February 2018		doc.: IEEE 802.11-18/xxxx0
IEEE P802.11
Wireless LANs
	Resolution of Flow Control related CIDs

	Date: 2018-02-13

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Oren Kedem
	Intel
	
	
	oren.kedem@intel.com

	Idan Maor
	Intel
	
	
	idan.maor@intel.com

	Solomon, Trainin
	Qualcomm
	
	
	strainin@qti.qualcomm.com

	
	
	
	
	

Abstract
This submission proposes resolutions to 1070, 1187, 1709, 1710, 1071, 1073, 2116, 1286, 1713, 1712, 1135, 2115, 2117, 2240, 2241, 1125, 1713, 2130, 2131, 2133, 1108, 1219, 1876, 1983, 2137, 2267, 2276, 2277, 2278, 2280, 2281, 2268, 2282 CIDs.

	

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1070
	9.3.1.9.1
	"No_Mem_Kept" Why not simply name it "No Memory Kept"?
	As in comment. Change throughout the draft.
	Accepted

Name was changed to
 No Memory Kept

	1187
	9.3.1.9.1
	"No_Mem_Kept" - this is a stylistic departure from the 802.11 baseline. Also, don't abrvt unless absltly nccsry.
	Change subfield globally to "No Memory Kept"
	

	1709
	9.3.1.9.1
	Undescores in subfield name inconsistent with established style
	Remove underscores
	

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1710
	9.3.1.9.1
	"at successive BlockAck agreement establishements": clumsy wording and inaccurate since it does not define what happens when only one block ack agreement is established. Also, the relationship between the BlockAck frame (which carries the subfield) and the block ack agreement establishment is not clear.
	"The No_Mem_Kept subfield is set to 0 in the first BlockAck frame sent under a block ack agreement."
	Revised:

Discussion
Since EDMG Flow Control Extension Configuration element included the RBUFCAP but didn’t include the No Memory Kept, the intention of the rule is to indicate it should be considered as 0 after Block Ack agreement. Proposed solution is to add Flow Control status field that include it together with Memory Configuration Tag so ambiguity is removed and there is no need for this rule. Rule is removed.

Revised Text

9.3.1.9 BlockAck frame format
9.3.1.9.1 Overview
Change Figure 9-33 as follows

	
	B0
	B1 – B4
	B5 – D8
	B9
	B10
	 B11
	B12 - B15

	
	BA ACK Policy
	BA Type
	Reserved
	No_ Memory
Kept
	Memory Configuration Tag
	Management
ACK
	TID_INFO

	Bits:
	1
	4
	4
	1
	1
	1
	4

The No _Memory _Kept subfield set to one indicates that the free memory space indicated in the last
RBUFCAP is not kept at the start of the next frame exchange sequence; otherwise if set to zero, and free
memory space is kept as indicated by RBUFCAP is kept by the receiver for the next frame exchange sequence of the same TID or group of TIDs. The value of the No_Mem_Kept subfield is set to 0 at successive BlockAck agreement establishments.

The Memory Configuration Tag subfield indicates one out of two memory configurations as indicated in
Memory Configuration Tag field in the recipient’s EDMG Flow Control Extension Configuration element
(9.4.2.263).
The value of the Memory Configuration Tag subfield is set to 0 at successive BlockAck
agreement establishments.

The Management ACK subfield is set to one to indicate that frames of type Management that are not
Action No Ack are acknowledged. This subfield is reserved if the BlockAck variant used is not the EDMG
Multi-TID BlockAck variant.

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1071
	9.3.1.9.7
	"RBUFCAP field" To be strict, it is a subfield.
	Change field to subfield.
	Accepted.

	1073
	9.3.1.9.8
	"The RBUFCAP subfield is defined in 9.3.1.9.5." It should be 9.3.1.9.7.
	As in comment.
	Accepted.

	2116
	9.3.1.9.7
	The RBUFCAP field in 11ay seems to be dffierent from what specified in 802.11-2016. From 802.11-2016,, "The RBUFCAP field contains an unsigned integer that is the number of MPDU buffers available to store received MPDUs at the time of transmission of the Extended Compressed BlockAck frame (10.39)."
	Make the definition of the field consistent
	Revised.
There are two definitions one for DMG indicated in section 9.3.1.9.5 and EDMG defined in 9.3.1.9.7.

The EDMG point to 9.3.1.9.7.

	1286
	9.3.1.9.7
	"Indicates that the recipient's memory has enough space to receive A-MPDUs with a length that is not less than indicated by Maximum A-MPDU Length Exponent (Table 3) ""
	Change to "Indicates that the recipient's memory space length is not less than indicated by Maximum A-MPDU Length Exponent (Table 3) "
	Accepted

	1713
	9.3.1.9.7
	Use decimal values in RBUFCAP value column. Change "1 through 0xFE" to "1-254". Remove "RBUFCAP (RBUF_Unit_Size)" from last row, second column since a name is not needed here.
	As in comment
	Accepted

	1712
	9.3.1.9.7
	Unlimited_space: not implementable. Zero_space: space is uncountable so it can't be zero.
	Unlimited_space -> RBUF_EMPTY. Zero_space -> RBUF_FULL
	Revised

Discussion
11ay extends the DMG RBUFCAP definition for EDMG 11ay STA.

9.3.1.9.7 EDMG Compressed BlockAck variant
Change the following subclause in the end of the paragraph

The RBUFCAP field is defined in Table 1.

