September 2016		doc.: IEEE 802.11-16/1151r0
IEEE P802.11
Wireless LANs
	Changes to KDF, PRF, PKEX

	Date: 2016-09-07

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	HPE
	1322 Crossman avenue, Sunnyvale, California, 94089, United States of America
	+1 408 555 1212
	First dot last at hpe dot com

	
	
	
	
	

Abstract
This submission addresses some soon-to-be comments in the next round of TGai balloting.

Discussion
D10.1 modifies 12.7.1.7.2 in the base specification to indicate that KDF used for FILS AKMs, not PRF. But the text in the base standard has changed so that text needs to move to 12.7.1.2.

[bookmark: _GoBack]In looking at that change it was determined that the definition of what bits to generate with KDF was wrong. There are multiple PRFs defined in 12.7.1.2 depending on the number of bits needed to be produced. The number of bits required is calculated as KCK_bits + KEK_bits + TK_bits. In addition, two of the FILS AKMs generate an additional FILS-FT key. But there were no PRFs defined to support all of these key sizes so additional PRF-XXX()s need to be defined.

Also, since FILS uses an AEAD there are really no KCK bits since authentication of unencrypted information is provided by the KEK in an AEAD so table 12-8 needed to be fixed. FILS use of an integrity check for FILS handshaking mentions a KCK but this key is not used the same way the key by the name of KCK is used in the base standard so FILS should change that name.

Also, there was an editorial mistake in table 9-133.

Instruct the editor to modify table 9-133 in section 9.4.2.25.3 as indicated:

9.4.2.25.3 AKM suites
					Table 9-133—AKM suite selectors

	00-0F-AC
	 16
	 FT authentication over FILS with SHA-256 and AES-SIV-512256
	FT authentication defined in 12.7.1.7.2 (Key derivation function (KDF))
	Defined in 12.7.1.7.2 (Key derivation function (KDF)) using SHA-256

Instruct the editor to modify section 12.7.1.2 as indicated:

12.7.1.2 PRF

When the negotiated AKM is 00-0F-AC:5, 00-0F-AC:6, or 00-0F-AC:11, the KDF specified in 12.7.1.7.2 (Key derivation function (KDF)) shall be used instead of the PRF construction defined here. In this case, A is used as the KDF label and B as the KDF Context and the PRF functions are defined as follows:

PRF-128(K, A, B) = KDF-SHA-256-128(K, A, B)
PRF-192(K, A, B) = KDF-SHA-256-192(K, A, B)
PRF-256(K, A, B) = KDF-SHA-256-256(K, A, B)
PRF-384(K, A, B) = KDF-SHA-256-384(K, A, B)
PRF-512(K, A, B) = KDF-SHA-256-512(K, A, B)

When the negotiated AKM is 00-0F-AC:12, the KDF specified in 12.7.1.7.2 (Key derivation function (KDF)) shall be used instead of the PRF construction defined here. In this case, A is used as the KDF label and B as the KDF Context, and the PRF function is defined as follows:

PRF-704(K, A, B) = KDF-SHA-384-704(K, A, B)

When the negotiated AKM is 00-0F-AC:13, the KDF specified in 12.7.1.7.2 (Key derivation function (KDF)) shall be used instead of the PRF construction defined here. In this case, A is used as the KDF label and B as the KDF Context, and the PRF functions are defined as follows:

PRF-384(K, A, B) = KDF-SHA-384-384(K, A, B)
PRF-512(K, A, B) = KDF-SHA-384-512(K, A, B)
PRF-704(K, A, B) = KDF-SHA-384-704(K, A, B)

When the negotiated AKM is 00-0F-AC:14 or 00-0F-AC:16, the KDF specified in 12.7.1.7.2 (Key derivation function (KDF)) shall be used instead of the PRF construction defined here. In this case, A is used as the KDF label and B as the KDF Context, and the PRF functions are defined as follows:

