Existing Technologies Consideration

Date: 2024-01-02

Authors:

Name	Affiliations	Address	Phone	email
Nelson Costa	Peraso Inc.	144 Front St W Ste		ncosta@perasoinc.com
		785, Toronto, ON		
		M5J 2L7		
Chris Hansen	Covariant Corp.	1525 Miramonte	+1 650-282-0215	chris@covariantcorp.com
		Ave, #3956		
		Los Altos CA 94024		
		United States		

Abstract

- IMMW SG can be viewed as a renewed purpose for 60 GHz spectrum.
- There's a strong desire to leverage existing MAC/PHY from sub-7 GHz.
- Renewed interest in 60 GHz is greatly appreciated!
- From November's Plenary, there was much discussion of what we think was wrong with 11ad/11ay. However, there is a growing number of devices deployed around the world.
 - This is evidence we got at least some things right.
- In defining a new TG we must consider what does work with mmWave.
- Our roadmap here should include both interoperability and lessons learned.

"The reports of my death are greatly exaggerated." – Mark Twain

Existing Applications: Point-to-Point (PtP) and Point-to-Multipoint (PtMP) Networking

- Largest application space for products based on IEEE 802.11ad
 - Many deployments around the world.
- Multi-gigabit last mile connectivity at a much lower cost than copper or fiber
- Requires both:
 - Extremely high throughput (AP, PtP backhaul)
 - Low throughput (dense networks, low-cost CPEs)
- Long range is critical: fewer APs, larger coverage, lower costs

PtP, PtMP Networking: Things We Got Right

• Directivity at 60 GHz. Benefits of channels 5, 6.

- Deployments exist for ranges from 30 km (backhaul, repeater) down to less than 100 m (last mile and CPE applications).
- Higher directivity increases spatial reuse. Adaptive features maximize parallel transmission between multiple BSSs in dense networks.
- Directivity is the balance to pathloss. Channels 5, 6 are awesome at longer distances even with relatively small antennas.

Beamforming

- Higher directivity means training beams. Trading off coverage for gain also means training beams.
- Bi-directional BRP lets us resolve beams quickly. Very useful for changing conditions, where "conditions" also includes interference, multipath, and many other factors.

doc.: IEEE 802.11-24/0008r0

PtP, PtMP Networking: Things We Got Right, Things to Consider

More and Less throughput

- APs, being an aggregation point, generally need to use as much bandwidth as the medium will allow.
- In general, bigger pipes mean smaller bursts of traffic will count more. This is especially useful in dense networks. It's one way we avoid contention.
- ½ and ¼ bandwidth modes are very useful for dense networks. (Not part of .11ad/.11ay but worthy of future consideration).
- North America: Market demand is for >1 Gb links.
- The rest of the world: Market demand is for lower throughput links. Density and deployment cost (simplicity) are key factors.
 - Number of clients and spatial diversity are critical.

PtP, PtMP Networking: Things We Got Right, Things to

doc.: IEEE 802.11-24/0008r0

Simplicity of 11ad Single Carrier PHY

- Leads directly to cost savings.
- < MCS 9 can employ transmitters in the non-linear region. (More EIRP, no predistortion required)

Consider

- Great for maintaining connectivity, good throughput, and link reliability.
- Reverse direction data transfer. Helps to reduce contention in networks with many STAs.

Indoor Applications That Work

- The "Directive" part of DMG is crucial to indoor applications, even at short distances.
- The balance is coverage (how wide we can make a beam) versus range.
- In almost all indoor applications, and especially dynamic scenarios, rapid beamforming is critical to maintaining a good link.
- These applications often require high continuous throughput or bursty traffic.

Indoor Applications That Work [1]

- 29 dBm EIRP
- Polarization diversity with Horizontal and Vertically polarized arrays.
 - Beamforming done across both arrays individually to find best link.
- 22 47° HPBW
- Up to 120° steering range

Indoor Applications That Work

- Classroom/lecture hall projection.
 - Bursty traffic. Longer ranges (to 20 m). Partially occluded STAs. Fast beamforming to adapt for STA movement. Power savings critical.
- Fast sync for users entering/exiting vehicles.
 - Huge bursts up and downlink for short periods. Short range. Quick connect/disconnect. Dynamic beamforming.
- Wireless conference room.
 - Multiple devices with steady stream of low- to high-throughput. Medium ranges (10-15m).
- VR/XR [2].
 - Extremely high beamforming rate. Constant medium to high downlink throughput. Ranges up to 20 m.

doc.: IEEE 802.11-24/0008r0

Things to Keep: Preamble, PHY Header Compatibility

- The current 11ad/11ay preamble is the primary method of detection and interference mitigation.
- Coherent detection (as opposed to just Energy Detection (ED)) is used because
 - Correlation based methods are more sensitive than ED when pulling packets out of the noise.
 - Coherent detection allows us to gain knowledge of other BSSs, improve interference mitigation, and improve spatial reuse.
- We view this as an important requirement for backward compatibility, not to only rely on ED.

References

- [1] https://shop.richardsonrfpd.com/docs/rfpd/PRM2136X_brief.pdf
- [2] https://xcom-labs.com/xcom-labs-demonstrates-wireless-xr-iitsec2022/