Table 1— RBUFCAP encoding for the EDMG Compressed BlockAck variant

	RBUFCAP value
	RBUFCAP value name
	Definition

	0
	Unlimited_spaceReceiver Buffer Empty
	Indicates that the recipient’s memory has enough space to receive A-MPDUs
with a length that is not less than indicated by Maximum A-MPDU Length
 Exponent (Table 3)

	2550xFF
	Receiver Buffer Full Zero_space
	Indicates no space in the recipient’s memory

	1 through
 2540xFE
	
Receiver Buffer AvailableRBUFCAP
(RBUF_Unit_Size)
	Indicates the size of recipient’s current memory that the originator can use to transmit
 MPDUs to the recipient; measured in units of BufferRBUF_ Unit_ Size (9.4.2.263)

9.3.1.9.8 EDMG Multi-TID BlockAck variant

Change the following subclause in the end of the paragraph

The RBUFCAP subfield is defined in 9.3.1.9.75.

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1135
	9.4.2.263
	The Element ID, Length, and Element ID fields are defined in 9.4.2.1.
	The Element ID, Length, and Element ID Extension fields are defined in 9.4.2.1.
	Accepted

	2115
	9.4.2.263
	"""The Memory Configuration Tag subfield indicates one out of two memory configurations as indicated in Memory Config Tag field in the recipient's EDMG Flow Control Extension Configuration element (9.4.2.263)."" This sentece is incomplete, what is actaully indicated by the one out of two memeory configs ? what is Memory Config Tag field? I could not find it throughout the text"
	
	Revised

Discussion
The field indicates that the STA is capable to support two memory configuration parameters each is indicated by different value (0 or 1) of Memory Configuration Tag (IE) or Memory Configuration Tag (Block Ack). Recipient capability is reflected by advertising two set of memory configurations and indicating the index in the Block Ack. Originator capability is reflected by the ability to calculate the transmitted frames byte count according to the recipient two set of memory configurations as indicated by the Memory Configuration Tag in the Block Ack.

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2117
	9.4.2.263
	The Recipient Memory Capabilities field which conntains the Advanced Recipient Memory Length Capable subfield which reads "The Advanced Recipient Memory Length Capable subfield is set to 1 to indicate support of Advanced Recipient Memory Length Exponent (Figure 62) and is set to 0 otherwise." Shouldn't the Advanced Recipient Memory Length Exponent that is non-zero already indicated the support of Advanced Recipient Memory Length Exponent? It looks strage that a byte is already used to indicate the Advanced Recipient Memory Length Exponent in the element and then a bit later within the optional subelement is used to indicate whether the Advanced Recipient Memory Length Exponent is supported or not
	clarify
	Revised

Discussion
The Recipient Memory Capabilities field was moved to the EDMG Flow Control Extension configuration element as suggested. The need for indication in the capability is to allow the originator and the responder to advertise if they want to support it. Advanced Recipient Memory Length Exponent in value 0 is valid number that indicates 2^13 bytes. Advanced Recipient Memory Length Exponent is now limited by the value Maximum A-MPDU Length Exponent.

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2240
	9.4.2.263
	Not clear what is the use of Advanced Recipient Memory Length Exponent/RBUFCAP from the originator
	Add ''This field is reserved when transmitted by the originator'
	Accepted.

Field is used only in ADDBA Response

	2241
	9.4.2.263
	Should clarify that Recipient Memory Configuration subelement could be included twice in an EDMG Flow Control Extension Configuration Element
	add a note indicating such
	Accepted

Field is used only in ADDBA Response

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1125
	10.24.7.7
	Mult_Buff_MPDU should be clarified further. Under current definition, if this field value is 0, the Mem_Unit_Size must to be in the size of max supported MSDU and it is not reflected in the text equations.
	As suggested
	Revised

Discussion
The definition doesn’t restrict for recipient to indicate smaller buffer size than MAX MPDU size with "MPDU Split in Buffer" = 0 and by that to force the originator to discard MPDUs larger than Memory Unit Size, it is up to the implementation.

Please change section as follow

9.4.2.263 EDMG Flow Control Extension Configuration element

The EDMG Flow Control Extension Configuration element is defined in Figure 62.

	Octets:
	1
	1
	1
	1
	1
	1
	1
	Variable

	
	Element
ID
	Length
	Element ID
Extension
	RBUFCAP
	
Flow Control Status
	Advanced Recipient Memory
Length Exponent
	Recipient Memory Capabilities field
	Optional
Subelements

	
	
	
	
	
	
	
	
	

Figure 62 — EDMG Flow Control Extension Configuration element format

The Element ID, Length, and Element ID Extension fields are defined in 9.4.2.1.

When sent in ADDBA response, tThe RBUFCAP field is as defined in 9.3.1.9.7.. This field is reserved when it sent in ADDBA request frame.

When sent in ADDBA response, the Flow Control Status field is defined in figure 63, this field is reserved when it sent in ADDBA request frame.

	
	B0
	B1
	B2 – B7

	
	No Memory
Kept
	Memory Configuration Tag
	
Reserved

	Bits:
	1
	1
	6

The Memory Configuration Tag and No Memory Kept subfields are defined in 9.3.1.9.1.

