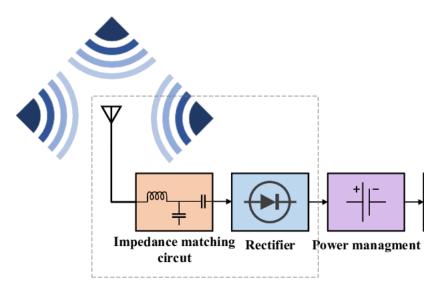
Summary and recommendation for AMP IoT

Date: 2023-1-12

Authors:

Name	Affiliation	Address	Phone	Email
Yinan Qi	OPPO			v-qiyinan@oppo.com
Weijie Xu				xuweijie@oppo.com

Abstract


This presentation summarizes the design of AMP devices enabling energy harvesting and with ultra-low energy consumption and ultra-low complexity.

Motivation: Battery-less and Maintenance-free Devices

- □ The Wi-Fi IoT network is competitive from the perspective of deployment cost, due to widespread deployment and free use of unlicensed frequency band.
- □ However, there are still lot of use cases and applications that can not be met with using existing Wi-Fi IoT technologies:
 - a device driven by a conventional battery is not applicable, e.g., under extreme environmental conditions (e.g., high pressure, extremely high/low temperature, humid environment) or maintenance-free devices are required (e.g., no need to replace a conventional battery for the device)
 - ultra-low complexity, very small device size/form factor (e.g., thickness of mm), and longer life cycle etc. are required

Solution: Support AMP WLAN Devices

- A new type of WLAN devices, which is powered by ambient power such as radio waves, solar, heat, vibration etc., is a promising way to fulfill the unmet requirement and enable many to-B and to-C applications.
 - The device is powered by energy harvested from a variety of ambient power sources including radio waves, light (sunlight), motion, heat, etc. → the conventional battery can be removed
 - Ultra-low power consumption: typical peak ambient power less than 1 mw due to the low ambient power density
 - Smaller size and ultra-low complexity
 → low cost massive deployment

<u>Note:</u> The standardization of AMP devices have begun in global standardization organizations, e.g., 3GPP begin to study ambient powerenabled IoT since Rel-19 [S1-220192 New SID: Study on Ambient power-enabled Internet of Things, OPPO]

Why support AMP WLAN device in 802.11

- □ On one hand, combining ambient power-enabled IoT with Wi-Fi will enable a new kind of IoT service in many to-B and to-C areas, which will be beneficial for the Wi-Fi ecosystem.
 - Enrich WLAN IoT application(including To-B and To-C) and extend Wi-Fi ecosystem marketing portfolio
 - Free frequency band and achieve much lower CapEx and OpEx for the verticals
 - Good matching to the local area deployment requirement

□ On the other hand, there are many advantages of support AMP IoT in 802.11:

- Leverage the strong WLAN market share
- Emerging implementation in 802.11 network demonstrating both feasibility and technical/business potentials[15]
- Reuse legacy infrastructure (e.g., 802.11ah AP) with potential enhancement [13]
- Easy for AMP function design by leveraging the existing 802.11 features, such as 802.11ba, 802.11ah and legacy 802.11 power management mechanism.
 - Minimize design efforts by reusing the existing mechanism, e.g. starting from WUR and OOK, simplified 802.11ah MAC, access control mechanism. power management mechanism etc.

Summary(1): Use Cases

- Use case 1 Smart manufacturing: inventory, asset tracking/positioning, and environment/production line sensing and monitoring
- Use case 2 Data Center: environmental monitoring, facility monitoring and asset management
- Use case 3 Smart home: asset management, home environment monitoring and home security.
- Use case 4 Logistics and warehouse: goods tracking and inventory check
- Use case 5 Smart agriculture: monitoring of soil moisture, soil fertility, temperature, wind speed, plant growth etc., and controlling of the agricultural facilities
- Use case 6 Indoor positioning: positioning in giant shopping mall, factories, warehouses, etc.
- Use case 7 Smart Power Grid: Sensing of sound, heat, pressure, etc., smart meter to achieve awareness of device/equipment status

Submission

Weijie Xu (OPPO)

