September 2017		doc.: IEEE 802.11-17/1300r0
IEEE P802.11
Wireless LANs
	EDMG-Header-A encoding and modulation

	Date: 2017-08-23

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Artyom Lomayev
	Intel
	Turgeneva 30, Nizhny Novgorod 603024, Russia
	+7 (831) 2969444
	artyom.lomayev@intel.com

	Alexander Maltsev
	Intel
	
	
	alexander.maltsev@intel.com

	Claudio da Silva
	Intel
	
	
	claudio.da.silva@intel.com

	Carlos Cordeiro
	Intel
	
	
	carlos.cordeiro@intel.com

Abstract
This document proposes specification text enhancements for subclause 30.3.3.3.2.4 (Encoding and modulation) describing EDMG-Header-A encoding and modulation process, [1].

Editor: replace the subclause 30.3.3.3.2.4 (Encoding and modulation) in D0.5 with one proposed below, changes are highlighted by red

30.3.3.3.2.4 Encoding and modulation

For an EDMG SC mode PPDU or an EDMG OFDM mode PPDU, the EDMG-Header-A field is encoded and modulated using two SC blocks of 448 chips with 64 guard symbols. The bits are scrambled and encoded as follows:

· The input 112 header bits are appended with 16 HCS bits calculated as defined in 20.3.7.
· The header 128 bits (including CRC) are scrambled as described in 20.3.9, starting from the first bit using a continuation of the scrambler bit sequence from the L-Header.
·

The scrambled bits are divided into two parts and of 64 bits each. Each part is encoded taking the following steps:
·

To each data word or , append 440 zero bits and 168 parity bits to create a codeword , such that , parity bits are computed applying LCW = 672, R = ¾ LDPC matrix defined in 20.6.3.2.3.2
·
Remove zero bits and discard (puncture) the last 8 parity bits to create a codeword of length 224 bits
·
Remove zero bits and discard (puncture) the last but one 8 parity bits to create a codeword of length 224 bits and then XOR with a PN sequence that is generated from the LFSR used for data scrambling defined in 20.3.9. The LFSR is initialized to the all 1s vector.
·

Concatenate and to create the output codeword of length 448 bits.
·

The resulting codewords for and of 448 bits each, are then modulated applying π/2-BPSK modulation as defined in 20.6.3.2.4.2. This creates two SC data blocks EDMG-Header-A1 and EDMG-Header-A2 respectively.
· Each of the resulting two SC data blocks is prepended with 64 guard symbols to create SC symbol blocks. The second SC data block EDMG-Header-A2 is appended with appropriate number of guard symbols as described in 30.5.8.2.
· The scrambled bits are divided into two parts (part A and part B) of 64 bits each. Part A and part B are each encoded and modulated as specified in steps 2-5 in 20.6.3.1.4. For an EDMG A-PPDU transmitted over a NCB × 2.16 GHz channel (2 ≤ NCB ≤ 4) in the EDMG SC mode, the first SC block (part A) and the second SC block (part B) of a EDMG-Header-Ai field (i ≥ 1) are each repeated as specified in 30.5.6; that is, each EDMG-Header-Ai field is encoded using the same procedure as that of the EDMG-Header-B field.
· Each of the resulting two SC blocks is prepended with 64 guard symbols. The second SC block is appended with appropriate number of guard symbols as described in 30.5.8.2.

For an EDMG A-PPDU transmitted over a NCB × 2.16 GHz channel (2 ≤ NCB ≤ 4) in the EDMG SC mode, the first SC symbol block (EDMG-Header-A1) and the second SC symbol block (EDMG-Header-A2) of a EDMG-Header-AiPPDU field (i ≥ 1) are each repeated as specified in 30.5.6; that is, each EDMG-Header-AiPPDU field is encoded using the same procedure as that of the EDMG-Header-B field.
[bookmark: _GoBack]
For an EDMG control mode PPDU, the EDMG-Header-A uses and continues the DMG control mode modulation and encoding (20.4.3.2.3). The scrambler is used to generate the EDMG-Header-A and its initial state is the final state of the scrambler from the preceding L-Header field.

SP/M: Do you agree to include the text proposed in 17/1300r0 (EDMG-Header-A encoding and modulation) into the 802.11ay draft spec?

References:
1. Draft P802.11ay_D0.5
Submission	page 3	Claudio da Silva, Intel

image2.wmf
(

)

128

66

65

,...,

,

B

B

B

=

b2

oleObject2.bin

image3.wmf
b1

b

=

oleObject3.bin

image4.wmf
b2

b

=

oleObject4.bin

image5.wmf
(

)

440

2

1

0

,...,

0

,

0

=

0

oleObject5.bin

image6.wmf
(

)

168

2

1

,...,

,

p

p

p

=

p

oleObject6.bin

image7.wmf
(

)

p

0

b

c

,

,

=

oleObject7.bin

image8.wmf
(

)

0

c

H

=

×

T

oleObject8.bin

image9.wmf
(

)

160

2

1

64

2

1

,...,

,

,

,...,

,

p

p

p

b

b

b

=

cs1

oleObject9.bin

image10.wmf
(

)

168

162

161

152

2

1

64

2

1

,...,

,

,

,...,

,

,

,...,

,

p

p

p

p

p

p

b

b

b

=

cs2

oleObject10.bin

image11.wmf
cs1

oleObject11.bin

image12.wmf
cs2

oleObject12.bin

image13.wmf
(

)

cs2

cs1

cs

,

=

oleObject13.bin

image14.wmf
cs

oleObject14.bin

image15.wmf
b1

oleObject15.bin

image16.wmf
b2

oleObject16.bin

image1.wmf
(

)

64

2

1

,...,

,

B

B

B

=

b1

oleObject1.bin