When sent in ADDBA response, tThe Advanced Recipient Memory Length Exponent field indicates the amount of free space at the recipient’s memory at the start of a frame exchange sequence. This field is an integer in the range 0 to 9. The length defined by this subfield is equal to 2(13 + Advanced Recipient Memory Length Exponent) – 1 octets. The value of 2(13 + Advanced Recipient Memory Length Exponent) is smaller than or equal to the value of the 2(13 + Maximum A-MPDU Length Exponent) as advertised by the STA’s EDMG Capabilities element, only one value of Advanced Recipient Memory Length Exponent may be present in all Block Ack agreements and this value is applies to all successfully established BlockAck agreements identified by the same pair of Address 1 and Address 2 fields. This field is reserved when it sent in ADDBA request frame

The Recipient Memory Capabilities field is defined in Figure 64.

	
	B0
	B1
	B2
	B3
	B4
	B5 B7

	
	RBUFCAP
Quantity
Capable
	Advanced Recipient
Memory Length
Capable
	Recipient Memory
Multiple Buffer Units
Capable
	TID
Grouping
Capable
	Two Memory Config Tag
Capable
	Reserved

	Bits:
	1
	1
	1
	1
	1
	3

Figure 64 — Recipient Memory Capabilities field format

The RBUFCAP Quantity Capable subfield is set to 1 to indicate support of RBUFCAP values in the range 1 through 254 and is set to 0 otherwise (Table 1).

The Advanced Recipient Memory Length Capable subfield is set to 1 to indicate support of Advanced
Recipient Memory Length Exponent (Figure 62) and is set to 0 otherwise.

The Recipient Memory Multiple Buffer Units Capable subfield is set to 1 to indicate support of the Recipient Memory _Unit_ Size, Maximum MPDU_ per_ Memory Unit, and Mult_Buff_MPDU Split in Buffer values (Figure 65) and is set to 0 otherwise.

The TID Grouping Capable subfield is set to 1 to indicate support of TID Grouping values (Figure 64) and
set to 0 otherwise.

The Two Memory Config Tag Capable subfield is set to 1 to indicate capability to support two Memory _Configuration _Tag values (Figure 65) and is set to 0 otherwise.

The Optional Subelements field is defined in Table 13. An EDMG Flow Control Extension Configuration
element contains no more than two Recipient Memory Configuration subelements.

Table 13 — Optional subelement IDs for the EDMG Flow Control Extension Configuration
element

	Subelement ID
	Name
	Extensible

	0
	EDMG Flow Control Capabilities
	Yes

	1 0
	Recipient Memory Configuration
	Yes

	12-220
	Reserved
	

	221
	Vendor specific
	

	222-225
	Reserved
	

The EDMG Flow Control Capabilities subelement is defined in Figure 63.

	Octets:
	1
	1
	1

	
	Subelement
ID
	Length
	Recipient Memory Capabilities

Figure 63 — EDMG Flow Control Capabilities subelement format

The Subelement ID field is defined in Table 13.
The Length field is defined in 9.4.2.1.

The Recipient Memory Configuration subelement is defined in Figure 65.

	
	
	
	
	
	
	
	
	

	
	Subelement
ID
	Length
	Memory_ Configuration _Tag
	RBUF_Buffer
 Unit _Size
	Recipient Memory Multiple
Buffer Units Parameters
	

TID
Grouping

	
	
	
	
	
	Mem_ory
Unit_
Size
	Maximum MPDU_
per_
per Memory Unit
	Mult_
Buff_
MPDU Split in Buffer
	

	Octets
	1
	1
	1
	2
	2
	1
	1
	2

Figure 65 — Recipient Memory Configuration subelement format

The Subelement ID field is defined in Table 13.

The Length field is defined in 9.4.2.1.

The Memory_ Configuration _Tag subfield indicates one of two Recipient Memory Configurations memory structures applicable for the TID/TSID
indicated in ADDBA Response frame within which the EDMG Flow Control Extension Configuration
 element is included. Allowed values are 0 and 1.

The RBUFBuffer_ Unit_ Size subfield indicates is used as the size, in units of bytes, unit inof the RBUFCAP to deliver information of the recipient’s available memory space to the originator for MPDU delivery. It is set to value greater than 0 in case Recipient Quantity Capable subfield set to 1 and to value of zero otherwise. The recipient’s available memory space, in bytes, is equal to RBUFCAP × BufferRBUF_ Unit _Size.

Recipient Memory Multiple Buffer Units Parameters indicates altogether a recipient memory structure constructed from fixed size memory buffers used to store incoming MPDUs.

The Memory _Unit_ Size subfield indicates the size, in units of bytes, of each buffer unit in the recipient’s memory. The minimum value of this subfield is 32.

The Maximum MPDU_ perper_ Memory Unit subfield indicates the maximum number of MPDUs that can be held in a
single buffer. Valid values are 1 through 0xFF255, where value 2550xFF indicates that there is no limitation on the an unlimited number of
MPDUs can be held in a single buffer.

The Mult_Buff_MPDU Split in Buffer subfield is set to 1 to indicate that a single MPDU can be split between memory
buffer units in the recipient’s memory and is set to 0 otherwise.