Summary(2): Requirements of the Use Cases

Use case	Coverage	Peak Data rate	Positioning accuracy	Other requirements
#1Smart manufacturing	30m indoor 100m outdoor	100kbps	1~3 m Horizontal indoor	Battery-less Maintenance-free
#2 Data center	30m indoor 100moutdoor	100kbps	-	Battery-less Maintenance-free
#3 Logistics/Warehou se	10-30 m for indoor case	-	1~3 m Horizontal indoor	Battery-less, Maintenance-free 99.5% identification accuracy Ultra-low cost and ultra-small size
#4 Smart Home	10m	-	1~3 m Horizontal	maintenance-free Battery-less Long service life., e.g., more than 10 years Low complexity and small size
#5 Smart Agriculture	30m indoor, 200m outdoor	-	-	Battery-less, Low complexity and small size, Processing (i.e., reading IDs) hundreds to thousands of devices per second
#6 Indoor positioning	10-30 meters indoor	-	1~3 m horizontal accuracy and 1~2 m vertical accuracy	Small size, maintenance-free, battery-free, and ultra-low-cost IoT devices; Moving speed: 1.5-2 m/s
#7 Smart Grid	10-30 m indoor, up to 200 m outdoor	20kbps for sub- station, 3kbps for high voltage transmission line.	-	Maintenance-free and battery-less
#8 Fresh Food Supply Chain	10-20m	0.12bps	Slide 7	Maintenance-free, ultra low cost, sticker form factor with low BOM Traffic interval =15 minutes

Summary(3): Gap analysis for the Use Cases

Use cases	Issues for state-of-the-art solutions	Benefits of AMP IoT
#1 Smart manufacturing#2 Data center#3Logistics/Warehouse#8 Fresh Food Supply Chain	 Manual scanning of labels of barcode or RFID tags for inventory/attendance check Massive deployment of readers due to short communication distance Limited performance on communication distance, system efficiency No IP stack is defined. 	 Automatic scanning Lower density deployment of APs Improved performance in terms of communication distance, sensitivity and system efficiency Battery-less and Maintenance free Inherent, standardized and secured internet connectivity Location services
#4 Smart Home	 Need to replace battery for many devices High cost/ larger size for applications such as finding small items at home 	 Battery-less and Maintenance free Small size/low cost to support more applications Support positioning Enable communication between non-AP STA (e.g., smart phone) and AMP IoT devices
#6 Indoor positioning	 High deployment cost for indoor navigation and positioning systems High maintenance cost 	 Small size/low deployment cost Enable positioning by non-AP STA (e.g., smart phone), with 1~3m horizontal positioning accuracy Battery-less and Maintenance free
#5 Smart Agriculture #7 Smart Grid	 Power supply with wire cable or battery is needed for sensors High maintenance cost Inaccessible in case of and hazardous operation conditions 	 Battery-less so that deployment of AMP IoT devices can be flexible and low deployment cost Maintenance free Lower device cost
Submission	Slide 8	Weijie Xu (OPPO)

Summary(4): Device types

AMP-only IoT device

- Ultra-low complexity, ultra-power consumption, very small form factor
- Battery-less (i.e., not using conventional battery) and may not need power storage or has limited power storage only (e.g., a capacitor).

AMP-assisted IoT device

- Higher power storage capability than AMP-only IoT device
- Similar as legacy 802.11 (e.g., 802.11n/11ah) device and can reuse the current PHY design but with enhanced MAC features to well adapt to operation with a specific kind of ambient power.
- Optimized for the power consumption and sustainability to adapt to ambient power usage and achieve maintenance-free

Summary(5) : Candidate Techniques

Candidate Techniques

- Narrow bandwidth operation
- Simpler waveform/modulation/coding scheme: OOK/FSK, Manchester coding, etc.
- Backscattering
- Light-weight MAC protocol design and enhanced power saving/management:
- Coexistence schemes with legacy devices

D Potential Techniques combinations:

- **AMP-only IoT devices**: Ultra-low power receiver + Backscattering/Ultra-low power active transmitter + Simplified MAC+ Enhance power saving
- AMP-assisted IoT devices: Legacy PHY design with MAC enhancement

Summary(6): Ambient Power and Energy Storage

	Energy Source	Method	Power Density	Application Environment	Energy Conversion Factors	Feature	Advantages	Disadvantages
Ambient power	Radio Frequency	Antenna	0.1–10 μW/cm ² (Artificial)	(Semi-)urban environments; Dedicated transmitter setup;	Source transmission power; Distance from source; Antenna gain; Antenna design;	Partly controllable Partly predictable	Ambient or dedicated techniques; High conversion efficiency; Available anywhere;	Requires tuning to frequency bands; Energy availability limited by safety; Distance dependent; Low-power density
_			0.001(WiFi)~0.1(GSM) µW/cm ²					
• RF	Solar	Photovolatic	10~100 mW/cm ² (Outdoor Sun Light)	Natural light; Brightly lit indoor spaces;	Light intensity; Temperature gradient; Material properties;	Uncontrollable Predictable	High voltage output; Predictable; Low fabrication costs	Long periods of natural absence; Natural prediction limited; Unavailable at night and non- controllable;
0.1	Solar	Photovolatic	10~100 μW/cm² (Indoor Art. Light)					
SolarThermal	Thermal	Thermoelectric	20~60 μW/cm ²	Industrial waste heat; Household water; Domestic heaters; Body heat;	Spatial temperature gradient; Temporal temperature gradient; Cycle frequency;	Uncontrollable Predictable	Long life due to stationary parts; High reliability;	Requires constant thermal gradient; Low conversion efficiency; Performs poorly on small gradients;
	Vibration	Electromagnetic	300-800 µW/cm ³	Industrial machinery; transportation; Human activity; Roads and infrastructure;	Vibration frequency; Vibration acceleration;	Partly controllable	High-output currents; Robustness; Low-cost design; Controllable	Relatively large size; Unpredictable;
vioration		Electrostatic	$50\text{-}100 \ \mu\text{W/cm}^3$				High-output voltage; Possibility to build low- cost devices	Requires bias voltage; Unpredictable
		Piezoelectric	4-250 μW/cm ³				High voltage output; High power density; Simplicity design and fabrication	Highly variable output; Unpredictable;

