Multi-Layer LTE / Wi-Fi Access Network Selection - results from the SEMAFOUR project

Date: 2015-07-14

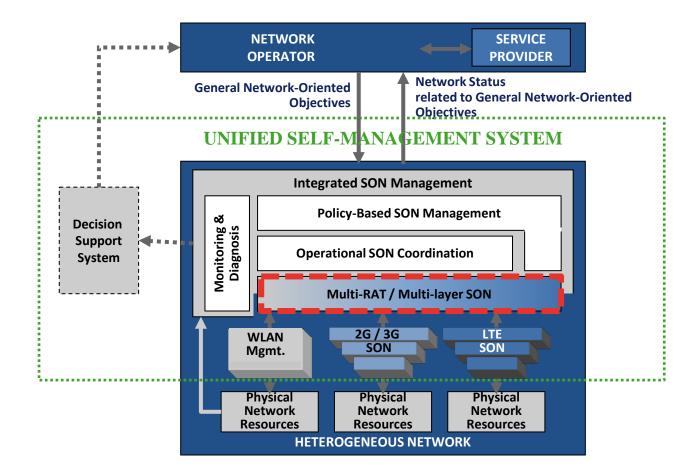
Author:

Name	Company	Address	Phone	email
Thomas Kürner	TU Braunschweig			t.kuerner@tu-bs.de

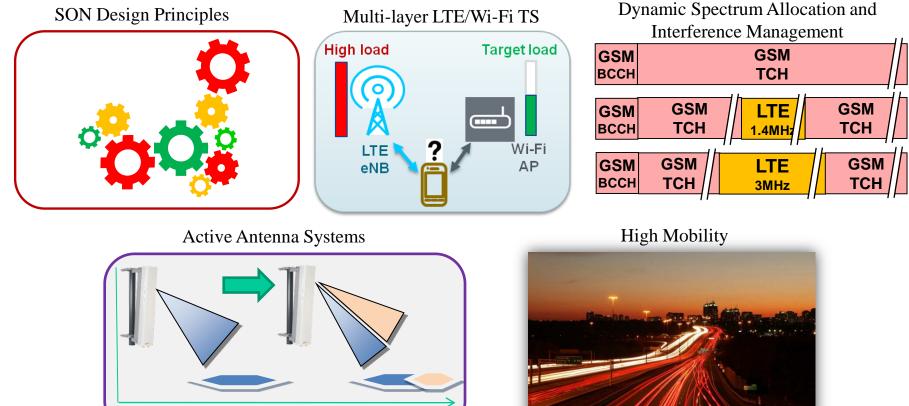
Outline

- What is the SEMAFOUR project?
- SEMAFOUR Vision
- Results achieved within SEMAFOUR's LTE/WLAN Traffic Steering use case

What is **SEMFOUR** ?


- SEMAFOUR is a collaborative research project funded by the European Commission within its seventh framework programme
- The goal of SEMAFOUR is to develop a Unified selfmanagement system efficiently operating a heterogeneous mobile network comprising a multitude of radio access technologies and layers
- SEMAFOUR mainly has concentrated on 3GPPP radio technologies, but has considered IEEE 802.11 as well

SEMAFOUR Key Facts


- Website: www.fp7-semafour.eu
- Scheme: EU FP7 STREP (No. 316384)
- Duration: 09/2012 08/2015
- Effort: 500 Person Months
- Budget: 6.1 M \in (total), 3.8 M \in (funding)
- Coordinator: Dr. Colin Willcock (Nokia, Germany)