The TID Grouping subfield is a bitmap where each bit corresponds to a TID/TSID (Figure 66). By setting a
bit to one in the TID Grouping subfield, it indicates the TID/TSID that correspond to a TID/TSID of an
ADDBA Response frame within which the Recipient Memory Configuration subelement(s) is transmitted.
The recipient memory configuration becomes applicable to all TIDs/TSIDs that have their bit in the TID
Grouping subfield set to one. The RBUFCAP, No Memory Kept and Memory Configuration Tag fields delivered in an EDMG Flow Control Extension Configuration element within an ADDBA Response frame and the RBUFCAP field delivered in a BlockAck frame are applicable to all TIDs/TSIDs that correspond to the TIDs/TSIDs of the ADDBA Response frame which contained the TID Grouping subfield. The Advanced Recipient Memory Length Exponent field delivered in an EDMG Flow Control Extension Configuration element of an ADDBA Response frame is applicable to all TIDs/TSIDs that correspond to the TIDs/TSIDs of the ADDBA Response frame which
contained the TID Grouping subfield.

	
	B0
	B1
	B2
	
	B14
	B15

	
	TID 0
	TID 1
	TID 2
	…
	TID 14
	TID 15

	Bits:
	1
	1
	1
	
	1
	1

Figure 66 — TID Grouping subfield format

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1713
	9.3.1.9.7
	If the STA uses EDMG flow control, parameters for EDMG flow control need to be added to MLME-ADDBA primitives.
	Add parameters relating to flow control to MLME-ADDBA primitives in 6.3.29.
	MLME-ADDBA was updated with Flow Control information per CID

Solomon please add the relevant CID

Change the section as follows

6.3.29.2 MLME-ADDBA.request
6.3.29.2.1 Function
This primitive requests the initiation (or modification) of block ack with a peer MAC entity.
6.3.29.2.2 Semantics of the service primitive
The primitive parameters are as follows:

MLME-ADDBA.request(
PeerSTAAddress,
DialogToken,
TID,
BlockAckPolicy,
BufferSize,
BlockAckTimeout,
BlockAckStartingSequenceControl,
GCRGroupAddress,
Multi-band,
TCLAS,
ADDBA Extension,
VendorSpecificInfo,
EDMG Segmentation-Reassembly Configuration,
EDMGFlowControl
)

	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	N/A
	Specifies the address of the peer MAC entity with
which to perform the block ack initiation (or
modification).

	…..
	….
	…..
	…….

	VendorSpecificInfo
	A set of elements
	As defined in
9.4.2.26
	Zero or more elements.

	EDMG Segmentation-Reassembly Configuration
	SegmentationandReassembly Configuration element
	As defined in
9.4.2.266
	Specify the Segmentation and Reassembly parameters

	EDMGFlowControl
	EDMG Flow Control Extension Configuration element
	As defined in
9.4.2.263
	Specify the EDMG flow control parameters

6.3.29.3 MLME-ADDBA.confirm
6.3.29.3.1 Function
The primitive reports the results of initiation (or modification) of the block ack attempt with the specified
peer MAC entity.
6.3.29.3.2 Semantics of the service primitive
The primitive parameters are as follows:
MLME-ADDBA.confirm(
PeerSTAAddress,
DialogToken,
TID,
ResultCode,
BlockAckPolicy,
BufferSize,
BlockAckTimeout,
GCRGroupAddress,
Multi-band,
TCLAS,
ADDBA Extension,
VendorSpecificInfo,
EDMG Segmentation-Reassembly Configuration,
EDMGFlowControl
)

	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	N/A
	Specifies the address of the peer MAC entity with
which to perform the block ack initiation (or
modification).

	…..
	….
	…..
	…….

	VendorSpecificInfo
	A set of elements
	As defined in
9.4.2.26
	Zero or more elements.

	EDMG Segmentation-Reassembly Configuration
	SegmentationandReassembly Configuration element
	As defined in
9.4.2.266
	Specify the Segmentation and Reassembly parameters

	EDMGFlowControl
	EDMG Flow Control Extension Configuration element
	As defined in
9.4.2.263
	Specify the EDMG flow control parameters

6.3.29.4 MLME-ADDBA.indication
6.3.29.4.1 Function
This primitive reports the initiation (or modification) of block ack by a peer MAC entity.
6.3.29.4.2 Semantics of the service primitive

The primitive parameters are as follows:
MLME-ADDBA.indication(
PeerSTAAddress,
DialogToken,
TID,
ResultCode,
BlockAckPolicy,
BufferSize,
BlockAckTimeout,
GCRGroupAddress,
Multi-band,
TCLAS,
ADDBA Extension,
VendorSpecificInfo,
EDMG Segmentation-Reassembly Configuration,
EDMGFlowControl
)

	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	N/A
	Specifies the address of the peer MAC entity with
which to perform the block ack initiation (or
modification).

	…..
	….
	…..
	…….

	VendorSpecificInfo
	A set of elements
	As defined in
9.4.2.26
	Zero or more elements.

	EDMG Segmentation-Reassembly Configuration
	SegmentationandReassembly Configuration element
	As defined in
9.4.2.266
	Specify the Segmentation and Reassembly parameters

	EDMGFlowControl
	EDMG Flow Control Extension Configuration element
	As defined in
9.4.2.263
	Specify the EDMG flow control parameters

6.3.29.5 MLME-ADDBA.response
6.3.29.5.1 Function
The primitive responds to the initiation (or modification) by a specified peer MAC entity.
6.3.29.5.2 Semantics of the service primitive

The primitive parameters are as follows:
MLME-ADDBA.response(
PeerSTAAddress,
DialogToken,
TID,
ResultCode,
BlockAckPolicy,
BufferSize,
BlockAckTimeout,
GCRGroupAddress,
Multi-band,
TCLAS,
ADDBA Extension,
VendorSpecificInfo,
EDMG Segmentation-Reassembly Configuration,
EDMGFlowControl
)

	Name
	Type
	Valid range
	Description

	PeerSTAAddress
	MACAddress
	N/A
	Specifies the address of the peer MAC entity with
which to perform the block ack initiation (or
modification).