	PRF-384(K, A, B) = KDF-SHA-256-384(K, A, B)
PRF-512(K, A, B) = KDF-SHA-256-512(K, A, B)
PRF-640(K, A, B) = KDF-SHA-256-640(K, A, B)
	PRF-768(K, A, B) = KDF-SHA-256-768(K, A, B)
	PRF-896(K, A, B) = KDF-SHA-256-896(K, A, B)
	PRF-1024(K, A, B) = KDF-SHA-256-1024(K, A, B)

When the negotiated AKM is 00-0F-AC:15 or 00-0F-AC:17, the KDF specified in 12.7.1.7.2 (Key derivation function (KDF)) shall be used instead of the PRF construction defined here. In this case, A is used as the KDF label and B as the KDF Context, and the PRF functions are defined as follows:

	PRF-640(K, A, B) = KDF-SHA-384-640(K, A, B)
PRF-768(K, A, B) = KDF-SHA-384-768(K, A, B)
PRF-1024(K, A, B) = KDF-SHA-384-1024(K, A, B)
	PRF-1152(K, A, B) = KDF-SHA-384-1152(K, A, B)
	PRF-1408(K, A, B) = KDF-SHA-384-1408(K, A, B)
	PRF-1536(K, A, B) = KDF-SHA-384-1536(K, A, B)

Instruct the editor to delete the changes made to 12.7.1.7.2 in the TGai draft

Instruct the editor to modify table 12-8 in section 12.7.3 as indicated:

				Table 12-8—Integrity and Key Wrap Algorithms

	 AKM
	 Integrity
 Algorithm
	 KCK bits
	 Size of MIC
	 Key-wrap
 algorithm
	 KEK bits

	00-0F-AC:14
	 AES-SIV-256
	 2560
	 0
	 AES-SIV-256
	 256

	00-0F-AC:15
	 AES-SIV-512
	 3840
	 0
	 AES-SIV-512
	 512

	00-0F-AC:16
	 AES-SIV-256
	 2560
	 0
	 AES-SIV-256
	 256

	00-0F-AC:17
	 AES-SIV-512
	 3840
	 0
	 AES-SIV-512
	 512

Instruct the editor to modify section 12.12.2.5.1 as indicated:

12.12.2.5.1 General

When not using PMKSA caching, a PMK is created according to 12.12.2.5.2 (PMKSA key derivation with FILS authentication). When using PMKSA caching, a new PMKSA is not created. Instead, the PMKSA used for PMKSA caching remains and continues to be identified by the appropriate PMKID. Regardless of whether PMKSA caching is used or not, a PTKSA shall be generated with each FILS authentication exchange.

PTKSA creation uses the KDF from 12.7.1.7.2 (Key derivation function (KDF)) to derive the following keys from the PMK: an integrity check key confirmation key (KICK), a key encryption key (KEK), and a temporal key (TK). PTKSA key establishment shall immediately be followed by key confirmation per 12.12.2.6 (Key confirmation with FILS authentication).

Instruct the editor to modify section 12.12.2.5.3 as indicated:

12.12.2.5.3 PTKSA key derivation with FILS authentication

For PTKSA key generation, the inputs to the PRFKDF are the PMK of the PMKSA, a constant label, and a concatenation of the STA’s MAC address, the AP’s BSSID, the STA’s nonce, and the AP’s nonce. When the AKM negotiated is 00-0F-AC:14 or 00-0F-AC:16, the length of KEK shall be 256 bits, and the length of the IKCK shall be 256 bits. When the AKM negotiated is 00-0F-AC:15 or 00-0F-AC:17, the length of the KEK shall be 512 bits, and the length of IKCK shall be 384 bits. When the AKM negotiated is 00-0F-AC:16, FILS-FT is 256 bits; when AKM negotiated if 00-0F-AC:17, FILS-FT is 384 bits; otherwise, FILS-FT is not derived. The total amount of bits extracted from the KDF shall therefore be 512+TK bits, 896+TK bits, or 1280+TK bits depending on the AKM negotiated, where TK_bits are determined from Table 12-4 (Cipher suite key lengths):

FILS-Key-Data = PRFKDF-X(PMK, “FILS PTK Derivation”, SPA || AA || SNonce || ANonce)
IKCK = L(FILS-Key-Data, 0, IKCK_bits)
KEK = L(FILS-Key-Data, IKCK_bits, KEK_bits)
TK = L(FILS-Key-Data, IKCK_bits + KEK_bits, TK_bits)