SEMAFOUR Vision

SON Functions for Multi RAT and Multi Layer Networks

time

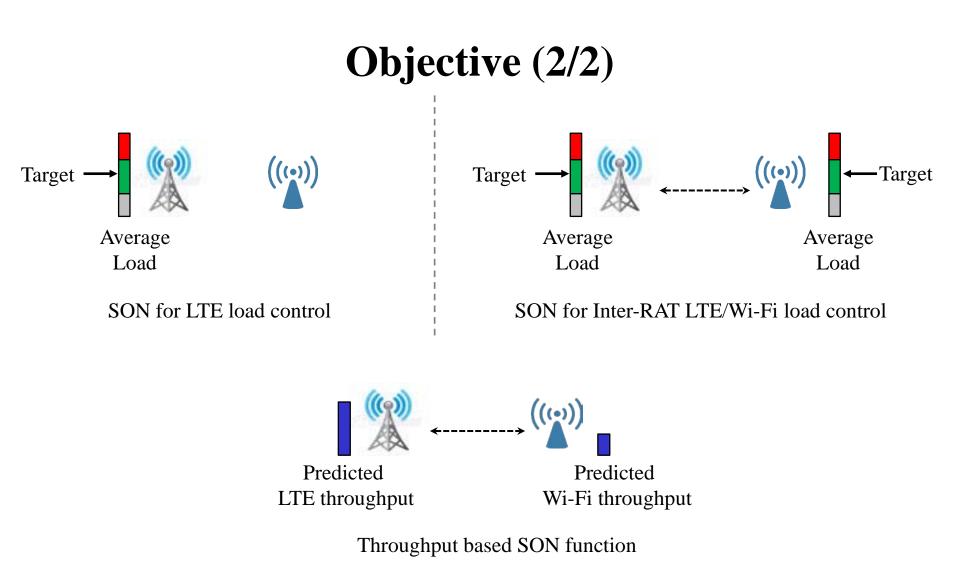
- In the remaining part of this presentation is on the Multilayer LTE/Wi-Fi Traffic Steering use case, where the partners Ericsson, Nokia, iMinds and TNO have worked on.
- The following slides are an extented version from: <u>http://www.fp7-semafour.eu/media/cms_page_media/20/6-</u> <u>Wang-SEMAFOUR%20Workshop%202014-</u> <u>Traffic%20Steering.pdf</u>

Multi-Layer LTE / Wi-Fi Access Network Selection

Yu Wang⁺, Daniela Laselva^{*}, István Z. Kovács^{*}, Per-Henrik Michaelsen^{*}, Relja Djapic^{\(\Phi\)}, Pieter Willemen[^], Kathleen Spaey^x, Bart Sas^x, Dries Naudts[^], Andreas Bergström⁺

⁺Ericsson Research, Stockholm, Sweden; ^{*}Nokia, Aalborg, Denmark; [@]TNO, Delft, Netherlands; [^]iMinds/Ghent University, Ghent, Belgium, ^xiMinds/University of Antwerp, Antwerp, Belgium

Why SON for LTE/WiFi Access Network Selection?


- Operators are using Wi-Fi for offloading
 - "Carrier grade Wi-Fi"

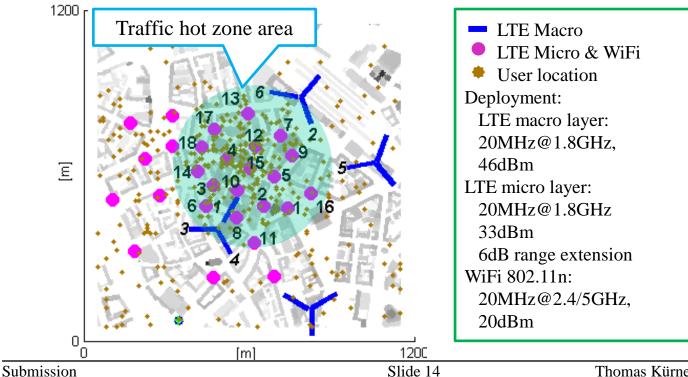
- Great interests in integrating cellular and Wi-Fi networks
 - WiFi Alliance: Hotspot 2.0 Release 1/2
 - 3GPP: IP session continuity, ANDSF, Radio interworking
- One key technology component: access network selection
 - Today behaviour: "Wi-Fi If Coverage".
- SON for access network selection
 - SON: proved working in related areas, e.g. load balancing
 - A good candidate to address the LTE/Wi-Fi access network selection in dynamic radio and traffic environments

