March 2015		doc.: IEEE 802.11-15/0355r2
IEEE P802.11
Wireless LANs
	MIB TruthValue usage patterns

	Date: 2015-03-15

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Mark Hamilton
	Spectralink
	2560 55th St
Boulder, CO 80301 USA
	+1 303 441 7553
	mark.hamilton@spectralink.com

	
	
	
	
	

Abstract
This document contains a description of “design patterns” for the more common usage of MIB attributes with Type TruthValue, in Std 802.11 and its amendments.

R0 – Initial discussion document.
R1 – Fixed typos
R2 – Updates based on face-to-face review: Add examples, Merge 3.1 and 3.2, miscellaneous

Introduction and Purpose
[bookmark: _GoBack]This document outlines several common usage models for a subset of MIB attributes: those with data type TruthValue (“SYNTAX TruthValue” in the MIB object definition). Typically, such an attribute is used to indicate the status a feature or a set of behaviors, which either is or is not operational within a given implementation at a given time.

As with all MIB attributes, the benefit of these attributes to the Standard is to provide a model of expected behavior and interactions for implementations of the Standard. Since the MIB is rarely used, literally as defined, by implementation, instead it serves to provide a common definition style and a bit of formalism to descriptions of implementation behavior that is necessary for interoperability. In this regard, the MIB is similar to the service definitions in clause 6 (Layer management), and in fact through the mapping described in subclause 6.2 (Generic management primitives) the MIB attributes indirectly define part of the management service interface.

In this document, only MIB attributes defined with type (SYNTAX) of’”TruthValue” are addressed, as these attributes have the most commonality in purpose, while having considerable variation in naming and definition style for the same uses. It is hoped that with a common set of guidelines for naming and definition style, that all such MIB attributes can (probably over a period of time) be described with a small number of recognizable patterns, and result in ease of understanding their intent.
Elements of attribute definition, and pattern uniqueness
Each usage pattern below is intended to completely cover the scenario for a given feature. That is, a given feature shall use exactly one of these patterns, so it shall never need or use more than one of these patterns. If a feature scenario is found that does not fit any pattern, or needs more than one pattern, then that should be discussed, and a new pattern for the scenario created if that is necessary.

Each usage pattern below includes guidelines for the following aspects of definitions for MIB attributes that fit that pattern:
· Name – using a consistent set of suffixes on attribute names will help the reader intuitively understand the purpose of the attribute, and thereby the behavior(s) to expect from implementations.
· MAX-ACCESS – this aspect should provide clarity about access to the attribute from an external entity (usually a management interface or system, such as SNMP or similar).
· DESCRIPTION – document 11-09/533 provides guidelines for general MIB attribute definition, including a discussion of the information that should be included. This document provides more specific guidelines specifically for TruthValue attribute patterns listed here.

Each usage pattern also includes guidelines for using and referencing the MIB attribute elsewhere in the Standard.

For the purposes of this document, the term “feature” applies to any identifiable unique feature of the Standard that could be independently present or absent in a particular implementation, or a similar set of behaviors which might be operational as a group, or none of them are.
Patterns
dot11<XXX>Implemented: Static implementation capability
A static implementation pattern is for a feature that is an inherent capability of a given implementation. As an “inherent” capability, this pattern is for features which are permanently operational in implementations that support it – that is, it is not enabled or disabled dynamically during the lifetime of an instance of the implementation.

There are two forms of this pattern: internal use only, and externally accessible, as described below
Internal use only
This form of the static implementation pattern is for a feature that is an inherent capability of a given implementation, and which is not expected to be queried by an external entity. The purpose of such an attribute is really only internal to the 802.11 Standard; defining such an attribute makes it clear that the indication of this support is in fact only useful to the internal 802.11 entities, and in effect becomes just a shorthand formalism (and makes for easier searching, etc.) for “devices that implement XXX” for use elsewhere in the Standard.
External access provided
The intent of this form of the static implementation pattern is for a feature that is an inherent capability of a given implementation, and where it would be useful for this attribute to be queried (for support in the implementation) by an external entity. Such an attribute can be used within the Standard to control protocol or behaviors which are optional dependent on whether the implementation supports the feature, as well as to inform external management systems of support for the feature thus allowing such systems to manage aspects of the feature, or make other dynamic decisions within the management of the overall deployment.
Form of definition and use
Both forms of this pattern have similar definition, only the setting for MAX-ACCESS differs, and the use in the Standard is also similar.

Name: dot11<XXX>Implemented
MAX-ACCESS: none	 - access to external entity not allowed
	OR
MAX-ACCESS: read-only	 - access to external entity allowed
DESCRIPTION: "This is a capability variable. Its value is determined by device capabilities. This attribute, when true, indicates that the XXX feature is implemented and operational."

