 10 36 74 45 F9 83 D6

5. The authentication tag T is the result of omitting all but the leftmost M=8 octets of the CBC-MAC value X4:

T = B9 D7 89 67 04 BC FA 20.

E.3.3 Encryption transformation

The data PlaintextData shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 01.

2. Define the 16-octet Ai field as follows:

	i
	Ai

	0
	01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

	1
	01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

	2
	01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

3. Parse the message PlaintextData as M1 ||M2, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, C2 are computed as follows:

	i
	AES(Key,Ai)
	Ci = AES(Key,Ai) (Mi

	1
	12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07
	1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10

	2
	CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17
	D4 66 4E CA D8 54 A8 35 46 21 46 03 AA C6 2A 17

5. The string Ciphertext is the result of omitting all but the leftmost l(m)=23 octets of the string C1 ||C2:

CipherText = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8.

6. Define the 16-octet encryption block S0 by

S0 = E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.

7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M=8 octets of S0 and the authentication tag T:

U = 0A 89 5C C1 D8 FF 94 69.

Output: the right-concatenation c of the encrypted message Ciphertext and the encrypted authentication tag U:

c = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||

 0A 89 5C C1 D8 FF 94 69.

E.4 CCM mode decryption and authentication checking transformation

This annex provides sample test vectors for the inverse of the mode of operation as specified in section C.1.3.

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.
Input: The inputs to the inverse mode of operation are:

1. The key Key of size keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:

Nonce = A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06.
3. The octet string c of length l(c)=31 octets to be used:

c =
1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||

0A 89 5C C1 D8 FF 94 69.
4. The octet string a of length l(a)=8 octets to be used:

a = 00 01 02 03 04 05 06 07.

E.4.1 Decryption transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string:

C = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8;

U = 0A 89 5C C1 D8 FF 94 69.

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

CipherTextData =
1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 ||

D4 66 4E CA D8 54 A8 || 00 00 00 00 00 00 00 00.

3. Form the 1-octet Flags field as follows:

Flags = 01.

4. Define the 16-octet Ai field as follows:

	i
	Ai

	0
	01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

	1
	01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

	2
	01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

5. Parse the message CiphertextData as C1 ||C2, where each message block Ci is a 16-octet string.

6. The ciphertext blocks P1, P2 are computed as follows:

	i
	AES(Key,Ai)
	Pi= AES(Key,Ai) (Ci

	1
	12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07
	08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

	2
	CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17
	18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00

7. The octet string m is the result of omitting all but the leftmost l(m)=23 octets of the string P1 || P2:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 || 18 19 1A 1B 1C 1D 1E.

8. Define the 16-octet encryption block S0 by

S0 = E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.

9. The purported authentication tag T is the result of XOR-ing the string consisting of the leftmost M=8 octets of S0 and the octet string U:

T = B9 D7 89 67 04 BC FA 20.

E.4.2 Authentication checking transformation

The authentication checking transformation involves the following steps:

1. Form the message AuthData using the input transformation in clause D.3.1, with as inputs the string a and the octet string m that was established in clause D.4.1(step 7):

AuthData =
08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 ||

08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

2. Use the authentication transformation in clause D.3.2, with as input the message AuthData to compute the authentication tag MACTag:

MACTag = B9 D7 89 67 04 BC FA 20.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause D.4.1(step 9):

T = B9 D7 89 67 04 BC FA 20 = MACTag.

Output: Since MACTag=T, output ‘valid’ and accept the octet string m and accept one of the key sharing group member(s) as the source of m.
Submission
Page

René Struik, Certicom Corp.

