July 2014		doc.: IEEE 802.11-14/0692r2
IEEE P802.11
Wireless LANs
	Resolution of CIDs for section 11.11.2.3	Comment by mrison': For the abstract, I’ve added some editorial CIDs in 11.11.2.3, so that their overall outcome can be observed, but note I have not added 4394, 4777

	Date: 2014-06-02

	Author:

	Name
	Affiliation
	Address
	Phone
	email

	Mark RISON
	Samsung Cambridge Solution Centre
	SJH, CB4 0DS, U.K.
	+44 1223 434600
	at samsung (a global commercial entity) I'm the letter emme then dot rison

	Original author (r0/r1):
	
	
	
	

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	dharkins at aruba networks dot com

 (
Abstract
This submission proposes resolution
s
 to comments related to the key derivation
subclause
, 11.11.2.3. Namely: CIDs
4082,
4083, 4292, 4329,
4330,
4331,
4391,
4392,
4393,
4776,
4893,
4950,
5042,
5075, and 5076
, plus some small editorials
.
 It is derived from 14/0692r1 from Dan Harkins (Aruba Networks).
)

Instruct editor to modify section 11.11.2.3 as indicated:

11.11.2.3 Key derivation with FILS authentication

Key derivation with FILS aAuthentication uses the KDF from 11.6.1.7.2 (Key derivation function (KDF)) to derive keys for:
· a PMKSA (a pPairwise mMaster kKey (PMK) and the corresponding PMKID) and
· a PTKSA (-a key confirmation key (KCK), a key encryption key (KEK), and a temporal key (TK)).	Comment by mrison': BTW, how is the GTKSA/IGTKSA etc. derived in FILS?

In both cases, when the AKM used is 00-0F-AC:<ANA-1> the hash algorithm used for the KDF shall be SHA256 and when the AKM used is 00-0F-AC:<ANA-2> the hash algorithm used for the KDF shall be SHA384.

When using PMKSA caching, a new PMKSA is not created, but regardless of whether PMKSA caching is used or not, a new PTKSA shall be generated with each FILS authentication exchange.

11.11.2.3.1 PMKSA key derivation with FILS authentication

For PMKSA key generation, the inputs to the KDF are:
· the STA and AP nonces, SNonce and ANonce a string of zeros whose length is equal to the block size of the hash algorithm used for the KDF
· , a constant label
· , the EAP-RP secret result, rMSK, if shared key authentication is being used
· , and, the Diffie-Hellman shared secret, ss, if PFS is being used or public key authentication is being used.

 The KDF produces a PMK and a corresponding PMKID which is used to uniquely identify the PMKSA. The length of the PMK shall be 256 bits, and the length of the PMKID shall be 128 bits:	Comment by mrison': This is always true (i.e. not just FILS), no?

PMKID || PMK = KDF-384(SNonce || ANonce<zero>, "FILS PMKSA Derivation", [rMSK][ss]context)

wWhere the context is:
·
· [bookmark: _GoBack]<zero> is a string of zeros of length 256 or a length of 384, depending on the AKM used
· rMSK is the output of the EAP-RP exchange if shared key authentication was is being used without PFS
· rMSK || ss if shared key authentication is being used with PFS
· ss is the result of the Diffie-Hellman exchange if public key authentication was is being used or if PFS was used with shared key authentication

Upon completion of PMK generation the shared secret, ss, and rMSK, if applicablegenerated, shall be irretrievably destroyed.
When using PMKSA caching, a new PMKSA is not created. Instead, the PMKSA used for PMKSA caching remains and continues to be identified by the appropriate PMKID. Regardless of whether PMKSA caching is used or not, a PTKSA shall be generated with each FILS authentication exchange.

11.11.2.3.2 PTKSA key derivation with FILS authentication

For PTKSA key generation, the inputs to the KDF are:
· the PMK of the PMKSA, either created from an initial FILS connection or from a cached PMKSA the two 16 octet nonces NSTA and NAP produced by the STA and AP, respectively
· , a constant label
· , and the PMK of the PMKSA.the STA’s MAC address, SPA
· the AP’s BSSID, AA	Comment by mrison': I trust this is well-defined when the AP supports multiple BSSIDs?
· the STA and AP nonces, SNonce and ANonce

The KDF produces a KCK, a KEK and a TK. When the AKM used is 00-0F-AC:<ANA-1>, the length of the KEK shall be 128 bits, and the length of the KCK shall be 256 bits. When the AKM used is 00-0F-AC:<ANA-2> the length of the KEK shall be 256 bits, and the length of KCK shall be 384 bits., The total amount of bits extracted from the KDF, X, shall therefore be 384+TK_bits or 640+TK_ bits depending on the AKM used, where TK_bits is determined from Table 11-4 (Cipher suite key lengths):.

KCK || KEK || TK = KDF-X(PMKNSTA | NAP, “FILS PTKSA Derivation”, SPA || AA || SNonce || ANoncePMK)	Comment by mrison': No need for Min/Max as in 11.6.1.3?

Where:

— Xis 384+TK_bits or 640+TK bits from Table 11-4 (Cipher suite key lengths) depending on the AKM used
· PMK is the PMK from the PMKSA, either created from an initial FILS connection or from a cached PMKSA, when PMKSA caching is used.
·

If the negotiated AKM is 00-0F-AC-<:<ANA-1> or 00-0F-AC-<:<ANA-2>, FILS requires an additional element: a 13 octet AEAD counter to be part of the newly created PTKSA. The STA shall set the AEAD counter to 13 octets of zero and the AP shall set the first octet to the value 128 and the remaining octets to zero (i.e. the first bit of the AEAD counter is 1 and the rest of the bits in the counter are 0). To allow for proper processing, each side shall include the AEAD counter of the other as a peer's AEAD counter (see 11.11.2.5 (AEAD cipher mode)). AEAD counters are processed per 11.11.2.5 (AEAD cipiher mode for FILS).

References:

IEEE P802.11ai/D2.0
IEEE P802.11-REVmc/D2.0
Submission	page 2	Mark RISON, Samsung