When doing FT initial mobility domain association using FILS authentication,

FILS-FT = L(FILS-Key-Data, IKCK_bits + KEK_bits + TK_bits, FILS-FT_bits)

where:
· IKCK_bits is the length of IKCK in bits.
· KEK_bits is the length of KEK in bits.
· FILS-FT_bits is the length of FILS-FT in bits when doing FT initial mobility domain association using FILS authentication.
· X is 512+TK_bits, 768+TK bits, 896+TK bits, or 1280+TK bits from Table 12-4 (Cipher suite key lengths) depending on the AKM negotiated.
· MK is the PMK from the PMKSA, either created from an initial FILS connection or from a cached PMKSA, when PMKSA caching is used.
· SPA is the STA’s MAC address and the AA is the AP’s BSSID.
· SNonce is the STA’s nonce and ANonce

Instruct the editor to modify section 12.12.2.6.2 as indicated:

12.12.2.6.2 (Re)Association Request for FILS key confirmation

The STA constructs a (Re)Association Request frame for FILS authentication per 9.3.3.6 (Association Request frame format) and 9.3.3.8 (Reassociation Request frame format). Hash functions are used to generate the FILS Key Confirmation element and the specific hash function depends on the AKM negotiated (9.4.2.25.3 (AKM suites)).

For FILS shared key authentication, the KeyAuth field of the FILS Key Confirmation element is constructed by using the HMAC mode of the negotiated hash function with a key of IKCK on a concatenation of the STA’s nonce, the AP’s nonce, the STA’s MAC address, the AP’s BSSID, and conditionally the STA’s public Diffie-Hellman value and the AP’s public Diffie-Hellman value, in that order:

Key-Auth = HMAC-Hash(IKCK, SNonce || ANonce || STA-MAC || AP-BSSID [|| gSTA || gAP])

where:
· Hash is the hash function specific to the negotiated AKM.
· SNonce is the STA's nonce, ANonce is the AP’s nonce.
· STA-MAC is the MAC address of the STA and AP-BSSID is the BSSID of the AP.
· gSTA is the STA’s Diffie-Hellman public value and gAP is the AP’s Diffie-Hellman public value.
· The brackets indicate the inclusion of the Diffie-Hellman public values when doing PFS with FILS shared key authentication; there are no Diffie-Hellman public values to include otherwise.

If authentication is deemed a failure, IKCK, KEK, TK and the PTKSA shall be irretrievably deleted and the AP shall return an Authentication frame with a status code set to 112 (Authentication rejected due to FILS authentication failure). If PMKSA caching was not being employed for this failed authentication attempt, the PMKSA shall also be deleted. If PMKSA caching was being used, the cached PMKSA may not be deleted.

Instruct the editor to modify section 12.12.2.6.3 as indicated:

12.12.2.6.3 (Re)Association Response for FILS key confirmation

The AP constructs a (Re)Association Response frame for FILS authentication per 9.3.3.7 (Association Response frame format) and 9.3.3.9 (Reassociation Response frame format). As with the (Re)Association Request frame, hash functions are used to generate the FILS Key Confirmation element and the specific hash function depends on the AKM negotiated (see 9.4.2.25.3 (AKM suites)).

The AP constructs a Key Delivery element indicating the current GTK and Key RSC, the current IGTK and IPN if management frame protection is enabled. The GTK is carried in a GTK KDE with Tx subfield equal to 0. The IGTK and IPN are carried in an IGTK KDE. The AP puts this element into the (Re)Association Response frame.

For FILS shared key authentication, the KeyAuth field of the FILS Key Confirmation element is constructed by using the HMAC mode of the negotiated hash function with a key of IKCK on a concatenation of the AP’s nonce, the STA’s nonce, the AP’s BSSID, the STA’s MAC address, and conditionally the AP’s public Diffie-Hellman value and the STA’s public Diffie-Hellman value, in that order:

Key-Auth = HMAC-Hash(IKCK, ANonce || SNonce || AP-BSSID || STA-MAC [|| gAP || gSTA])

where:
· Hash is the hash function specific to the negotiated AKM.
· ANonce is the AP’s nonce and SNonce is the STA’s nonce.
· AP-BSSID is the BSSID of the AP and STA-MAC is the MAC address of the STA.
· gAP is the AP’s Diffie-Hellman public value and gSTA is the STA’s Diffie-Hellman public value.
· The brackets indicate the inclusion of the Diffie-Hellman public values when doing PFS with FILS shared key authentication; there are no Diffie-Hellman public values to include otherwise.

