Making the Case for Open, Softwarized, Data-Driven 802.11 Networks Date: 2022-4-06

Authors:

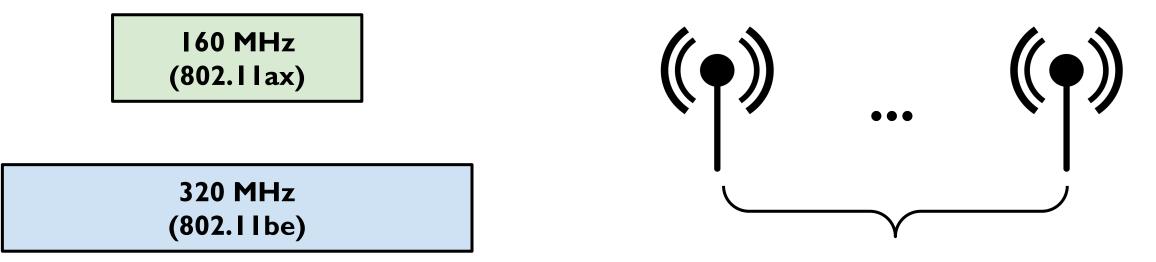
Name	Affiliations	Address	Phone	email
Francesco Restuccia	Northeastern University, WIOT Institute	360 Huntington Ave, Boston, MA 02215 USA	617-373-3655	frestuc@northeastern.edu

What is the current threat

Risk of doing things as done now

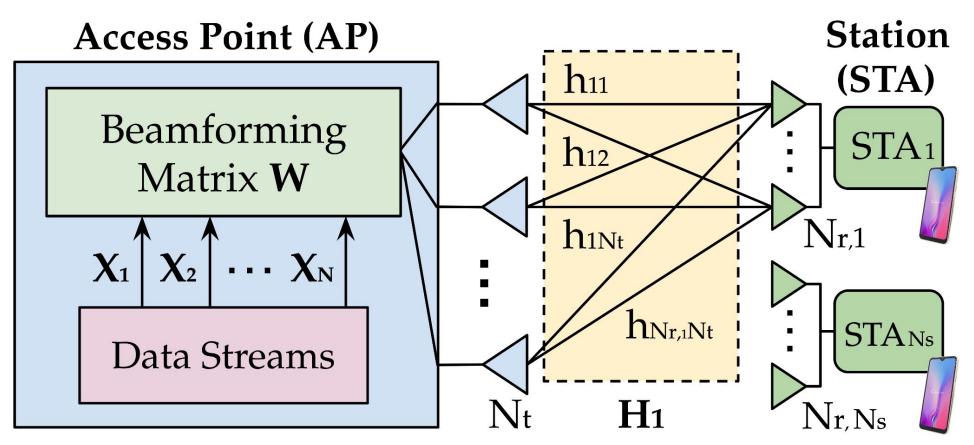
How a softwarized, data-driven 802.11 architecture may drive costs down

Emerging new markets


Enhancement of existing 802.11 business models Creation of new 802.11 business opportunities

What is the current threat?

March 2022


Strategy to improve 802.11 routers?

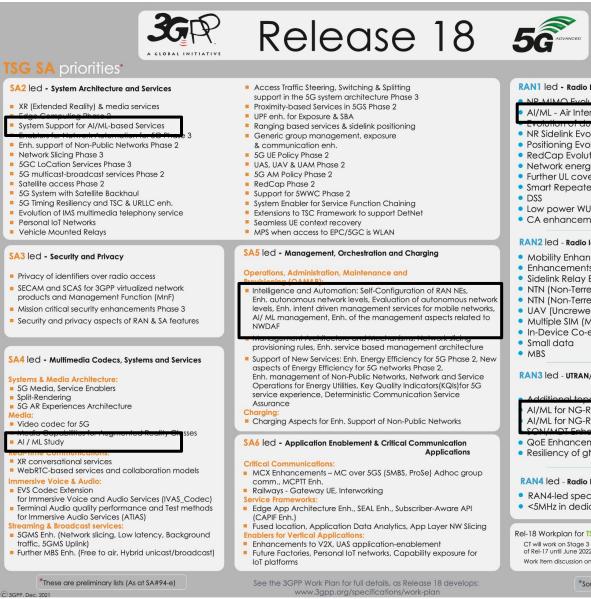
• Increase Bandwidth (2x) • Increase Spatial Streams (2x)

- For better performance? Is it really needed?
- No 802.11ac routers that do 8x8 MIMO! Why?