	…..
	….
	…..
	…….

	VendorSpecificInfo
	A set of elements
	As defined in
9.4.2.26
	Zero or more elements.

	EDMG Segmentation-Reassembly Configuration
	SegmentationandReassembly Configuration element
	As defined in
9.4.2.266
	Specify the Segmentation and Reassembly parameters

	EDMGFlowControl
	EDMG Flow Control Extension Configuration element
	As defined in
9.4.2.263
	Specify the EDMG flow control parameters

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2130
	10.24.2
	"The Advanced Recipient Memory Length Capable subfield in the STA's EDMG Flow Control Extension Configuration element is equal to one and the value of the Advanced Recipient Memory Length Exponent field in the STA's EDMG Flow Control Extension Configuration element is greater than or equal to the value of the Maximum A-MPDU Length Exponent field in the STA's EDMG Capabilities element."

The Advanced Recipient Memory Length Capable subfield is within the optional subelement EDMG Flow COntrol Capabilities for the EDMG Flow Control Extension Configuration element. change to

"The Advanced Recipient Memory Length Capable subfield in the EDMG Flow Control Capabilities subelement of the STA's EDMG Flow Control Extension Configuration element is equal to one..."
	As suggested
	Revised:

	2131
	10.24.2
	"The Advanced Recipient Memory Length Capable subfield and the RBUFCAP Quantity Capable subfield are both equal to one in the STA's EDMG Flow Control Extension Configuration element;"

The Advanced Recipient Memory Length Capable subfield and the RBUFCAP Quantity Capable subfield are within the optional subelement EDMG Flow Control Capabilities for the EDMG Flow Control Extension Configuration element. change to

"The Advanced Recipient Memory Length Capable subfield and the RBUFCAP Quantity Capable subfield in the EDMG Flow COntrol Capabilities subelement of the the STA's EDMG Flow Control Extension Configuration element are both equal to one;"
	As suggested
	Revised

Discussion
D1.0 text provided the recipient to indicate Advanced Recipient Memory Length Exponent greater than Maximum A-MPDU Length Exponent size, hence this rule was added. Since the updated definition of the Advanced Recipient Memory Length Exponent is limited by the Maximum A-MPDU Length Exponent, the support of it doesn’t tied to the value of the Advanced Recipient Memory Length Exponent value hence the rule was changed

10.24.2 Setup and modification of the block ack parameters
Change the 11th paragraph as follows

An EDMG originator STA may insert an EDMG Flow Control Extension Configuration element in an
ADDBA Request frame. In this case, no an EDMG Flow Control Extension Configuration element subelements Capabilities subelement shall be present. in the EDMG Flow Control Extension Configuration element.

An EDMG recipient STA that responds to an ADDBA Request frame that contains an EDMG Flow
Control Extension Configuration element should insert an EDMG Flow Control Extension Configuration
element in the ADDBA Response frame sent as response. In this case, an EDMG Flow Control Capabilities
subelement shall be present in the EDMG Flow Control Extension Configuration element. A Recipient
 Memory Configuration subelement shall be included in the EDMG Flow Control Extension Configuration
 element sent by the recipient if at least one subfield except of Advanced Recipient Memory Length Capable in the Recipient Memory Capabilities field of the EDMG Flow Control Capabilities subelement is not equal to 0.

EDMG STAs that established a block ack agreement with or without exchange of an EDMG Flow Control
Extension Configuration element shall follow the flow control RBUFCAP operation rules defined in 10.24.3, 10.24.4, 10.24.7.5 and 10.24.7.7.

The following negotiation rules apply to EDMG STAs (EDMG originator and EDMG recipient) that
exchange ADDBA Request and ADDBA Response frames.

An EDMG originator or EDMG recipient support those recipient memory capabilities for which the
corresponding subfields in the Recipient Memory Capabilities field of the EDMG originator or EDMG
recipient, respectively, are set to one in ADDBA Request and ADDBA Response frames of the block ack
agreement established between the EDMG originator and EDMG recipient, and do not support otherwise.

An EDMG recipient shall not respond with Status Code = SUCCESS in an ADDBA Response frame if the
EDMG recipient sets to one at least one of the subfields within the recipient’s Recipient Memory
 Capabilities field and:
· The same subfield is set to 0 in the Recipient Memory Capabilities field in the corresponding
ADDBA Request frame received from EDMG originator; or
· No EDMG Flow Control Extension Configuration element is present in the corresponding ADDBA
Request frame.

NOTE—Status Code values REFUSED, REFUSED_REASON_UNSPECIFIED, REQUEST_DECLINED, or
INVALID_PARAMETERS can be used in the aforementioned case.

If either the originator or recipient have the Recipient Memory Multiple Buffer Units Capable subfield set
to one and the RBUFCAP Quantity Capable subfield set to zero in their corresponding EDMG Flow
Control Extension Configuration element, then the recipient memory multiple buffer units capability is not
supported at Block Ack agreement.