The attribute can then be referenced in the body of the Standard as a quick indication of the presence or absence of the feature in an implementation, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX>Implemented is true.”
- for optional fields with frame formats in clause 8, “The <optional field name> is present if dot11<XXX>Implemented is true.”
- for description of behavior in later clauses and Annexes, “If dot11<XXX>Implemented is true, <some behavior happens>.”
Example
dot11RSNAOptionImplemented is an example of this pattern. There is no indication (in IEEE Std 802.11-2012) that this attribute has any purpose for external access (an external entity reading its state). So, it seems it could/should have MAX-ACCESS of “none”. However, it is shown as “read-only” in that version of the Standard. There should either be a description of how or when such access is useful, or the access should be changed to “none”.
dot11<XXX>Enabled: Dynamically operational capability, enabled by internal mechanism
General
The intent of this pattern is for a feature that when present in an implementation, becomes operational or non-operational dynamically within the lifetime of a particular instance of the implementation, and such dynamic change occurs as a result of behaviors or interactions described within Std 802.11. That is, the feature might become operational, for example, based on a protocol exchange, or receiving an enablement indication from a peer entity.

The current state of the feature’s operational state may or may not be made available to query by an external entity.

Such an attribute can be used within the Standard to control protocol or behaviors which are optional dependent on whether the feature is currently operational, as well as to optionally inform external management systems of the operational state of the feature thus allowing such systems to manage aspects of the feature, or make other dynamic decisions within the management of the overall deployment.
Form of definition and use
Name: dot11<XXX>Enabled
MAX-ACCESS: none	 - access to external entity not allowed
	OR
MAX-ACCESS: read-only	 - access to external entity allowed
DESCRIPTION: "This is a status variable. Its value is determined by device capabilities. This attribute, when true, indicates that the XXX feature is currently operational. It is written by <some entity> when <blah happens>."

The attribute can then be referenced in the body of the Standard as a quick indication of the operational state of the feature, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX> Enabled is true.”
- for optional fields with frame formats in clause 8, “The <optional field name> is present if dot11<XXX> Enabled is true.”
- for description of behavior in later clauses and Annexes, “If dot11<XXX>Implemented is true, <some behavior happens>.”
Example
dot11NonAPStationAuthDls is set as result of interactions using the Interworking service and the SSPN interface. This is a somewhat oblique example, since this attribute is one of a set that represent the capabilities of each associated non-AP STA, and as such they are not really attributes of the AP, even though they are part of the AP’s MIB.

A better example might be dot11GeolocationCapabilityActivated from 802.11af. This attribute is set within a GDD dependent STA as a result of the GDD enablement procedure.
dot11<XXX>Activated: Dynamically operational capability, activated by an 802.11 or external entity
General
The intent of this pattern is for a feature that when present in an implementation, becomes operational or non-operational dynamically within the lifetime of a particular instance of the implementation, and such dynamic change occurs as a result of behaviors or interactions described within Std 802.11, or as a result of an external entity writing to the MIB attribute (possibly after some time has passed, or some other trigger event has occurred).

Such an attribute can be used within the Standard to control protocol or behaviors which are optional dependent on whether the feature is currently operational, as well as to both allow an external entity to change the operational state as well as to inform an external entity of the current operational state of the feature.

Note that this pattern is a superset of the dot11<Xxx>Enabled pattern. Attributes fitting both patterns may change state due to behaviors or interactions described within the scope of 802.11. However, this pattern adds the concept of an external entity writing to the attribute to change its state. This adds complexity to the consideration of the attribute. Authors of 802.11 must describe the response of a conforming system, when an external entity changes the attribute state, perhaps at arbitrary times. If there are constraints on when the attribute can be changed, those must be described as an implementation requirement to enforce such limitations, to prevent unspecified behavior.
Form of definition and use
Name: dot11<XXX>Activated
MAX-ACCESS: read-write
DESCRIPTION: "This is a control variable. It is written by an external management entity. This attribute, when true, indicates that the XXX feature is currently operational. Changes take effect when <blah happens>."

The attribute can then be referenced in the body of the Standard as a quick indication of the current operational state of the feature, for example:
- for parameters to service primitives in clause 6, “This parameter is present if dot11<XXX> Activated is true.”
- for optional fields with frame formats in clause 8, “The <optional field name> is present if dot11<XXX> Activated is true.”
- for description of behavior in later clauses and Annexes, “If dot11<XXX>Implemented is true, <some behavior happens>.”

Example
dot11SpectrumManagementRequired is an example of an attribute set both internally as well by an external management entity. The internal use is implied, as a STA must set this to true (if it isn’t already set to true by a management entity) before it can associate to a BSS that is advertising it.

Submission	page 2	Mark Hamilton, Spectralink