If authentication is deemed a failure, the IKCK, KEK, PMK, and TK shall be irretrievably deleted and the
STA shall abandon the exchange. Otherwise authentication succeeds and the STA and AP shall irretrievably
delete the nonpersistent secret keying material that is created by executing the key establishment with FILS
shared key authentication scheme (12.12.2.3 (Key establishment with FILS shared key authentication)) or
the key establishment with FILS public key authentication scheme (12.12.2.4 (Key establishment with FILS
public key authentication)). The KCK, KEK, and PMK shall be used for subsequent key management as
specified in 12.6 (RSNA security association management). If the lifetime of the rMSK is known, the STA
and AP shall set the lifetime of the PMKSA to the lifetime of the rMSK. Otherwise, the STA and AP shall
set the lifetime of the PMKSA to the value dot11RSNAConfigPMKLifetime.

Discussion
PKEX’s security considerations rely on shared secrets never being repeated and public keys not being sent multiple times. If public keys are reused an attacker will know the following:
· The encrypted public key from the first run, C1
· The encrypted public key from the second run, C2

Assuming the passwords for both runs are taken from the same pool, an attack is therefore possible:
· The attacker knows Q1 – Q2 since she knows that C1 – C2 = P + Q1 – (P + Q2) = Q1 – Q2
· The attacker can go offline and run a quadratic brute force attack checking all N2 possible pairs of passwords to find a solution to Q1 – Q2
· Birthday paradox means an O(N) attack has a 0.5 probability of success where each attempt requires two distinct runs through the hunting-and-pecking loop.
· This attack could be sped up by precomputing all possible PWEs for all possible passwords but even with such a rainbow table multiple elliptic curve multiplication and addition steps would have to be performed for each attempt.

Requiring that public keys never get sent more than once in PKEX makes use in 11ai somewhat problematic as an AP would like to have a single authentication key and to distribute it to multiple people. Therefore it is necessary to add constraints to the security considerations in the introduction of PKEX.

12.7.12.1 General

The Public Key Exchange (PKEX) is a protocol to provide for distribution of public keys without the need of a trusted third partythat service. It is a simple exchange consisting of two request-response messages, four messages in total. PKEX uses a one-time shared key/code/word/phrase and public key cryptography in order to achieve the following goals:

· The protocol will result in the exchange of trusted public keys or it will fail;
· A passive adversary is unable to subvert the exchange, insert any different public keys, learn the public keys, or learn the key/code/word/phrase shared by the two peers;
· An active adversary that does not know the shared key/code/word/phrase cannot successfully complete the exchange; and,
· An attacker is not able to perform an off-line dictionary attack against PKEX in order to determine either public key or to determine the shared key/code/word/phrase.

Using the shared key/code/word/phrase in more than one PKEX exchange voids these security guarantees. To retain the security guarantees above a public key should not be exchanged using PKEX more than once. If a public key is exchanged more than once an O(N) brute force off-line dictionary attack can be performed to determine, with high probability, the key/code/word/phrase used and therefore the public key being distributed. If a device wishes to distribute a single public key to multiple peers using PKEX (e.g. an AP that wants to communicate securely with multiple STAs using the same public key), each key/code/word/phrase should be drawn from a pool of such secrets that is sufficiently large as to mitigate this attack and the waiting period and retransmission timeouts (see 12.7.12.4.2) should be set sufficiently low to prevent the off-line attack from being run in real time.

Due to the nature of the exchange, only public keys suitable for DSA (specified in FIPS 186-4) or ECDSA (specified in ISO/IEC 14888-3) can be exchanged using PKEX. A, and a non-AP STA cannot engage in multiple, simultaneous PEX exchanges with more than one peer.