□ The ambient power lacks of stability and the power density is limited.

• Energy storage element is needed for some AMP IoT devices.

Capacitor and solid-state battery can be considered as the possible energy

storage elements.

Summary(7): Feasibility of support AMP WLAN devices

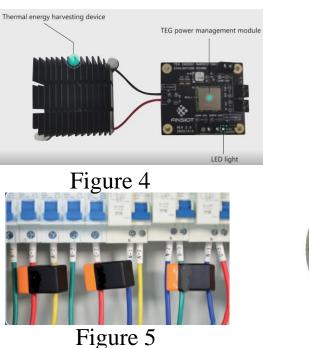
□ Link budget for different AMP IoT device types

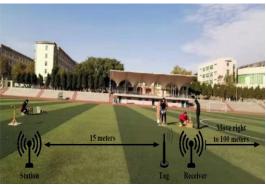
• Communication distance of up to 180 meters can be achieved in S1G and up to 50 meters for 2.4GHz

Co-existence with legacy 802.11 systems

• AMP device can well coexist with legacy devices in both S1G and 2.4Ghz

Carrier generation for backscattering


• Wideband carrier signal spanning the whole channel bandwidth, e.g., the signal spanning across the 20MHz channel bandwidth at 2.4GHz


Summary(8): Prototype Presentation(1)

- □ Several prototypes are collected to show the potential communication techniques, the applicable ambient powers and the achieved performance.
 - Prototype using RF power and backscattering (Figure 2/3) [11]
 - Prototype using thermal energy (Figure 4) [11]
 - Prototype using induced current (Figure 5) [11]

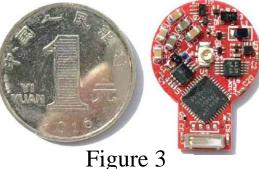


Figure 2

Summary(8): Prototype Presentation(2)

- 802.11 compatible backscatter prototype(Figure 6) [15]
- RF energized ultra-low power ambient device
 - Demo (Figure 7) [14]
 - Ultra-low power transmitter and high sensitivity RF energy harvester

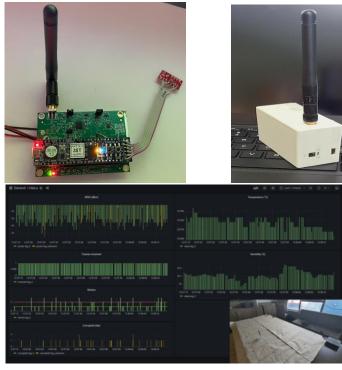
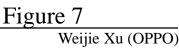
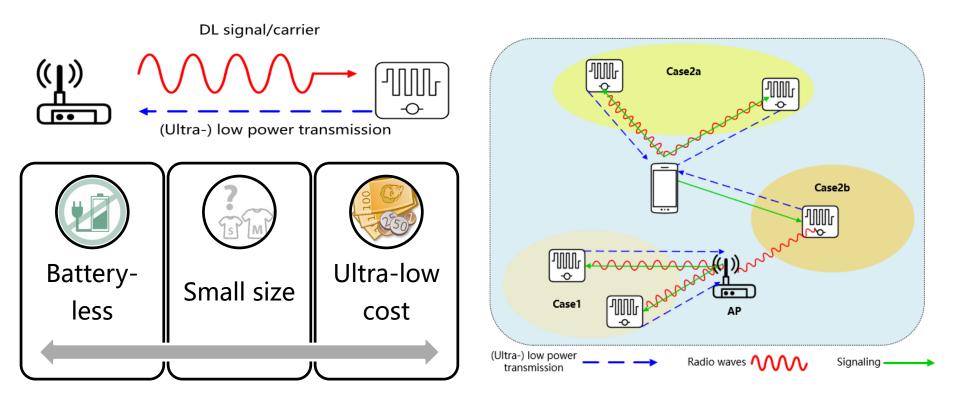