Recipient Memory Multiple Buffer Units Capability is supported in a successfully established block ack agreements if both the originator and recipient have set the RBUFCAP Quantity Capable and Recipient Memory Multiple Buffer Units Capable subfields to 1 in the ADDBA Request and ADDBA Response and not supported otherwise.

Memory Config Tag Capability is supported in a successfully established block ack agreements if both the originator and recipient have set the RBUFCAP Quantity Capable and Two Memory Config Tag Capable subfields to 1 in the ADDBA Request and ADDBA Response and not supported otherwise.

An advanced recipient memory length capability is supported by an EDMG STA in a successfully
established block ack agreement if at least one of the following conditions is met and is not supported
otherwise:
· The Advanced Recipient Memory Length Capable subfield and the RBUFCAP Quantity Capable
subfield are both equal to one in the STA’s EDMG Flow Control Extension Configuration element;
or
· The Advanced Recipient Memory Length Capable subfield in the STA’s EDMG Flow Control
Extension Configuration element is equal to one and the value of the Advanced Recipient Memory
Length Exponent field in the STA’s EDMG Flow Control Extension Configuration element is
greater than or equal to the value of the Maximum A-MPDU Length Exponent field in the STA’s EDMG Capabilities element.

A TID Grouping Capable capability is supported in a successfully established block ack agreements if both the originator and recipient have set the TID Grouping Capable and the RBUFCAP Quantity Capable subfields to 1 and not supported otherwise. The Recipient Memory Capabilities field and Recipient Memory Configuration subelement fields of TIDs were set to 1 in TID Grouping subfields sent in ADDBA Request or ADDBA Response shall be identical.

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2133
	10.24.3
	"If the block ack agreement is between a pair of EDMG STAs, the memory occupied by the frames shall not exceed the maximum between the value indicated in the Advanced Recipient Memory Length Exponent field if the advanced recipient memory length capability is supported and the value indicated in the RBUFCAP field in the associated ADDBA Response frame....""

change to""if the block shall not exceed both the values indicated in the......ADDBA Response frame."""
	As suggested
	Rejected

Discussion
D0.1 text defined that in case Advanced Recipient Memory Length is supported, the originator may transmit up to the maximum between RBUFCAP and the Advanced….
However, initial intention of the feature was to provide size limitation on the originator in case no information other is provided. In case the recipient sent Non Memory Kept = 1, the originator should refer to the relevant RBUFCAP updated value since it is more updated than the general Advanced Recipient Memory Length Exponent value. The rules are defined in details in Table 22 and Table 23, the rule refer to those tables

10.24.3 Data and acknowledgment transfer using immediate block ack policy and delayed
block ack policy
modify the D0.1 section as follows and add it after the second paragraph in 802.11 2016

After setting up either an immediate block ack agreement or a delayed block ack agreement following the
procedure in 10.24.2, and having gained access to the medium and established protection, if necessary, the
originator may transmit a block of QoS Data frames separated by SIFS, with the total number of frames:
· Not exceeding the Buffer Size subfield value in the associated ADDBA Response frame and
subject to any additional duration limitations based on the channel access mechanism; and
· If the block ack agreement is between a pair of EDMG STAs, the memory occupied by the frames shall not exceed the maximum between the value indicated in the Table 22 and Table 23. Advanced Recipient Memory
Length Exponent field if the advanced recipient memory length capability is supported and the
value indicated in the RBUFCAP field in the associated ADDBA Response frame. The actual
 RBUFCAP value is delivered by the EDMG Flow Control Extension Configuration element in the
 ADDBA Response frame or the RBUFCAP update for same or other TIDs as indicated in TID Grouping
 field of the Recipient Memory Configuration subelement, whichever comes later. If the ADDBA
 Response frame does not contain an EDMG Flow Control Extension Configuration element, the
 relevant originator parameters shall be considered as receiving an RBUFCAP of Receiver Buffer Empty Unlimited_space
(9.3.1.9.7).

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2136
	10.24.7.5
	change "The RBUFCAP subfield in the transmitted BlockAck frame shall be computed as defined in Table 21" to

"The RBUFCAP subfield value in the transmitted BlockAck frame shall be computed as defined in Table 21"

Also change column "RBUFCAP field value" to "RBUFCAP subfield value" in Table 21
	as suggested
	Accepted

10.24.7.5 Generation and transmission of BlockAck frames by an HT STA or DMG STA
Modify at the end of the subclause as follow

If an EDMG STA transmits a BlockAck frame in response to a BlockAckReq frame or an A-MPDU with
Ack Policy equal to Normal Ack (i.e., implicit block ack request) during either full-state or partial-state
operation, the EDMG STA shall calculateadjust the Ffree Memory Sspace memory value at the generation and transmission of
the BlockAck frame. The RBUFCAP subfield value in the transmitted BlockAck frame shall be computed as
 defined in Table 21. The Ffree mMemory sSpace is an estimation of the amount of free memory available at the
 recipient to collect MPDUs at the time of and during reception of a forthcoming A-MPDU.