Complexity of MIMO in Wi-Fi Systems

8 x 8 @ 160 MHz, BM report is (486 subcarriers x 56 angles/subcarrier x 16 bits/angle) ~ 54.43 KB If BM reports are sent back every 10 ms, the airtime overhead is 435,456 / 0.01 ~ 43.55 Mbit/s **March 2022**

- Increasing complexity
- Makes cost go UP!


- Routers are becoming very expensive
- With respect to a 802.11ac router
 - A Wi-Fi 6E router is ~**6x more expensive**
 - A tri-band Wi-Fi router is ~15x more expensive

Ry Christ (CNET).Wi-Fi 6E routers are here, and we're not ready for them https://www.cnet.com/home/internet/wi-fi-6e-routers-are-here-and-were-not-ready-for-them/

Threat: Fewer People Buy the New, Fancy, Expensive Routers

What's going on in the 5G/Cellular Community?

March 2022

TSG RAN priorities*

RAN1 led - Radio Layer 1 (Physical layer) NID MAINAO EN

AI/ML - Air Interface

NR Sidelink Evolution

- Positioning Evolution
- RedCap Evolution
- Network energy savings
- Further UL coverage enhancement
- DSS
- Low power WUS
- CA enhancements

RAN2 led - Radio layer 2 & layer 3 Radio Resource Control

- Mobility Enhancements
- Enhancements for XR
- Sidelink Relay Enhancements
- NTN (Non-Terrestrial Networks) evolution NR
- NTN (Non-Terrestrial Networks) evolution IoT
- UAV (Uncrewed Aerial Vehicle)
- Multiple SIM (MUSIM) Enhancements In-Device Co-existence (IDC) Enhancements
- Small data
- MBS

RAN3 led - UTRAN/E-UTRAN/NG-RAN architecture & related network interfaces

mprovements – IAB/VMR AI/ML for NG-RAN WI AI/ML for NG-RAN SI CONVADTE

 QoE Enhancements Resiliency of aNB-CU-CP

RAN4 led - Radio Performance and Protocol Aspects

- RAN4-led spectrum items
- <5MHz in dedicated spectrum</p>

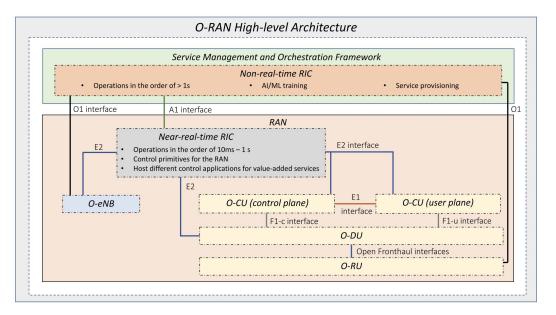
Rel-18 Workplan for TSG CT

CT will work on Stage 3 completion and ASN.1 code and OpenAPI freeze of Rel-17 until June 2022 (TSG#96) Work Item discussion on Rel-18 Stage 2 / Stage 3 (under CT) from June 2022.

*Source: RP-213697 (RAN#94-e)

(1) Decided to study "the benefits of augmenting the air-interface with features enabling improved support of AI/ML based algorithms for enhanced performance and/or reduced complexity/overhead"

https://portal.3gpp.org/desktopmodules/Speci fications/SpecificationDetails.aspx?specificati onId=3983


Submission: DCN 11-21-0776-01-0wng

Slide 10

Francesco Restuccia, Northeastern University

- Smart Repeater

The Open RAN (O-RAN) Paradigm

I need to stream 4K video to 100 users in Times Square, NY from 8pm to 9pm

(1) Disaggregation of RAN hardware and software

(2) **RAN Intelligent Controller** (RIC) operating at different granularity levels

- Control is hardware- and vendor-agnostic, so software runs in any O-RAN compliant network
- Zero-touch AI-based control is **natively supported**,
 - best performance
 - self-adaptation