Figure 6

November 2022


The target of the study

The tai Set of the beauty						
Logistics, F Supply ch Clothing,	nain, chain,	Remote metering, Sensors, Agriculture, larming, Security etc. Existing Cellular IoT/WLAN IoT				
Lower capa	Lower capabilities Higher capabilities					
	RFID	AMP IoT	Existing WLAN IoT(e.g. 802.11 ah)			
Coverage	<10 m	10m~30m (RF power); Up to 200m(other ambient power)	>=1000m			
Power Source	RF power only	Various ambient power	Battery			
Techniques	RF power harvesting Backscattering	Backscattering/Active transmitter WUR receiver Enhanced power saving Power management	OFDM Narrow bandwidth Relaxed processing eDRX(TWT) PS-Poll Energy limited operation			
Power Consumption	1uw~10uw	<1mw	100x mw			
Device Cost (Relatively)	Low	Medium	High			
Maintenance/operation cost	Labor cost for operation	Maintenance-free Automated operation	Replace/Recharge the battery/Automated operation			
Submission		Slide 15	Weijie Xu $(OPPO)$			

Slide 15

Overview of Ambient Power Enabled IoT for WLAN

Design targets: support both the communication between AP and the AMP devices and the communication between mobile AP and the AMP devices

Study scope for AMP IoT SG(1)

To support an ultra-low-power-consumption AMP device in WLAN, e.g. peak

power consumption for transmission and reception is lower than 1mw.

• PHY: WUR(100x uw) + Simplified UL PHY (10x uw~100x uw)

- In the DL, WUR(802.11ba) similar design as the starting point.
 - Reuse legacy design as much as possible, such as OOK, channel structure, waveform, PPDU formats, etc.
 - Some re-design may be necessary if AMP in WLAN is implemented in frequency band other than 2.4GHz,
 e.g., S1G.
 - Note: Other schemes are not precluded.
- In the UL, specify OOK/FSK for the UL PHY.
 - Both Active OOK/FSK transmitter and backscattered OOK/FSK can be supported.
 - The carrier for backscattering shall be specified considering the regulation requirement
 - Carrier signal of narrow bandwidth or wide bandwidth
 - Carrier signal using the existing signal can also be considered
 - Note: PSK is not precluded.

Study scope for AMP IoT SG(2)

◆ MAC: Simplified MAC + Enhanced power saving/ power

management(Note2)

Note 1: Energy harvesting(except RF power) is based on implementation and can be transparent to specification. For RF power, TBD.

Note 2: Enhanced power saving/ power management mechanism can be extended to existing WiFi devices.

Note 3: Support S1G, and 2.4GHz/5GHz frequency band can be considered

Summary

□ This submission summarize the work of AMP IoT, including:

- Use cases and the requirements
- Gap analysis of the use cases and benefits from AMP IoT
- Device types
- Candidate techniques and the feasibilities
- Prototype presentations

Based on the above work, it is recommended to form a study group (SG) to further study AMP IoT and develop the PAR and CSD documents

Reference

- 1. IEEE 802.1122/1339r0, Use Cases of smart manufacturing
- 2. IEEE 802.1122/1341r1, Use Cases of Data Center Infrastructure Management.
- 3. IEEE 802.11-22/0963r0, Use Cases for AMP IoT Devices.
- 4. IEEE 802.11-22/1559, Updated Use Cases for AMP IoT Devices.
- 5. IEEE 802.11-22/0962r0, Potential Techniques to Support AMP IoT Devices in WLAN
- 6. IEEE 802.11-22/970r0, Feasibility of supporting AMP IoT devices in WLAN
- 7. IEEE 802.11-22/1560r0, Ambient powers and energy storage
- 8. IEEE 802.11-22/1561r0, Further discussion on feasibility of supporting AMP IoT devices in WLAN
- 9. IEEE 802.11-22/1799r0, On energy harvesting and the differentiation with RFID
- 10.IEEE 802.11-22/1800r0, New Use Case for AMP IoT Devices: Smart Grid

11.IEEE 802.11-22/1961r0, Prototype presentations for AMP IoT

- 12.IEEE 802.11-22/1562r3, Draft Technical Report on support of AMP IoT devices in WLAN
- 13.IEEE 802.11-23/0173r0, Discussion on examplary AMP use scenarios
- 14. IEEE 802.11-23/0112r0, Ambient IoT Device Demo
- 15.IEEE 802.11-23/0056r0, 802.11 compatible backscatter prototype