Objective (1/2)

- Objective:
 - Access network selection between multi-layer LTE and Wi-Fi in dense urban deployments to improve user experience and network efficiency
- Implemented SON functions:
 - Threshold based SON functions
 - SON for LTE load control
 - SON for Inter-RAT LTE/Wi-Fi load control
 - Throughput based SON functions
 - QoS-oriented access network selection, e.g. based on a per user throughput metric

SON Function Design – Monitoring KPIs

• LTE load

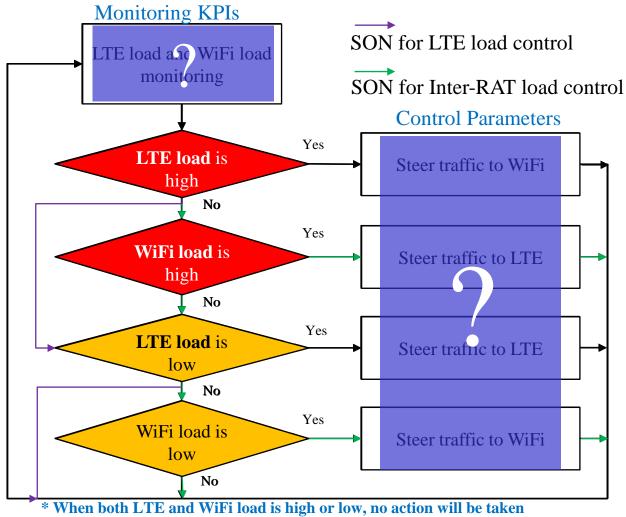

- Average raw percentage of physical resource blocks (PRBs) utilization
- Average fraction of required PRBs in a cell to serve connected UEs with a certain minimum bit rate

• Wi-Fi load

- Average percentage of channel busy time of a Wi-Fi AP
- The channel is considered as busy if there is at least one active connection associated to the AP and the AP or a UE is transmitting
- How fast the SON functions can change configuration parameters which determine access network selection of UEs
 - Observation & Adjustment period (0.5 2 seconds)
 - Control parameter step size (0.5 5 dB)

SON Function Evaluation - Scenario

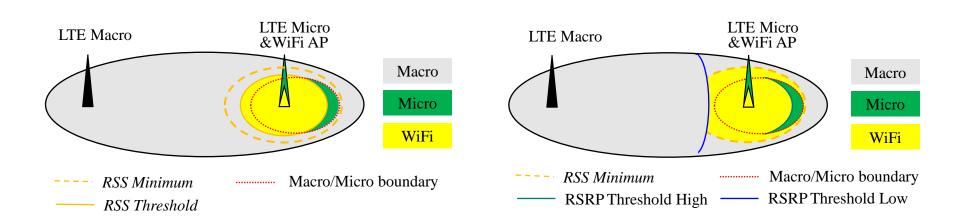
- Realistic dense urban environments
- Dense WiFi deployment
- Outdoor & Indoor



Outdoor Hot Zone

Threshold based SON Functions

July 2015


SON Function Design for the Access Network Selection

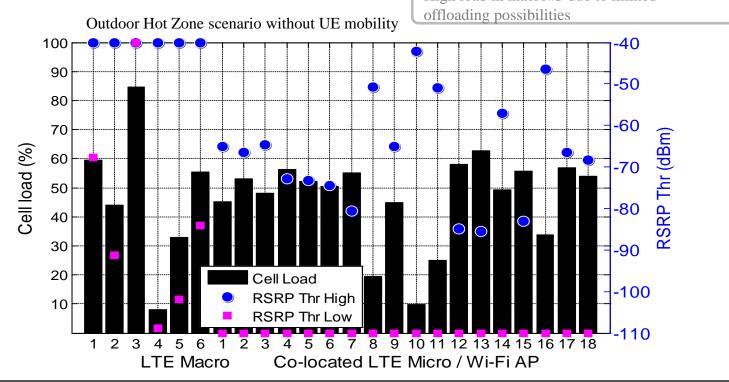
SON Function Design – Control Parameters