Francesco Restuccia, Northeastern University

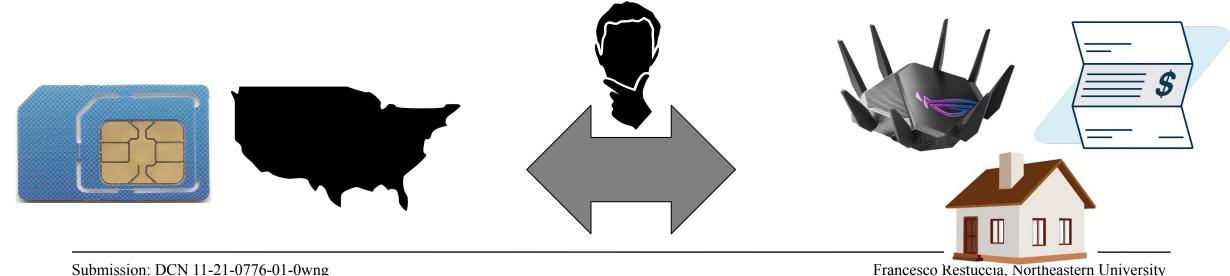
Advantages of Open, Virtualized Networks

- I. Interoperability reduces CAPEX (60%)
- 2. Future-proof no rip and replace infrastructure
- 3. Easier maintenance results in reduced OPEX (65%)
- 4. Faster deployments, higher throughput, coverage and capacity

O-RAN market is estimated to attain a revenue of USD 419.51 Million in 2021 and USD 21,371.47 Million in 2028, CAGR of 83.1%

https://www.researchnester.com/reports/open-radio-access-network-market/2781

Parallel Wireless, "OpenRAN – 7 vital benefits for MNOs," https://www.parallelwireless.com/blog/openran-7-vital-benefits-for-mnos/

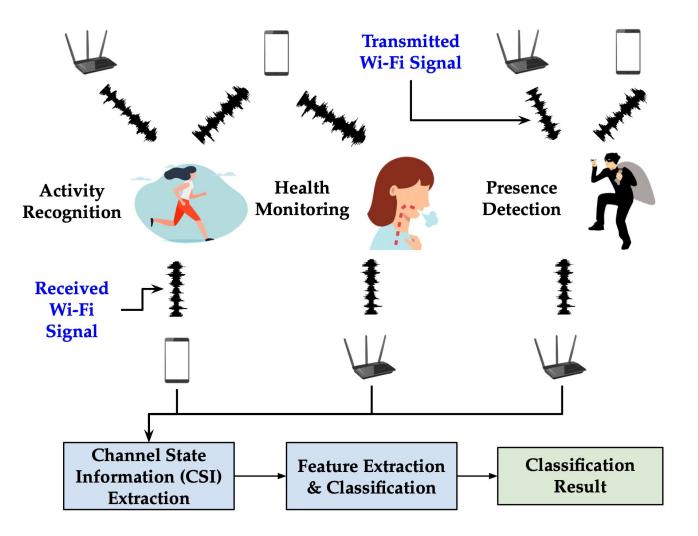

Apply the Same Concepts to Wi-Fi?

Do more with less antennas and BW (SW vs HW), yet more devices (unlicensed bands!)

Router costs can be contained (why? less complexity, less maintenance costs)

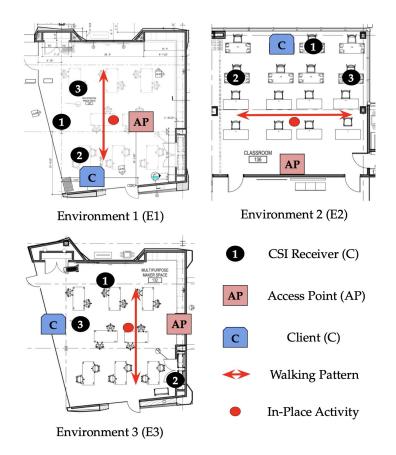
Apply the Same Concepts to Wi-Fi?

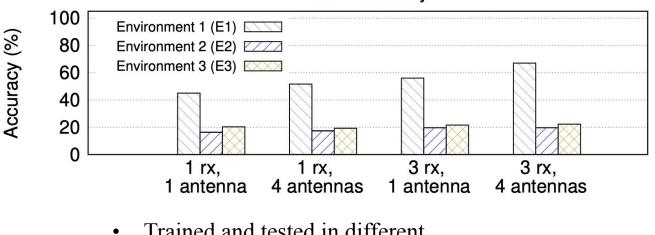
Good performance with less costs! (People will choose 802.11 and not 5/6G networks)