Discussion
If the attacker knows a public key that one of the peers is sending an attack against subsequent PKEX runs that is theoretically possible but it relies on a quite remarkable ability. Assuming Alice encrypts her public key Pa with Qa to produce Ca and sends Ca to Bob:
· Carol launches man-in-the-middle attack and intercepts Ca
· Carol calculates Qa = Ca – Pa
· Carol encrypts her public key, Z, by computing Z + Qa and sends this to Bob
· Bob computes Qa since he knows PWE and decrypts Z, Bob then responds with his own encrypted public key Cb = Pb + Qb.
· Carol knows Qa = scalar-op(H(MAC), PWE) where MAC is the MAC address of Alice but must determine PWE in order to compute Qb and decrypt Pb. To determine PWE she must perform a logarithm with an unknown base—logPWE(Qa) = H(MAC). To determine PWE, Carol must now take the H(MAC)th root of Qa. But H() is either SHA256, SHA384, or SHA512 and therefore the Nth root calculation will be using N as a 256-bit, 384-bit, or 512-bit number.
· Assuming Carol has this capability, she can determine PWE and then compute Qb from PWE and Bob’s MAC address, and then decrypt Pb.
· Carol impersonates Alice and finishes PKEX with Bob.
· Bob now has trust that Z is Alice’s public key.

This attack seems infeasible but the fix is simple—include the password originally used to compute PWE in with the shared secret.

If the attacker knows the public key of each peer a simpler attack is possible. Assuming Alice encrypts her public key Pa with Qa to produce Ca and sends Ca to Bob:
· Bob computes Qa since he knows PWE and decrypts Ca to recover Pa.
· Bob generates Qb and encrypts Pb to produce Cb and sends Cb to Alice.
· Carol intercepts Cb and determines Qb = Cb – Pb (since she already has Pb)
· Carol encrypts her public key Z with Qb to produce Cz = Z + Qb and sends Cz to Alice impersonating Bob
· Alice receives Cz, computes Qb since she knows PWE, and decrypts it to recover Z = Cz – Qb
· Carol continues the exchange with Alice impersonating Bob.
· Now Alice has trust that Z is Bob’s public key.

This attack is somewhat contrived because it basically involves the peers running PKEX twice to each other, which serves no purpose and will be unlikely to be done. But the fix is equally simple as the attack above—include the password originally used to compute PWE in the shared secret.

Instruct the editor to modify section 12.7.12.4.2 as indicated:

12.7.12.4.2 Exchange of PKEX Key Commit messages

A key confirmation key, k, whose length is the length of the digest produced by the hash function, is derived from S using the KDF from 12.7.1.7.2 (Key derivation function) with the label “PKEX Key Confirmation” and a conditional context consisting of the encrypted public keys and the MAC addresses:

	if (min(STA-nonce, peer-nonce) == STA-nonce
	x = Hash(peer-nonce || STA-nonce)
	k = KDF-Hash-Length(x, "PKEX Key Confirmation", C' || C ||
				peer-MAC || STA-MAC || F(S) || password)
	else
	x = Hash(STA-nonce || peer-nonce)
	k = KDF-Hash-Length(x, "PKEX Key Confirmation", C || C' ||
			STA-MAC || peer-MAC || F(S) || password)
	endif

where
the min() operations for nonces isare encoded as specified in 8.2.2 (Conventions), Hash is the hash algorithm specified in 12.7.12.2 (PKEX overview), and password is the shared key/code/word/phrase used as base in 12.7.12.4.1 to generate PWE. KDF-Hash-Length is the key derivation function defined in 12.7.1.7.2 (Key derivation function (KDF)) with Length equal to the size, in bits, of the digest produced by Hash. F() is the element-to-scalar function defined in 12.4.4 (Finite cyclic groups). STA-nonce and peer-nonce are the nonces produced by the STA and peer, respectively, as part of the PKEX protocol and STA-MAC and peer-MAC are the MAC addresses used by the STA and peer, respectively, to execute the PKEX protocol.

References:

Submission	page 1	Dan Harkins, HPE