WiFi RSS Threshold

LTE RSRP High & RSRP Low Thresholds

To steer more traffic to WiFi

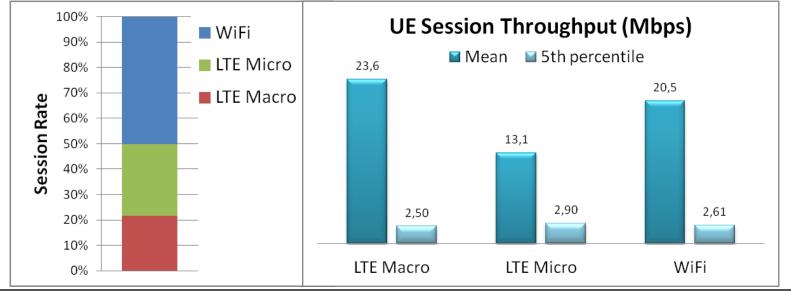
- Decrease WiFi RSS Threshold
- Decrease RSRP High Threshold Increase RSRP Low Threshold


SON Function Evaluation - Overview

Objective	LTE Load Control	Inter-RAT Load Control	
Control Parameter	RSS Threshold	RSRP Thresholds	
Environment	Indoor	Outdoor	
Mobility	Static Users	Mobile Users	

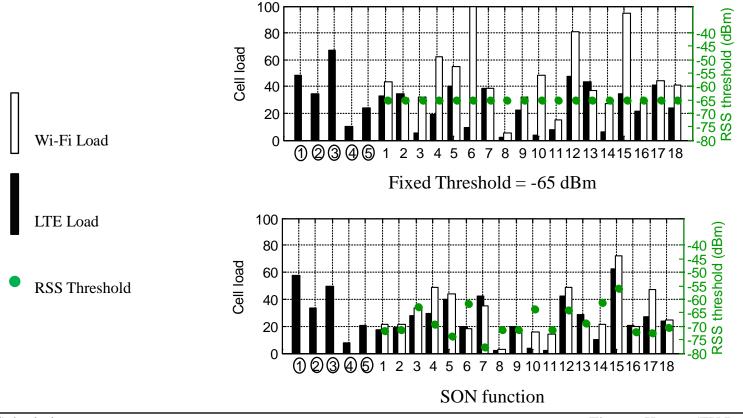
- Presented in this presentation:
 - LTE Load Control + RSRP Thresholds + Outdoor + Static Users
 - Inter-RAT Load Control + RSS Threshold + Outdoor + Static Users

SON Function Evaluation – LTE Load Control


• RSRP Threshold Low (macros) and RSRP Threshold High (micros) are properly adjusted to meet the objective, i.e. keep LTE cell load within target range (60-80%)

SON Function Evaluation – LTE Load Control cont'

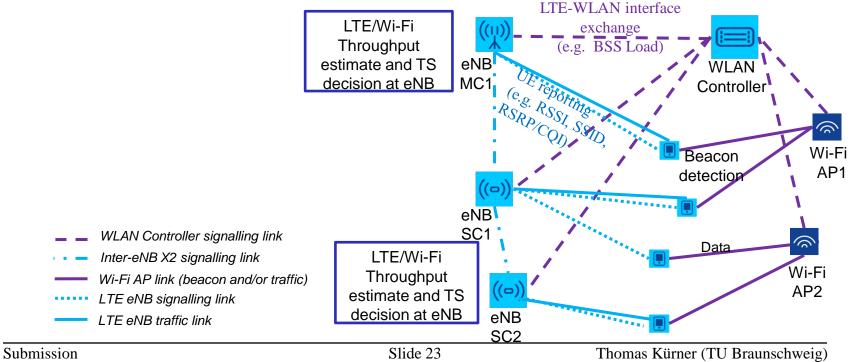
- The SON configuration results in 50% offload to Wi-Fi while good Wi-Fi throughput is achieved, i.e. 5th-ile throughput of 2.6 Mbps
- Overall good performance is achieved, avg UE throughput=19.1 Mbps
 - vs. Baseline "Wi-Fi if coverage" with mean UE throughput = 10.5 Mbps
- Micro performance lower than macro due to presence of cell-edge UEs