Francesco Restuccia, Northeastern University

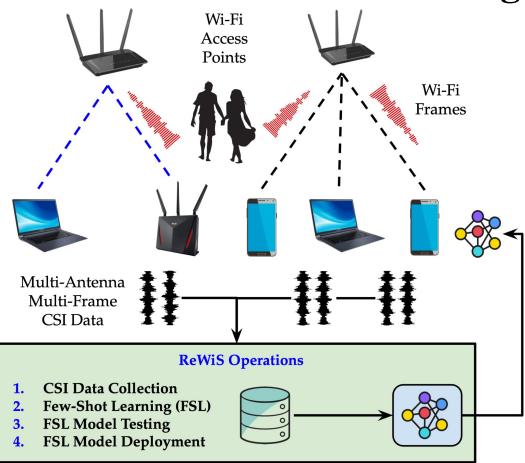
Slide 14

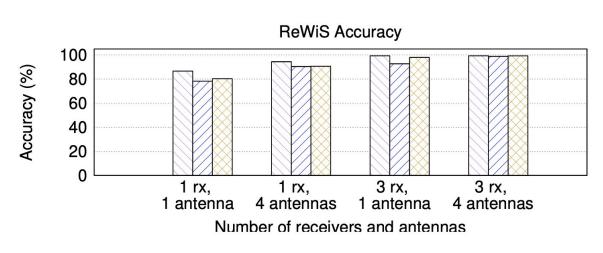

Emerging New Markets


New Market: 802.11bf

- The research community has worked on these topics for ~10 years
- First "See Through Walls With Wi-Fi!" paper in 2013
- Extreme commercial potential, that's why 802.11bf was created

Problems: Generalization, Robustness




CNN Accuracy

- Trained and tested in different environments
- Performance does not generalize to different environments
- Clients may not like the product
- Some Wi-Fi sensing devices have been shown to experience problems in actual deployments [1]

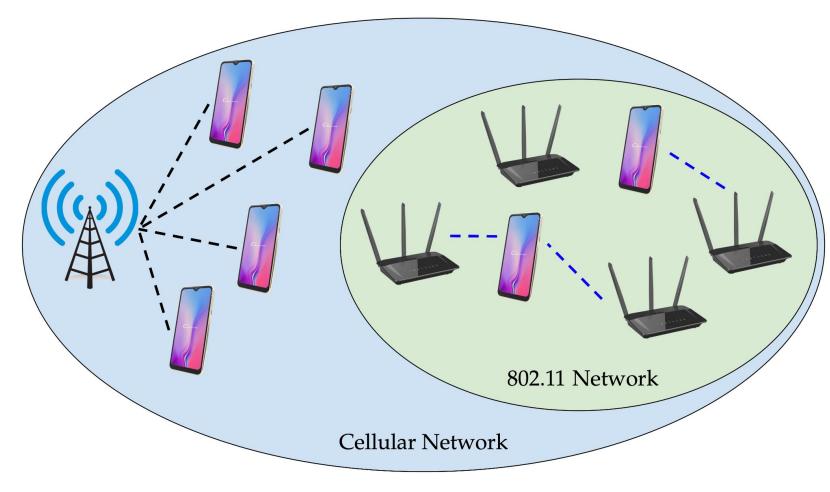
[1] Christopher Null (TechHive). "Aura review: This home monitoring system is more trouble than it's worth." <u>https://www.techhive.com/article/583109/aura-review.html</u>, December 27, 2017.

Better Performance Through Cooperation

- Through CSI fusion, we are able to generalize among different environments
- Ultimately, more sales because the product satisfies the customer better!

N. Bahadori, J. Ashdown, and F. Restuccia, "**ReWiS: Reliable Wi-Fi Sensing Through Few-Shot Multi-Antenna Multi-Receiver CSI Learning**," to appear in **IEEE WOWMOM 2022**. Preprint available at <u>https://arxiv.org/abs/2201.00869</u>

-


Reality: Today, it's very hard to extract CSI from routers

Tool	IEEE Std	Data points/CSI
CSI Tool [4]	802.11n	30
Atheros CSI Tool [8]	802.11n	56
Nexmon CSI [3]	802.11ac	up to 4096
AX-CSI [2]	802.11ax	up to 32768

CSI fusion techniques **are not supported** by today's 802.11 standards

New companies that can be centered around CSI sensing are **hindered**

New Market: AI-Driven Wi-Fi Offloading

Claus Hetting, Cisco VNI predicts bright future for Wi-Fi, https://wifinowglobal.com/news-and-blog/new-cisco-vni-numbers-predict-bright-future-for-wi-fi-towards-2022/