Table 21 — RBUFCAP value calculation

	Free mMemory sSpace comparison
	RBUFCAP Quantity Capability (10.24.2)
	RBUFCAP field value

	Free_ mMemory_ Sspace ≥ (2 (13 + Maximum A-MPDU Length Exponent) –1)
	Supported
	Unlimited_spaceReceiver Buffer Empty

	Free_ Mmemory_ Sspace ≥ (2(13 + Maximum A-MPDU Length Exponent) – 1)
	Not supported
	Unlimited_spaceReceiver Buffer Empty

	Free_ Mmemory _sSpace < (2 (13 + Maximum A-MPDU Length Exponent) –1)
	Supported
	Receiver Buffer Available:

Int [Free_ Mmemory_ Sspace/
RBUFBuffer_ Unit_ Size]

	Free M_memory_ Sspace < (2 (13 + Maximum A-MPDU Length Exponent) –1)
	Not supported
	Receiver Buffer FullZero_space

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2276
	10.24.7.7
	Is A-MPDU Byte Count Limit and AMPDU_Data_frames_Limit only applicable to AMPDU, but not applicable to APPDU?
	specify that A-MPDU Byte Count Limit and AMPDU_Data_frames_Limit are applicable to byte count and frame limit before a BA is received regardless the mechanisms by which frames are aggregated
	

Discussion
Definition " EDMG STA shall not transmit subsequent frames belonging to Block Ack agreement " applies to all frame sent under Block Ack agreement, it applied to A-MPDU, A-PPDU or subsequent frames sent with IFS in between.

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2277
	10.24.7.7
	!COND1 & No_Mem_Kept==0 is not described in the table 22
	Chane No_Mem_Kept to '0 or 1' on row 3 (!COND1)
	Revised

Table was updated, this Option was added as first row in the relevant table

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1108
	10.24.7.7
	the count limit column of the last row of table 21 and the second row in table 22 should be excluded to the case 1>=RBUFCAP=<FE
	Add the following 4th NOTE below the table:

Equation is valid for the case 1>=RBUFCAP=<FE

	Revised

Table and calculation were updated to differentiate the two cases

	CID
	Clause
	Comment
	Proposed change
	Resolution

	2280
	10.24.7.7
	It is not clear what +4 means in the table 24 last column if the AMPDU byte count limit does not include delimiter

If byte count limit does not include delimeter, then some values in the last column in table 22, 23 will make the final A-MPDU size greater than the maximum allowed
	Chane this sentence to "The A-MPDU Byte Count Limit does not include A-MPDU EOF padding field or A-MPDU subframes carrying Block Ack Schedule frames with EOF subfield set to 1"
	Revised
Calculation was revised with the assumption that MPDU size is aligned according to Delimiter requirements if needed.

	2281
	10.24.7.7
	The A-MPDU_Data_frames_Limit equations in table 24 is not entirely accurate because it does not account for min MPDU Start Spacing.

The equation also does not seem to cover the case for multi-TID A-MPDU that 2 or more AMPDU byte count limits are calculated from RBUFCAPs of 2 or more TIDs which are not sharing the buffer.
	Specify table 24 as sentences of requirements because the equation in a table may not cover all cases
	Revised
Calculation was revised with the assumption that MPDU size includes the padding for MPDU Start spacing requirements if needed.

	2268
	10.24.2
	"It is not clear why the support of advanced recipient memory length is tied to the RBUFCAP quatity capability

For example, why originator cannot use RBUFCAP with values unlimited or 0 on the last 3 rows of Table 22?"
	clarify this bullet with a note
	Revised
Dependency was removed

	2282
	10.24.7.7
	N_MPDUs and TotalMEM in Figure 87 are not defined
	Define the variables
	Revised
Calculation is revised, variable were removed

	CID
	Clause
	Comment
	Proposed change
	Resolution

	1219
	10.24.7.7
	"Figure 87 needs to be redrawn to provide adequate quality artwork for publication. When that happens, please replace the glyph that looks like capital lambda with something like ""and"", or explain it in the text.
The figure also mixes subscript notation (BC_p) with functional index notation (BUFsize(q)). Pick one."
	As in comment.
	Revised

Figure was removed and replaced with pseudocode

	1876
	10.24.7.7
	Equations format
	Figure 87 is not a figure. It presents some equations. The text and equations should be converted from image caption.
	Revised

Figure was removed and replaced with pseudocode

	1983
	10.24.7.7
	Equations format
	Figure 87 is not a figure. It presents some equations. The text and equations should be converted from image caption.
	Revised

Figure was removed and replaced with pseudocode

	2137
	10.24.7.7
	The calculation of the A-MPDU Byte Count Limit involves multiple parameters and conditions and is extremley compex to parse. The relationship among different parameters are also unclear. This also applies to Table 23 and 24.

Some examples should be provided. Also does N/A mean the value is irrelevent?
	as suggested
	Revised

Figure was removed and replaced with pseudocode

	2267
	10.24.7.7
	The calculation of the Table 24 1st row (recipient multiple buffer unit not capable/supported) and the other rows (recipient multiple buffer unit capable/supported) are unrelated to RBUFCAP Quatity

It is not clear why RBUF Quantity capable capability affects recipient multiple buffer unit suopport of the BA agreement. Even RBUFCAP quantity not supported (by either originator or recipient), the originator can still calculate table 24 row 2,3,4
	clarify this requirement with a note
	
Table 24 was removed and replaced with pseudocode

	2278
	10.24.7.7
	What is the A-MPDU_Data_frames_Limit for (1, M, N, Yes)?
	add a row in Table 24 describing the limit of this case
	Figure was removed and replaced with pseudocode

	
	
	
	
	

10.24.7.7 Originator’s behaviour

Replace the 4th paragraph (starting from P126L17 in D0.1) through the end of the section as follow:

An originator that is an EDMG STA shall not transmit subsequent frames belonging to Block Ack agreement at the start of transfer sequence of size greater than Flow Control Byte Count Limit per the configuration obtained during the Block Ack Agreement for the respective TID as described in Table 22 and per computation as described in section 10.24.7.7.1.