Outdoor Hot Zone scenario without UE mobility

Submission

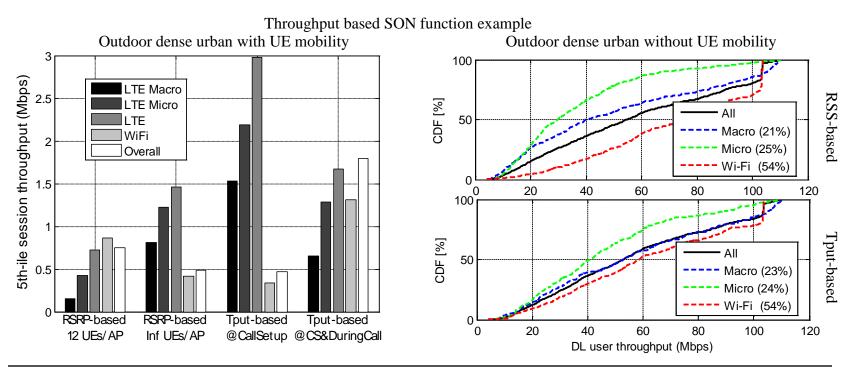
SON Function Evaluation – Inter-RAT Load Control

RSS Thresholds are properly adjusted to meet the objective, i.e. ٠ balance the load between LTE and Wi-Fi



July 2015

Throughput-based SON Functions


Principle of Throughput based Traffic Steering

- Throughput based Traffic Steering between LTE and Wi-Fi is based on predicted/measured user throughput in LTE and Wi-Fi
- A user session is served by the RAT (LTE or Wi-Fi) which provides the highest throughput (plus a hysteresis to minimize IRAT handovers)
- The algorithm runs @Call Setup and During a Call (if enabled)

Results from Throughput basd SON functions

- Throughput based SON function outperforms the threshold based functions
 - Gains of 25%-240% for the 5th percentile user throughput depending on scenarios
 - More balanced user throughput among the network layers

SON Function Implementation

- The proposed SON functions are intended to be implemented in a distributed manner
 - Control parameters are updated every few seconds
- Implementation of the access network selection rules
 - Executed in terminals assisted by the network: Control parameter thresholds are sent to terminals via broadcasted or dedicated signalling channels being standardized in 3GPP (RAN2 R12)
 - **Controlled by the network**: Control parameters are monitored at a network node and the node controls the access network selection
- Information exchange between LTE and WiFi
 - Standardization of such an interface is being discussed in 3GPP (Release 13 work item RP151114 "LTE-WLAN Radio Level Integration and Interworking Enhancement" covers the LTE-WLAN exchange (between the LTE eNB and the WT (WLAN Termination function)) and the UE reporting of WLAN measurements required for implementing the presented schemes
 - Proprietary interfaces
 - Terminals as relays

July 2015

Summary

- SON functions for LTE and WI-Fi traffic steering have been designed, evaluated and demonstrated in realistic dense urban scenarios
- The effectiveness of the SON functions was proved with controlled load levels and improved user throughput
- We found the performance of the SON functions were most sensitive to the control parameter updating pace, i.e. the step size and period
- Throughput-based SON outperforms threshold-based SON in user throughput and improved manageability at the cost of further complexity (throughput prediction)
- Among other findings, the study unveiled the importance of information exchange between LTE and Wi-Fi