- 5G will offload a whopping 71% of its traffic to Wi-Fi by 2022
- Reduces **costs** for providers, and ultimately, for customers
- Improves service, so more customer experience and less churning

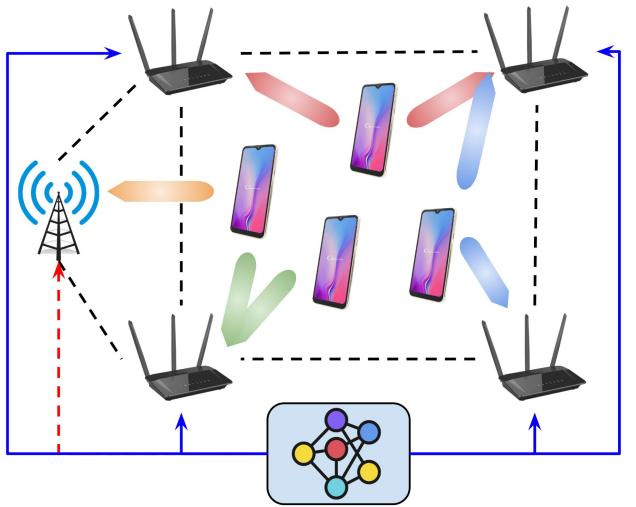
New Market: AI-Driven Wi-Fi Offloading

- Exciting business opportunity
 - Much cheaper for MNOs than deploying femtocells
 - Wi-Fi APs are ubiquitous in indoor settings
 - Networking-as-a-Service (NaaS)

• Killer use cases:

- Shopping Malls
- Stadiums
- Concerts
- Ο.
- Crowded Places

Problem: Wi-Fi at Scale


• Wi-Fi is not made for many users

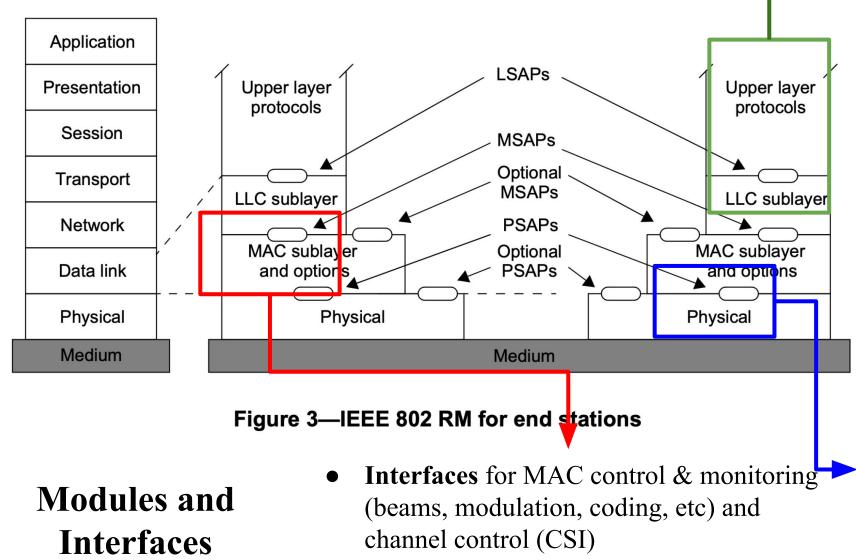
- DL MU-MIMO is limited to 8 users in 802.11ax, 4 is 802.11ac
- Maximum of 4 SS/user in 802.11ax, 2 SS/user in 802.11ac

• Not scalable for these applications!

- More antennas, more BW is **not** the solution!
- We cannot transform an **AP in a femtocell!**
- We need **cost-effective** solutions

Solution: Cooperative AI-Driven Wi-Fi Offloading

- Cheaper APs, but smarter (AI) and cooperative!
- Target: deploy more APs, bring complexity (and costs down)
- Sharing **spectrum** and network **information** with 5G networks


To Summarize

802 networks should adopt open, softwarized, AI-driven strategies to remain competitive

802 networks should learn to coexist with other technologies and embed AI by design into their architecture

Submission: DCN 11-21-0776-01-0wng

How can the 802 RM evolve?

- Modules for distributed & centralized control of MAC/PHY,
 - for current 802 network
 - across 802 networks
 - different networks (e.g., O-RAN)
- If **centralized**, interfaces from/to central controller (e.g., AP in Wi-Fi)
- Interfaces for radio control & monitoring (e.g., beams, modulation, coding, etc) and channel control (e.g., CSI)

26

Thanks! Questions?