Table 22 — Flow Control Byte Count Limit calculation at the start of a data transfer sequence
	
	
	
	
	

	According to BlockAck agreement
	As received via BlockAck or ADDBA Response frame
	Flow Control Byte
Count Limit

	Advanced Recipient
Memory Length
Capable

	Recipient Buffer
Quantity
Capable
	Updated RBUFCAP
	No Memory Kept
	

	0
	0
	Receiver Buffer Full
	N/A
	Zero
(see NOTE1)

	N/A
	0
	Receiver Buffer Empty
	0
	2 (13 + Maximum A-MPDU Length Exponent) –1)

	1
	0
	N/A
	1
	2 (13 + Advanced Recipient Memory Length Exponent) –1)

	N/A
	1
	Receiver Buffer Available
	0
	Receiver Buffer Available × Buffer Unit Size

	
	
	
	
	

[bookmark: _GoBack]An originator that is an EDMG STA shall not transmit subsequent frames belonging to Block Ack agreement at the middle of transfer sequence in size greater than Flow Control Byte Count Limit per the configuration obtained during the Block Ack Agreement for the respective TID as described in Table 23 and per computation as described in section 10.24.7.7.1.

Table 23 — Flow Control Byte Count Limit calculation in the middle of a data transfer sequence

	According to BlockAck agreement
	As received via BlockAck or ADDBA Response frame
	Flow Control Byte
Count Limit

	Recipient Buffer
Quantity
Capable
	Updated RBUFCAP
	

	N/A
	Receiver Buffer Full
	Zero
(see NOTE1)

	N/A
	Receiver Buffer Empty
	2 (13 + Maximum A-MPDU Length Exponent) –1)

	1
	Receiver Buffer Available
	Receiver Buffer Available × Buffer Unit Size

NOTE1 – Originator may poll the responder RBUFCAP Value.

10.24.7.7.1 Flow Control Byte Count Limit computation by EDMG Originator

numOfMpdusForTx indicates the Number of pending MPDUs in TX Queue that are within the transmission window.

In case Recipient Memory Multiple Buffer Units Capability is not supported parameters maxMpduInMem and mpduSplitInBuffer are assigned with the values 255 and 1 respectivly.

Parameters unitBufferSize, rbufcap, memoryUnitSize and maxMpduInMem, mpduSplitInBuffer are the recent EDMG Flow Control parameters as received from a TID within the Multi TID Group and with the respective Memory Configuration Tag.

mpduForTx[k] contains the size of MPDU at location k in TX Queue with the padding for Minimum A-MPDU Spacing and A-MPDU delimiter alignment if required.

FlowControlByteCountLimit derived from Table 22 and Table 23.

int calcAggregationMemory(IN int FlowControlByteCountLimit, IN int memoryUnitSize, IN int maxMpduInMem, IN int mpduSplitInBuffer, IN int mpduForTx[], IN int numOfMpdusForTx, OUT int mpduToSend[])
{
 int memoryToUse = FlowControlByteCountLimit;
 int freeMemory = memoryUnitSize;
 int k = 0;
 int numOfMpdusInMemoryUnit = 0;
 bool bIsMpduInserted;

//Adding MPDUs to the queue as long as there are MPDUs in TX Queue and recipient memory buffer is not full

 while (k < numOfMpdusForTx && (memoryToUse >= mpduForTx[k]))
 {
 bIsMpduInserted = true;

// Handle the case when MPDU[k] has enough memory in one Memory Buffer Unit hence it is added to the aggregaton
 if (freeMemory >= mpduForTx[k])
 {
 mpduToSend[k] = mpduForTx[k];
 k++;
 numOfMpdusInMemoryUnit++;
 freeMemory -= mpduForTx[k];
 memoryToUse -= mpduForTx[k];
 }
// Handle the case when MPDU[k] doesn’t have enough memory in one Memory Buffer Unit however it can be spiltted among several buffers hence it is added to the aggregaton

 else if (mpduSplitInBuffer == 1)
 {
 mpduToSend[k] = mpduForTx[k];
 k++;

 //Calculating the free memory space from the last used Memory Buffer Unit
 freeMemory = memoryUnitSize - ((mpduForTx[k] - freeMemory) % memoryUnitSize);

 //The case where MPDU was placed in whole in the previuse buffer
 if (freeMemory == memoryUnitSize)
 {
 numOfMpdusInMemoryUnit = 0;
 }
 else
 {
 numOfMpdusInMemoryUnit = 1;
 }

 memoryToUse -= mpduForTx[k];
 }
 else
 {
 bIsMpduInserted = false;
 }
//Handle the case where the MPDU cannot be inserted to current Memory Buffer Unit, free memory is deacresed and new Memory Buffer Unit is allocated

 if ((maxMpduInMem != 255 && numOfMpdusInMemoryUnit == maxMpduInMem) ||
 ((false == bIsMpduInserted) && (mpduSplitInBuffer == 0)))
 {
 memoryToUse -= freeMemory;
 freeMemory = memoryUnitSize;
 numOfMpdusInMemoryUnit = 0;
 }
 }

 return k;
}

SP/M: Do you accept the resolutions given in

Submission	page 28	Oren Kedem, Intel

